高中数学模块综合检测卷(二)苏教版必修
- 格式:doc
- 大小:308.50 KB
- 文档页数:13
(新课标)2018-2019学年苏教版高中数学必修二模块综合检测卷(测试时间:120分钟评价分值:150分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线x-3=0的倾斜角是( )A.45°B.60°C.90°D.不存在答案:C2.已知点A(x,1,2)和点B(2,3,4),且|AB|=26,则实数x 的值是( )A.-3或4 B.-6或2C.3或-4 D.6或-2答案:D3.圆x2+y2-2x=0与圆x2+y2-2x-6y-6=0的位置关系是( )A.相交B.相离C.外切D.内切答案:D4.在同一个直角坐标系中,表示直线y=ax与y=x+a正确的是( )答案:C5.(2013·广东卷)某四棱台的三视图如图所示,则该四棱台的体积是( )A .4 B.143 C.163 D .6答案:B6.(2013·重庆卷)已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( )A .52-4 B.17-1C .6-2 2 D.17解析:先求出圆心坐标和半径,再结合对称性求解最小值,设P(x,0),设C1(2,3)关于x轴的对称点为C1′(2,-3),那么|PC1|+|PC2|=|PC1′|+|PC2|≥|C′1C2|=(2-3)2+(-3-4)2=5 2.而|PM|=|PC1|-1,|PN|=|PC2|-3,∴|PM|+|PN|=|PC1|+|PC2|-4≥52-4.答案:A7.如图,已知AB⊥平面BCD,BC⊥CD,则图中互相垂直的平面有( )A.4对B.3对C.2对D.1对答案:B8.(2013·辽宁卷)已知点O(0,0),A(0,b),B(a,a3).若△AOB 为直角三角形,则必有( )A .b =a 3B .b =a 3+1aC .(b -a 3)⎝ ⎛⎭⎪⎫b -a 3-1a =0D .|b -a 3|+⎪⎪⎪⎪⎪⎪b -a 3-1a =0解析:根据直角三角形的直角的位置求解.若以O 为直角顶点,则B 在x 轴上,则a 必为0,此时O ,B 重合,不符合题意;若∠A =π2,则b =a 3≠0.若∠B =π2,根据斜率关系可知a 2·a 3-ba =-1,所以a (a 3-b )=-1,即b -a3-1a=0.以上两种情况皆有可能,故只有C 满足条件. 答案:C9.一个圆柱的轴截面为正方形,其体积与一个球的体积之比是3∶2,则这个圆柱的侧面积与这个球的表面积之比为( ) A.1∶1 B.1∶ 2C.2∶ 3 D.3∶2答案:A10.(2013·广东卷)设m,n是两条不同的直线,α,β是两个不同的平面,下列,命题中正确的是( )A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β答案:D二、填空题(本大题共4小题,每小题5分,共20分.将正确答案填在题中的横线上)11.若M、N分别是△ABC边AB、AC的中点,MN与过直线BC 的平面β(不包括△ABC 所在平面)的位置关系是________.答案:平行12.设m >0,则直线2(x +y )+1+m =0与圆x 2+y 2=m的位置关系为________.解析:圆心到直线的距离为d =1+m2,圆半径为m ,∵d -r =1+m2-m =12(m -2m +1)=12(m -1)2>0,∴直线与圆的位置关系是相离.答案:相离13.两条平行线2x +3y -5=0和x +32y =1间的距离是________.答案:3131314.(2013·大纲卷)已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,OK =32,且圆O 与圆K 所在的平面所成的一个二面角为60°,则球O 的表面积等于________.解析:根据球的截面性质以及二面角的平面角的定义确定平面角,把球的半径转化到直角三角形中计算,进而求得球的表面积.如图所示,公共弦为AB ,设球的半径为R ,则AB =R .取AB 中点M ,连接OM 、KM ,由圆的性质知OM ⊥AB ,KM ⊥AB ,所以∠KMO 为圆O 与圆K 所在平面所成的一个二面角的平面角,则∠KMO =60°.在Rt △KMO 中,OK =32,所以OM =OKsin 60°=3.在Rt △OAM 中,因为OA 2=OM 2+AM 2,所以R 2=3+14R 2,解得R 2=4,解得R 2=4,所以球O 的表面积为4πR 2=16π.答案:16π三、解答题(本大题共6小题,共80分.解答时应写出必要的文字说明、证明过程及演算步骤)15.(本小题满分12分)已知两点A (-1,2),B (m,3).(1)求直线AB 的斜率;解析:当m =-1时,直线AB 的斜率不存在, 当m ≠-1时,k =1m +1.(2)已知实数m ∈⎣⎢⎡⎦⎥⎤-33-1,3-1,求直线AB 的倾斜角α的范围.解析:当m =-1时,α=π2,当m ≠-1时,k =1m +1∈⎝⎛⎦⎤-∞,-3∪⎣⎢⎡⎭⎪⎫33,+∞, 则α∈⎣⎢⎡⎭⎪⎫π6,π2∪⎝ ⎛⎦⎥⎤π2,2π3,综上,α∈⎣⎢⎡⎦⎥⎤π6,2π3.16.(2013·上海卷)(本小题满分12分)如图,在正三棱柱ABCA 1B 1C 1中,AA 1=6,异面直线BC 1与AA 1所成角的大小为π6,求该三棱柱的体积.解析:因为CC1∥AA1,所以∠BC1C为异面直线BC1与AA1所成的角,即∠BC1C=π6,在Rt△BC1C中,BC=CC1·tan ∠BC1C=6×33=23,从而S△ABC=34BC2=33,因此该三棱柱的体积为V=S△ABC·AA1=33·6=18 3.17.(2013·江西卷)(本小题满分14分)过点(2,0)引直线l与曲线y=1-x2相交于A,B两点,O为坐标原点,当△AOB的面积取最大值时,求直线l的斜率.解析:根据三角形的面积公式和圆的弦的性质求解.由于y=1-x2,即x2+y2=1(y≥0),直线l与x2+y2=1(y≥0)交于A,B两点,如图所示,S△AOB=12·sin∠AOB≤12,且当∠AOB=90°时,S△AOB取得最大值,此时AB=2,点O到直线l的距离为22,则∠OCB=30°,所以直线l的倾斜角为150°,则斜率为-3318.(本小题满分14分)下图是某几何体的三视图,请你指出这个几何体的结构特征,并求出它的表面积与体积.解析:此几何体是一个组合体,下半部是长方体,上半部是半圆柱,其轴截面的大小与长方体的上底面大小一致.表面积为S ,则S =32+96+48+4π+16π=176+20π,体积为V ,则V =8×4×6+12×22×8π=192+16π,所以几何体的表面积为176+20π(cm 2),体积为192+16π(cm 3).19.(本小题满分14分)如图,△ABC中,AC=BC=22 AB,四边形ABED是边长为a的正方形,平面ABED⊥平面ABC,若G、F分别是EC、BD的中点.(1)求证:GF∥平面ABC;证明:连EA交BD于F,∵F是正方形ABED对角线BD的中点,∴F是EA的中点.∴FG∥AC .又FG ⊄平面ABC ,AC ⊂平面ABC ,∴FG ∥平面ABC .(2)求BD 与平面EBC 所成角的大小;解析:∵平面ABED ⊥平面ABC ,BE ⊥AB ,∴BE ⊥平面ABC .∴BE ⊥AC . 又∵AC =BC =22AB ,∴BC ⊥AC ,又∵BE ∩BC =B , ∴AC ⊥平面EBC . 由(1)知,FG ∥AC , ∴FG ⊥平面EBC ,∴∠FBG 就是线BD 与平面EBC 所成的角. 又BF =12BD =2a 2,FG =12AC =2a4,sin ∠FBG =FG BF =12.∴∠FBG=30°.(3)求几何体EFBC的体积.答案:V EFBC=V FEBC=13S△EBC·FG=13·12·a·2a2·12·2a2=a324.20.(2013·江苏卷)(本小题满分14分)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4,设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;解析:由题设,圆心C是直线y=2x-4和y=x-1的交点,解得点C(3,2),于是切线的斜率必存在,设过A(0,3)的圆C的切线方程为y=kx+3.由题意,得|3k+1|k2+1=1,解得k=0或k=-34,故所求切线方程为y=3或3x+4y-12=0.(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a 的取值范围.解析:因为圆心在直线y=2x-4上,设圆心C[a,2(a-2)],所以圆C的方程为(x-a)2+[y-2(a-2)]2=1.设点M(x,y),因为MA=2MO,所以x2+(y-3)2=2x2+y2,化简得x2+y2+2y-3=0,即x2+(y+1)2=4,所以点M在以D(0,-1)为圆心,2为半径的圆上.由题意,点M(x,y)在圆C上,所以圆C与圆D有公共点,则|2-1|≤CD ≤2+1, 即1≤a 2+(2a -3)2≤3.整理,得-8≤5a 2-12a ≤0. 由5a 2-12a +8≥0,得a ∈R ; 由5a 2-12a ≤0,得0≤a ≤125.所以点C 的横坐标a 的取值范围为⎣⎢⎡⎦⎥⎤0,125.。
模块综合检测卷(测试时间:120分钟评价分值:150分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线x-3=0的倾斜角是(C)A.45° B.60° C.90° D.不存在2.已知点A(x,1,2)和点B(2,3,4),且|AB|=26,则实数x的值是(D)A.-3或4 B.-6或2 C.3或-4 D.6或-23.圆x2+y2-2x=0与圆x2+y2-2x-6y-6=0的位置关系是(D)A.相交 B.相离 C.外切 D.内切4.在同一个平面直角坐标系中,表示直线y=ax与y=x+a正确的是(C)5.(2014·重庆卷)某几何体的三视图如图所示,则该几何体的体积为(C)A.12 B.18 C.24 D.30解析:因为三个视图中直角较多,所以可以在长方体中对几何体进行分析还原,在长方体中计算其体积.由俯视图可以判断该几何体的底面为直角三角形,由正视图和左视图可以判断该几何体是由直三棱柱(侧棱与底面垂直的棱柱)截取得到的.在长方体中分析还原,如图(1)所示,故该几何体的直观图如图(2)所示.在图(1)中,V 棱柱ABCA 1B 1C 1=S △ABC ·AA 1=12×4×3×5=30,V 棱锥PA 1B 1C 1=13S △A 1B 1C 1·PB 1=13×12×4×3×3=6.故几何体ABCPA 1C 1的体积为30-6=24.故选C.6.(2013·重庆卷)已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为(A )A .52-4 B.17-1 C .6-2 2 D.17解析:先求出圆心坐标和半径,再结合对称性求解最小值,设P (x ,0),C 1(2,3)关于x 轴的对称点为C 1′(2,-3),那么|PC 1|+|PC 2|=|PC 1′|+|PC 2|≥|C ′1C 2|=(2-3)2+(-3-4)2=5 2. 而|PM |=|PC 1|-1,|PN |=|PC 2|-3, ∴|PM |+|PN |=|PC 1|+|PC 2|-4≥52-4.7.如图,已知AB ⊥平面BCD ,BC ⊥CD ,则图中互相垂直的平面有(B )A .4对B .3对C .2对D .1对8.(2013·辽宁卷)已知点O (0,0)、A (0,b )、B (a ,a 3),若△AOB 为直角三角形,则必有(C )A .b =a 3B .b =a 3+1aC .(b -a 3)⎝ ⎛⎭⎪⎫b -a 3-1a =0D .|b -a 3|+⎪⎪⎪⎪⎪⎪b -a 3-1a =0解析:根据直角三角形的直角的位置求解.若以O 为直角顶点,则B 在x 轴上,则a 必为0,此时O ,B 重合,不符合题意;若∠A =π2,则b =a 3≠0.若∠B =π2,根据斜率关系可知a 2·a 3-b a =-1,所以a (a 3-b )=-1,即b -a 3-1a =0.以上两种情况皆有可能,故只有C 满足条件.9.一个圆柱的轴截面为正方形,其体积与一个球的体积之比是3∶2,则这个圆柱的侧面积与这个球的表面积之比为(A )A .1∶1B .1∶ 2 C.2∶ 3 D .3∶210.(2014·广东卷)若空间中四条两两不同的直线l 1,l 2,l 3,l 4满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,则下列结论一定正确的是(D )A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定 解析:在长方体模型中进行推理论证,利用排除法求解.如图,在长方体ABCDA 1B 1C 1D 1中,记l 1=DD 1,l 2=DC ,l 3=DA ,若l 4=AA 1,满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,此时l 1∥l 4,可以排除选项A 和C.若l 4=DC 1,也满足条件,可以排除选项B.故选D.二、填空题(本大题共4小题,每小题5分,共20分.将正确答案填在题中的横线上) 11.若M 、N 分别是△ABC 边AB 、AC 的中点,MN 与过直线BC 的平面β(不包括△ABC 所在平面)的位置关系是________.答案:平行12.(2014·重庆卷)已知直线ax +y -2=0与圆心为C 的圆(x -1)2-(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.解析:根据“半径、弦长AB 的一半、圆心到直线的距离”满足勾股定理可建立关于a 的方程,解方程求a .圆心C (1,a )到直线ax +y -2=0的距离为|a +a -2|a 2+1.因为△ABC 为等边三角形,所以|AB |=|BC |=2.所以⎝ ⎛⎭⎪⎫|a +a -2|a 2+12+12=22.解得a =4±15.答案:4±1513.两条平行线2x +3y -5=0和x +32y =1间的距离是________.答案:3131314.(2013·大纲全国卷)已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,OK =32,且圆O 与圆K 所在的平面所成的一个二面角为60°,则球O 的表面积等于________.解析:根据球的截面性质以及二面角的平面角的定义确定平面角,把球的半径转化到直角三角形中计算,进而求得球的表面积.如图所示,公共弦为AB ,设球的半径为R ,则AB =R .取AB 中点M ,连接OM 、KM ,由圆的性质知OM ⊥AB ,KM ⊥AB ,所以∠KMO 为圆O 与圆K 所在平面所成的一个二面角的平面角,则∠KMO =60°.在Rt △KMO 中,OK =32,所以OM =OKsin 60°= 3.在Rt △OAM 中,因为OA 2=OM 2+AM 2,所以R 2=3+14R 2,解得R 2=4.所以球O 的表面积为4πR 2=16π.答案:16π三、解答题(本大题共6小题,共80分.解答时应写出必要的文字说明、证明过程及演算步骤)15.(本小题满分12分)已知两点A (-1,2),B (m ,3). (1)求直线AB 的斜率; (2)已知实数m ∈⎣⎢⎡⎦⎥⎤-33-1,3-1,求直线AB 的倾斜角α的范围. 解析:(1)当m =-1时,直线AB 的斜率不存在; 当m ≠-1时,k =1m +1. (2)当m =-1时,α=π2;当m ≠-1时,k =1m +1∈(]-∞,-3∪⎣⎢⎡⎭⎪⎫33,+∞, 则α∈⎣⎢⎡⎭⎪⎫π6,π2∪⎝ ⎛⎦⎥⎤π2,2π3.综上,α∈⎣⎢⎡⎦⎥⎤π6,2π3.16.(本小题满分12分)(2013·上海卷)如图,在正三棱柱ABCA 1B 1C 1中,AA 1=6,异面直线BC 1与AA 1所成角的大小为π6,求该三棱柱的体积.解析:因为CC 1∥AA 1,所以∠BC 1C 为异面直线BC 1与AA 1所成的角,即∠BC 1C =π6.在Rt △BC 1C 中,BC =CC 1·tan ∠BC 1C =6×33=23,从而S △ABC =34BC 2=33,因此该三棱柱的体积为V =S △ABC ·AA 1=33·6=18 3.17.(本小题满分14分)(2014·湖北卷)如图,在正方体ABCDA 1B 1C 1D 1中,E 、F 、P 、Q 、M 、N 分别是棱AB 、AD 、DD 1、BB 1、A 1B 1、A 1D 1的中点.求证:(1)直线BC 1∥平面EFPQ ;(2)直线AC1⊥平面PQMN.分析:借助三角形中位线的性质、线面平行的判定及线面垂直的判定和性质证明.证明:(1)连接AD1,由ABCDA1B1C1D1是正方体,知AD1∥BC1.因为F,P分别是AD,DD1的中点,所以FP∥AD1.从而BC1∥FP.而FP⊂平面EFPQ,且BC1⊄平面EFPQ,故直线BC1∥平面EFPQ.(2)如图,连接AC,BD,则AC⊥BD.由CC1⊥平面ABCD,BD⊂平面ABCD,可得CC1⊥BD.又AC∩CC1=C,所以BD⊥平面ACC1.而AC1⊂平面ACC1,所以BD⊥AC1.因为M,N分别是A1B1,A1D1的中点,所以MN∥BD,从而MN⊥AC1.同理可证PN⊥AC1.又PN∩MN=N,所以直线AC1⊥平面PQMN.18.(本小题满分14分)下图是某几何体的三视图,请你指出这个几何体的结构特征,并求出它的表面积与体积.解析:此几何体是一个组合体,下半部是长方体,上半部是半圆柱,其轴截面的大小与长方体的上底面大小一致.表面积为S,则S=32+96+48+4π+16π=176+20π.体积为V,则V=8×4×6+12×22×8π=192+16π.所以几何体的表面积为(176+20π)cm2,体积为(192+16π)cm3.19.(本小题满分14分)如图,△ABC中,AC=BC=22AB,四边形ABED是边长为a的正方形,平面ABED⊥平面ABC,若G、F分别是EC、BD的中点.(1)求证:GF∥平面ABC;(2)求BD与平面EBC所成角的大小;(3)求几何体EFBC的体积.(1)证明:如图,连EA交BD于点F,∵F 是正方形ABED 对角线BD 的中点,∴F 是EA 的中点.∴FG ∥AC . 又FG ⊄平面ABC ,AC ⊂平面ABC , ∴FG ∥平面ABC .(2)解析:∵平面ABED ⊥平面ABC ,BE ⊥AB , ∴BE ⊥平面ABC . ∴BE ⊥AC . 又∵AC =BC =22AB , ∴BC ⊥AC . 又∵BE ∩BC =B , ∴AC ⊥平面EBC . 由(1)知,FG ∥AC , ∴FG ⊥平面EBC .∴∠FBG 就是线BD 与平面EBC 所成的角. 又BF =12BD =2a 2,FG =12AC =2a4,sin ∠FBG =FG BF =12,∴∠FBG =30°.(3)VEFBC =VFEBC =13S △EBC ·FG =13·12·a ·2a 2·12·2a 2=a 324.20.(本小题满分14分)(2013·江苏卷)如图,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4,设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围.解析:(1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C (3,2),于是切线的斜率必存在,设过A (0,3)的圆C 的切线方程为y =kx +3.由题意,得|3k +1|k 2+1=1,解得k =0或k =-34,故所求切线方程为y =3或3x +4y -12=0. (2)因为圆心在直线y =2x -4上, 设圆心C (a ,2(a -2)),所以圆C 的方程为(x -a )2+[y -2(a -2)]2=1. 设点M (x ,y ),因为MA =2MO ,所以x 2+(y -3)2=2x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4.所以点M 在以D (0,-1)为圆心,2为半径的圆上.由题意,点M (x ,y )在圆C 上,所以圆C 与圆D 有公共点, 则|2-1|≤CD ≤2+1, 即1≤a 2+(2a -3)2≤3. 整理,得-8≤5a 2-12a ≤0. 由5a 2-12a +8≥0,得a ∈R; 由5a 2-12a ≤0,得0≤a ≤125. 所以点C 的横坐标a 的取值范围为⎣⎢⎡⎦⎥⎤0,125。
模块综合测评(A 卷)(满分:150分 时间:120分钟)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α,m β.( ) A .若l ⊥β,则α⊥β B .若α⊥β,则l ⊥m C .若l ∥β,则α∥βD .若α∥β,则l ∥mA [利用空间平行与垂直的判定定理及性质定理进行分析. ∵l ⊥β,l α,∴α⊥β(面面垂直的判定定理),故A 正确.] 2.下列叙述中不正确的是( )A .若直线的斜率存在,则必有倾斜角与之对应B .每一条直线都有唯一对应的倾斜角C .与坐标轴垂直的直线的倾斜角为0°或90°D .若直线的倾斜角为α,则直线的斜率为tan αD [当α=90°时,tan α不存在,所以D 错误,由直线斜率和倾斜角的知识知A 、B 、C 正确.]3.关于空间直角坐标系O -xyz 中的一点P (1,2,3)有下列说法: ①OP 的中点坐标为⎝ ⎛⎭⎪⎫12,1,32;②点P 关于x 轴对称的点的坐标为(-1,-2,-3); ③点P 关于坐标原点对称的点的坐标为(1,2,-3); ④点P 关于xOy 平面对称的点的坐标为(1,2,-3). 其中正确说法的个数是( ) A .2 B .3 C .4D .1A [①显然正确;点P 关于x 轴对称的点的坐标为(1,-2,-3),故②错;点P 关于坐标原点对称的点的坐标为(-1,-2,-3),故③错,④正确.]4.直线ax -y +2a =0与圆x 2+y 2=9的位置关系是( ) A .相离B .相切C.相交D.不确定C[ax-y+2a=0可化为y=a(x+2),所以直线过定点(-2,0),又(-2)2+02<9,故该定点在圆x2+y2=9的内部,所以直线ax-y+2a=0与圆x2+y2=9相交.]5.设长方体的长,宽,高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2B[由题可知,球的直径等于长方体的体对角线的长度,故2R=4a2+a2+a2,解得R=62a,所求球的表面积S=4πR2=6πa2.]6.已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC =4,AB⊥AC,AA1=12,则球O的半径为()A.3172B.210C.132D.310C[如图所示,由球心作平面ABC的垂线,则垂足为BC的中点M.又AM=12BC=52,OM=12AA1=6,所以球O的半径为R=OA=62+⎝⎛⎭⎪⎫522=132.]7.过点(1,2)且与原点距离最大的直线方程是()A.x+2y-5=0 B.2x+y-4=0C.x+3y-7=0 D.x-2y+3=0A[结合图形可知,所求直线为过点(1,2)且垂直于原点和点(1,2)连线的直线,其斜率为-12,直线方程为y-2=-12(x-1),即x+2y-5=0.]8.过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则|MN|=()A.2 6 B.8C.4 6 D.10C[法一:依题意得,△ABC的外接圆的圆心在线段AC的垂直平分线y=-2上,也在线段AB的垂直平分线y-52=3⎝⎛⎭⎪⎫x-52上,联立求解得圆心D(1,-2),△ABC的外接圆的半径长为|DA|=5,所以△ABC的外接圆方程为(x-1)2+(y+2)2=25.令x=0,得(y+2)2=24,于是|MN|=4 6.法二:由法一得到的圆心D(1,-2)和半径长r=5,作DH⊥MN,垂足为H,则|DH|=1,|MN|=2r2-|DH|2=4 6.法三:由k AB=-13,k BC=3得AB⊥BC,故△ABC的外接圆圆心是线段AC的中点,即(1,-2),所以△ABC的外接圆的半径长为5,由此可得|MN|=252-12=4 6.法四:设△ABC的外接圆方程为(x-a)2+(y-b)2=r2,将A,B,C三点坐标代入圆的方程,可得a=1,b=-2,r=5.令x=0,得(y+2)2=24,于是|MN|=4 6.] 9.若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交D[由直线l1和l2是异面直线可知l1与l2不平行,故l1,l2中至少有一条与l 相交.]10.在空间直角坐标系中,点B是A(1,2,3)在yOz坐标平面内的射影,O 为坐标原点,则|OB|等于()A.14B.13C.2 3 D.11B[点A(1,2,3)在yOz坐标平面内的射影为B(0,2,3),∴|OB|=02+22+32=13.]11.已知l,m表示两条不同的直线,α表示平面,则下列说法正确的是() A.若l⊥α,mα,则l⊥mB.若l⊥m,mα,则l⊥αC.若l∥m,mα,则l∥αD.若l∥α,mα,则l∥mA[对于A,若l⊥α,mα,则根据直线与平面垂直的性质,知l⊥m,故A 正确;对于B,若l⊥m,mα,则l可能在α内,故B不正确;对于C,若l∥m,mα,则l∥α或lα,故C不正确;对于D,若l∥α,mα,则l与m可能平行,也可能异面,故D不正确.故选A.]12.过点P(-2,4)作圆(x-2)2+(y-1)2=25的切线l,直线l1:ax+3y+2a =0与l平行,则l1与l间的距离是()A.285 B.125C.-85 D.25B[直线l1的斜率k=-a3,l1∥l,又l过P(-2,4),∴l的直线方程为y-4=-a3(x+2),即ax+3y+2a-12=0.又直线l与圆相切,∴|2a+3×1+2a-12|a2+9=5,∴a=-4,∴l1与l的距离为d=12 5.]二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.水平放置的△ABC的直观图如图所示,已知A′C′=3,B′C′=2,则AB 边上中线的实际长度为________.52 [在原平面图中CA =C ′A ′=3, CB =2C ′B ′=2B ′C ′=4,∴AB =CA 2+CB 2=42+32=5, ∴AB 边的中线长度为AB 2=52.]14.圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角的度数为________.180° [S 底+S 侧=3S 底,2S 底=S 侧,即2πr 2=πrl ,得2r =l . 设侧面展开图的圆心角为θ,则θπl180°=2πr ,∴θ=180°.]15.一个圆台上、下底面的半径分别为3 cm 和8 cm ,若两底面圆心的连线长为12 cm ,则这个圆台的母线长为________cm.13 [如图,过点A 作AC ⊥OB ,交OB 于点C .在Rt △ABC 中,AC =12(cm),BC =8-3=5(cm). ∴AB =122+52=13(cm).]16.已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆与直线x +y +3=0相切,则圆C 的方程为________.(x +1)2+y 2=2 [令y =0,得x =-1,所以直线x -y +1=0与x 轴的交点为(-1,0), 即圆心C (-1,0).因为直线与圆相切,所以圆心到直线的距离等于半径,即r =|-1+0+3|2=2,所以圆C 的方程为(x +1)2+y 2=2.]三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知两直线l 1:mx +8y +n =0和l 2:2x +my -1=0.试确定m ,n 的值,使(1)l 1∥l 2;(2)l 1⊥l 2,且l 1在y 轴上的截距为-1.[解] (1)∵l 1∥l 2,∴A 1B 2-A 2B 1=0,且B 1C 2-B 2C 1≠0, 即⎩⎨⎧m ·m -2×8=0,8×(-1)-m ×n ≠0,∴⎩⎨⎧m =4,n ≠-2,或⎩⎨⎧m =-4,n ≠2. (2)由l 1在y 轴上的截距为-1,得 m ·0+8×(-1)+n =0,∴n =8. 又l 1⊥l 2,∴A 1A 2+B 1B 2=0, 即m ×2+8m =0,∴m =0.∴⎩⎨⎧m =0,n =8.18.(本小题满分12分)如图,在三棱柱ABC -A 1B 1C 1中,已知平面BB 1C 1C ⊥平面ABC ,AB =AC ,D 是BC 的中点,且B 1D ⊥BC 1.(1)求证:A 1C ∥平面B 1AD ; (2)求证:BC 1⊥平面B 1AD .[证明] (1)如图,连结BA 1交AB 1于点O ,连结OD .由棱柱知侧面AA 1B 1B 为平行四边形,所以O 为BA 1的中点.又D 是BC 的中点,所以OD ∥A 1C .因为A 1C 平面B 1AD ,OD 平面B 1AD ,所以A 1C ∥平面B 1AD . (2)因为D 是BC 的中点,AB =AC ,所以AD ⊥BC .因为平面BB 1C 1C ⊥平面ABC ,平面BB 1C 1C ∩平面ABC =BC ,AD 平面ABC ,所以AD ⊥平面BB 1C 1C .因为BC 1平面BB 1C 1C ,所以AD ⊥BC 1.又BC 1⊥B 1D ,且AD ∩B 1D =D ,所以BC 1⊥平面B 1AD .19.(本小题满分12分)已知圆C 的方程为x 2+(y -4)2=1,直线l 的方程为2x -y =0,点P 在直线l 上,过点P 作圆C 的切线P A ,PB ,切点为A ,B .(1)若∠APB =60°,求点P 的坐标;(2)求证:经过A ,P ,C (其中点C 为圆C 的圆心)三点的圆必经过定点,并求出所有定点的坐标.[解] 由条件可得圆C 的圆心坐标为(0,4),|PC |=2,设P (a ,2a ),则a 2+(2a -4)2=2,解得a =2或a =65,所以点P 的坐标为(2,4)或⎝ ⎛⎭⎪⎫65,125.(2)证明:设P (b ,2b ),过点A ,P ,C 的圆即是以PC 为直径的圆,其方程为x (x -b )+(y -4)(y -2b )=0,整理得x 2+y 2-bx -4y -2by +8b =0, 即(x 2+y 2-4y )-b (x +2y -8)=0. 由⎩⎨⎧x 2+y 2-4y =0,x +2y -8=0解得⎩⎨⎧x =0,y =4或⎩⎪⎨⎪⎧x =815,y =165,所以该圆必经过定点(0,4)和⎝ ⎛⎭⎪⎫85,165.20.(本小题满分12分)如图,三棱锥P -ABC 中,P A ⊥平面ABC ,P A =1,AB =1,AC =2,∠BAC =60°.(1)求三棱锥P -ABC 的体积;(2)证明:在线段PC 上存在点M ,使得AC ⊥BM ,并求PMMC 的值. [解] (1)由题设AB =1,AC =2,∠BAC =60°, 可得S △ABC =12·AB ·AC ·sin 60°=32.由P A ⊥平面ABC ,可知P A 是三棱锥P -ABC 的高.又P A =1, 所以三棱锥P -ABC 的体积V =13·S △ABC ·P A =36.(2)证明:在平面ABC 内,过点B 作BN ⊥AC ,垂足为N .在平面P AC 内,过点N 作MN ∥P A 交PC 于点M ,连接BM .由P A ⊥平面ABC 知P A ⊥AC ,所以MN ⊥AC . 由于BN ∩MN =N ,故AC ⊥平面MBN . 又BM 平面MBN ,所以AC ⊥BM . 在直角△BAN 中,AN =AB ·cos ∠BAC =12, 从而NC =AC -AN =32.由MN ∥P A ,得PM MC =AN NC =13.21.(本小题满分12分)已知圆A :x 2+(y +1)2=1,圆B :(x -4)2+(y -3)2=1.(1)过圆心A 的直线L 截圆B 所得的弦长为65,求直线L 的斜率; (2)若动圆P 同时平分圆A 与圆B 的周长, ①求动圆圆心P 的轨迹方程;②问动圆P 是否过定点?若经过,求出定点坐标;若不经过,请说明理由. [解] (1)由题意知,直线L 的斜率存在,且圆心A (0,-1),设直线L 的方程为y =kx -1,由弦长可得圆心B (4,3)到直线L 的距离为45,即|4k -3-1|k 2+1=45,化简得12k 2-25k +12=0,解得k =43或k =34.(2)①由已知可得|P A |=|PB |,故圆心P 在线段AB 的中垂线上.∵直线AB 的斜率为1,∴圆心P 所在直线的斜率为-1,且该直线过点(2,1),∴圆心P 在直线x +y -3=0上.即动圆圆心P 的轨迹方程为x +y -3=0.②设P (m ,3-m ),则动圆P 的半径长为|P A |2+12=m 2+(3-m +1)2+1, ∴动圆P 的方程为(x -m )2+(y +m -3)2=m 2+(3-m +1)2+1,即x 2+y 2-6y -8-2m (x -y -1)=0. 由⎩⎨⎧x 2+y 2-6y -8=0,x -y -1=0,得⎩⎪⎨⎪⎧x =2+322,y =1+322或⎩⎪⎨⎪⎧x =2-322,y =1-322.故动圆P 过定点⎝⎛⎭⎪⎫2+322,1+322,⎝ ⎛⎭⎪⎫2-322,1-322. 22.(本小题满分12分)如图,四棱锥P -ABCD 的底面是正方形,PD ⊥底面ABCD ,点E 在棱PB 上.(1)求证:平面AEC ⊥平面PDB ;(2)当PD =2AB ,且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小. [解] (1)证明:∵四边形ABCD 是正方形, ∴AC ⊥BD , ∵PD ⊥底面ABCD , ∴PD ⊥AC ,又∵BD ∩PD =D ,BD 平面PDB ,PD 平面PDB , ∴AC ⊥平面PDB , ∴平面AEC ⊥平面PDB . (2)设AC ∩BD =O ,连接OE , 由(1)知AC ⊥平面PDB 于O ,∴∠AEO为AE与平面PDB所成的角,∴O,E分别为DB、PB的中点,∴OE∥PD,OE=12PD,又∵PD⊥底面ABCD,∴OE⊥底面ABCD,OE⊥AO,在Rt△AOE中,OE=12PD=22AB=AO,∴∠AEO=45°,即AE与平面PDB所成的角的大小为45°.由Ruize收集整理。
2021年高中数学模块综合检测(C)苏教版必修2一、填空题(本大题共14小题,每小题5分,共70分)1.如图所示,一个空间几何体的主视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为________.2.直线(2m2+m-3)x+(m2-m)y=4m-1在x轴上的截距为1,则m=________.3.直线4x-3y-2=0与圆x2+y2-2ax+4y+a2-12=0总有两个不同的交点,则a的取值范围是____________.4.若P为平面α外一点,则下列说法正确的是______(填序号).①过P只能作一条直线与平面α相交;②过P可能作无数条直线与平面α垂直;③过P只能作一条直线与平面α平行;④过P可作无数条直线与平面α平行.5.在圆x2+y2=4上与直线l:4x+3y-12=0的距离最小的点的坐标是______________.6.矩形ABCD的对角线AC,BD成60°角,把矩形所在的平面以AC为折痕,折成一个直二面角D-AC-B,连结BD,则BD与平面ABC所成角的正切值为________.7.若⊙C1:x2+y2-2mx+m2=4和⊙C2:x2+y2+2x-4my=8-4m2相交,则m的取值范围是______________.8.已知点P是直线3x+4y+8=0上的动点,PA是圆C:x2+y2-2x-2y+1=0的切线,A为切点,则PA的最小值为________.9.二面角α-l-β的平面角为120°,在面α内,AB⊥l于B,AB=2,在平面β内,CD⊥l于D,CD=3,BD=1,M为棱l上的一个动点,则AM+CM的最小值为__________.10.如果圆x2+(y-1)2=1上任意一点P(x,y)都能使x+y+c≥0成立,那么实数c 的取值范围是__________.11.如图所示,半径为R的半圆内的阴影部分以直径AB所在直线为轴,旋转一周得到一几何体,∠BAC=30°,则此几何体的体积为________.12.P(0,-1)在直线ax+y-b=0上的射影为Q(1,0),则ax-y+b=0关于x+y-1=0对称的直线方程为________.13.由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A,B,∠APB=60°,则动点的轨迹方程为________.14.如图所示的是正方体的表面展开图,还原成正方体后,其中完全一样的是________.二、解答题(本大题共6小题,共90分)15.(14分)已知点P(-4,2)和直线l:3x-y-7=0.求:(1)过点P与直线l平行的直线方程;(2)过点P与直线l垂直的直线方程.16.(14分) 如图所示,在棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB 的中点,且△PMB为正三角形.求证:(1)DM∥平面APC;(2)平面ABC⊥平面APC.17.(14分)已知一个几何体的三视图如图所示,试求它的表面积和体积.(单位:cm)18.(16分)已知圆过P(4,-2),Q(-1,3)两点,且在y轴上截得的线段长为43,求圆的方程.19.(16分)从点A(-4,1)出发的一束光线l,经过直线l1:x-y+3=0反射,反射光线恰好通过点B(1,6),求入射光线l所在的直线方程.20.(16分)已知以点C ⎝⎛⎭⎪⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M 、N ,若OM =ON ,求圆C 的方程.模块综合检测(C) 答案1.162.2或-12解析 令y =0,则(2m 2+m -3)x =4m -1,所以直线在x 轴上的截距为4m -12m 2+m -3=1,所以m =2或m =-12.3.-6<a<4解析 将圆的方程化为(x -a)2+(y +2)2=16.圆心(a ,-2)到直线的距离d =|4a +4|5. ∵直线与圆有两个不同交点,∴d<4,即|4a +4|5<4,得-6<a<4. 4.④5.⎝ ⎛⎭⎪⎫85,65 解析 经过圆心O 且与直线l 垂直的直线的方程是3x -4y =0.解方程组⎩⎪⎨⎪⎧3x -4y =0,x 2+y 2=4得⎩⎪⎨⎪⎧x =85,y =65或⎩⎪⎨⎪⎧x =-85,y =-65画出图形,可以判断点⎝ ⎛⎭⎪⎫85,65是圆x 2+y 2=4上到直线l 距离最小的点,点⎝⎛⎭⎪⎫-85,-65是圆x 2+y 2=4上到直线l 距离最大的点.6.2177.⎝ ⎛⎭⎪⎫-125,-25∪(0,2)解析 圆C 1和C 2的圆心坐标及半径分别为 C 1(m,0),r 1=2,C 2(-1,2m),r 2=3.由两圆相交的条件得3-2<C 1C 2<3+2,即1<5m 2+2m +1<25,解得-125<m<-25或0<m<2.8.2 2解析 圆C :(x -1)2+(y -1)2=1的半径为1,要使PA 最小,只需PC 最小,(PC)min =|3+4+8|32+42=3. 故(PA)min =32-12=22. 9.26解析 将图(1)中二面角α-l -β展成平面,如图(2)所示.连结AC 交l 于M 则AM +CM 最小值为AC =BD 2+AB +CD 2=26. 10.c≥2-1解析 对任意点P(x ,y)能使x +y +c≥0成立, 等价于c≥[-(x +y)]max .设b =-(x +y),则y =-x -b .∴圆心(0,1)到直线y =-x -b 的距离d =|1+b|2≤1,解得,-2-1≤b≤2-1. ∴c≥2-1.11.56πR 3解析 半圆旋转一周形成一个球体,其体积为V 球=43πR 3,内部两个圆锥的体积之和为V 锥=13πCD 2·AB=13π·⎝ ⎛⎭⎪⎫32R 2·2R=π2R 3,∴所求几何体的体积为43πR 3-π2R 3=56πR 3.12.x -y +1=0解析 ∵k PQ ·(-a)=-1,∴a=1,Q(1,0)代入x +y -b =0得b =1,将其代入ax -y +b =0,得x -y +1=0,此直线与x +y -1=0垂直,∴其关于x +y -1=0的对称的直线是其本身.13.x 2+y 2=4解析 在Rt △AOP 中,∵∠APB=60°, ∴∠APO=30°,∴PO=2OA =2,动点的轨迹是以原点为圆心,2为半径的圆,方程为x 2+y 2=4. 14.(2)(3)(4)解析 由正方体的平面展开图可得:(2)(3)(4)是相同的. 15.解 (1)设所求直线的方程是 3x -y +m =0(m≠-7), ∵点P(-4,2)在直线上, ∴3×(-4)-2+m =0,∴m=14,即所求直线方程是3x -y +14=0. (2)设所求直线的方程是x +3y +n =0, ∵点P(-4,2)在直线上, ∴-4+3×2+n =0,∴n =-2,即所求直线方程是x +3y -2=0. 16.证明 (1)∵M 为AB 的中点,D 为PB 中点, ∴DM∥AP.又∵DM ⊄平面APC ,AP ⊂平面APC , ∴DM∥平面APC .(2)∵△PMB 为正三角形,D 为PB 中点, ∴DM⊥PB.又∵DM∥AP,∴AP⊥PB.又∵AP⊥PC,PC∩PB=P ,∴AP⊥平面PBC . ∵BC ⊂平面PBC , ∴AP⊥BC.又∵AC⊥BC,且AC∩AP=A , ∴BC⊥平面APC .又∵BC ⊂平面ABC ,∴平面ABC⊥平面APC .17.解 由三视图可知,该几何体的直观图可以看成是一个圆台和圆柱的组合体,则圆台的高为h′=1 cm ,上底半径为r =12 cm ,下底半径为R =1 cm ,母线l 为12+⎝ ⎛⎭⎪⎫1-122=52(cm ),圆柱的底面半径为R =1 cm ,高h 为12cm , ∴该几何体的体积为V =V 圆台+V 圆柱 =13(S 上+S 下+S 上·S 下)h′+S 底面·h =13⎣⎢⎡⎦⎥⎤π×⎝ ⎛⎭⎪⎫122+π×12+π×⎝ ⎛⎭⎪⎫122×π×1+π×12×12=1312π(cm 3). 该几何体的表面积为S表面=πr 2+πR 2+π(R +r)·l+2πRh =π×⎝ ⎛⎭⎪⎫122+π×12+π×⎝⎛⎭⎪⎫1+12×52+2π×1×12=9+354π(cm 2).∴该几何体的体积为1312πcm 3,表面积为9+354πcm 2.18.解 方法一 设圆的方程为 x 2+y 2+Dx +Ey +F =0 ① 将P ,Q 坐标代入①得⎩⎪⎨⎪⎧4D -2E +F =-20 ②D -3E -F =10 ③令x =0,由①得y 2+Ey +F =0 ④据题设知|y 1-y 2|=43,其中y 1,y 2是④的两根.所以(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=E 2-4F =48⑤解由②③⑤组成的方程组得D =-2,E =0,F =-12或D =-10,E =-8,F =4. 故所求圆的方程为 x 2+y 2-2x -12=0或x 2+y 2-10x -8y +4=0. 方法二 易求PQ 的中垂线方程为x -y -1=0 ① 因为所求圆的圆心C 在直线①上, 故可设其坐标为(a ,a -1).又圆C 的半径r =CP =a -42+a +12②由已知圆C 截y 轴所得的线段长为43,而点C 到y 轴的距离为|a|,∴r 2=a 2+⎝ ⎛⎭⎪⎫4322,将②式代入得a 2-6a +5=0.所以有a 1=1,r 1=13或a 2=5,r 2=37,即(x -1)2+y 2=13或(x -5)2+(y -4)2=37.19.解 设B(1,6)关于直线l 1:x -y +3=0的对称点为B′(x 0,y 0), 则⎩⎪⎨⎪⎧y 0-6x 0-1·1=-1,x 0+12-y 0+62+3=0,解得⎩⎪⎨⎪⎧x 0=3,y 0=4.∴B′(3,4).依题意知B′在入射光线上. 又A(-4,1)也在入射光线上, ∴所求方程为3x -7y +19=0.20.(1)证明 ∵圆C 过原点O ,∴r 2=t 2+4t2.设圆C 的方程是(x -t)2+⎝ ⎛⎭⎪⎫y -2t 2=t 2+4t 2,令x =0,得y 1=0,y 2=4t;令y =0,得x 1=0,x 2=2t .∴S △OAB =12OA×OB=12×⎪⎪⎪⎪⎪⎪4t ×|2t|=4,即△OAB 的面积为定值. (2)解 ∵OM=ON ,CM =CN , ∴OC 垂直平分线段MN .∵k MN =-2,∴k OC =12.∴直线OC 的方程是y =12x .∴2t =12t .解得t =2或t =-2. 当t =2时,圆心C 的坐标为(2,1),OC =5,此时C 到直线y =-2x +4的距离d =15<5,圆C 与直线y =-2x +4相交于两点.当t =-2时,圆心C 的坐标为(-2,-1), OC =5,此时C 到直线y =-2x +4的距离d =95>5,圆C 与直线y =-2x +4不相交, ∴t=-2不符合题意,舍去.∴圆C 的方程为(x -2)2+(y -1)2=5.22896 5970 奰33166 818E 膎32188 7DBC 綼22088 5648 噈21641 5489 咉38524 967C 陼" uM#328048024 耤 h20748 510C 儌。
模块综合检测[考试时间:120分钟试卷总分:160分]题号一二总分151617181920得分一、填空题(本大题共14个小题,每小题5分,共70分)1.下列命题正确的是________.①若两条直线和同一个平面所成的角相等,则这两条直线平行;②若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行;③若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行;④若两个平面都垂直于第三个平面,则这两个平面平行.2.已知直线l1:Ax+3y+C=0与l2:2x-3y+4=0.若l1,l2的交点在y轴上,则C的值为________.3.已知两条直线a,b与两个平面α,β,b⊥α,则下列命题中正确的是________.①若a∥α,则a⊥b;②若a⊥b,则a∥α;③若b⊥β,则α∥β;④若α⊥β,则b∥β;4.直线x+2y-5+5=0被圆x2+y2-2x-4y=0截得的弦长为________.5.已知一个圆锥的母线长是5 cm,高为4 cm,则该圆锥的侧面积是________.6.如图,在长方体ABCD-A1B1C1D1中,AB=AD=3 cm,AA1=2 cm,则四棱锥A -BB1D1D的体积为________cm3.7.若直线x+ay-2a-2=0与直线ax+y-a-1=0平行,则实数a=________.8.圆心在直线y=-4x上,并且与直线l:x+y-1=0相切于点P(3,-2)的圆的方程为________.9.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱AB ,BC 中点,则三棱锥B -B 1EF 的体积为________.10.已知直线l :y =-3(x -1)与圆O :x 2+y 2=1在第一象限内交于点M ,且l 与y 轴交于点A ,则△MOA 的面积等于________.11.已知直线l ⊥平面α,有以下几个判断: ①若m ⊥l ,则m ∥α;②若m ⊥α,则m ∥l ; ③若m ∥α,则m ⊥l ;④若m ∥l ,则m ⊥α. 上述判断中正确命题的序号是________.12.在平面直角坐标系xOy 中,已知圆C :x 2+y 2-(6-2m)·x -4my +5m 2-6m =0,直线l 经过点(1,0).若对任意的实数m ,直线l 被圆C 截得的弦长为定值,则直线l 的方程为________.13.(新课标全国卷Ⅱ)已知正四棱锥O-ABCD 的体积为322,底面边长为3,则以O为球心,OA 为半径的球的表面积为________.14.直线l :y =x +b 与曲线c :y =1-x 2仅有一个公共点,则b 的取值范围________. 二、解答题(本大题共6小题,共90分)15.(14分)已知两直线l 1:mx +8y +n =0和l 2:2x +my -1=0.试确定m ,n 的值,使 (1)l 1∥l 2;(2)l 1⊥l 2,且l 1在y 轴上的截距为-1.16.(14分)已知圆O :x 2+y 2=r 2(r>0)与直线x -y +22=0相切. (1)求圆O 的方程; (2)过点(1,33)的直线l 截圆所得弦长为23,求直线l 的方程; 17.(14分)(陕西高考)如图,四棱柱ABCD-A 1B 1C 1D 1的底面ABCD 是正方形,O 是底面中心, A 1O ⊥底面ABCD ,AB =AA 1= 2.(1)证明:平面 A 1BD ∥平面CD 1B 1; (2)求三棱柱ABD-A 1B 1D 1的体积.18.(16分)已知两圆C 1:x 2+y 2=4,C 2:x 2+y 2-2x -4y +4=0,直线l :x +2y =0,求经过圆C 1和C 2的交点且和直线l 相切的圆的方程.19.(16分)在如图所示的几何体中,正方形ABCD 和矩形ABEF 所在的平面互相垂直,M 为AF 的中点,BN ⊥CE.(1)求证:CF ∥平面MBD ; (2)求证:CF ⊥平面BDN.20.(16分)(广东高考)如图1,在边长为1的等边三角形ABC 中,D ,E 分别是AB ,AC 边上的点,AD =AE ,F 是BC 的中点,AF 与DE 交于点G ,将△ABF 沿AF 折起,得到如图2所示的三棱锥A-BCF ,其中BC =22.(1)证明:DE ∥平面BCF ; (2)证明:CF ⊥平面ABF ;(3)当AD =23时,求三棱锥F-DEG 的体积V F-DEG . ★★答案★★1.解析:对于①,两条直线与同一个平面所成角相等,根据线面角定义,可知两条直线可能平行,可能相交,也可能异面,故①错;对于②,若三点在同一条直线上,则两平面可能相交,故②错;对于③,设α∩β=l ,m ∥α,m ∥β,利用线面平行的性质定理可以证明m ∥l ,故③正确;对于④,两平面都垂直于第三个平面,则这两个平面可能相交,也可能平行,故④错,所以选③.★★答案★★:③2.解析:l 2与y 轴交于点(0,43),∴将该点代入l 1的方程,得C =-4.★★答案★★:-43.解析:对于①:a ∥α,在α内存在a ′∥a ,又b ⊥α,∴b ⊥a ′,∴b ⊥a 正确;对于②:a 还可以在α内;对于③:b ⊥β,b ⊥α,∴α∥β,正确;对于④:b ⊂β或b ∥β,故错误.★★答案★★:①③4.解析:圆心(1,2),圆心到直线的距离d =|1+4-5+5|5=1,半径r =5,所以截得的弦长为2(5)2-12=4.★★答案★★45.解析:由于圆锥的母线长是5 cm ,高为4 cm ,所以其底面半径为3 cm ,其侧面积S侧=12×2×3π×5=15 π(cm 2). ★★答案★★:15π cm 26.解析:由题意得VA -BB 1D 1D =23VABD -A 1B 1D 1=23×12×3×3×2=6.★★答案★★:67.解析:两直线平行,故1a =a 1≠2a +2a +1,得a =1.★★答案★★:18.解析:据已知过点P 且与直线l 垂直的直线方程为y =x -5,由圆的几何性质可知圆心为直线y =x -5与y =-4x 的交点,即圆心坐标为A (1,-4),故半径为点A 到直线x +y -1=0的距离,即r =42=22,故圆的方程为(x -1)2+(y +4)2=8. ★★答案★★:(x -1)2+(y +4)2=89.解析:VB -B 1EF =VB 1-BEF =13×12×1×1×2=13.★★答案★★:1310.解析: 依题意,直线l :y =-3(x -1)与y 轴的交点A 的坐标为(0,3).由⎩⎨⎧x 2+y 2=1,y =-3(x -1)得,点M 的横坐标x M =12,所以△MOA 的面积为S =12|OA |×x M =12×3×12=34. ★★答案★★3411.解析:对①,若m ⊥l ,则m ∥α或m ⊂α,故①错误;②正确;③正确;④正确. ★★答案★★:②③④12.解析:将圆的方程化为标准方程得[x -(3-m )]2+(y -2m )2=9, 所以圆心C 在直线y =-2x +6上.直线l 被圆截得的弦长为定值,即圆心C 到直线l 的距离是定值, 即直线l 过(1,0)且平行于直线y =-2x +6, 故直线l 的方程是y =-2(x -1),即为2x +y -2=0.★★答案★★2x +y -2=013.解析:过O 作底面ABCD 的垂线段OE ,则E 为正方形ABCD 的中心.由题意可知13×(3)2×OE =322,所以OE =322,故球的半径R =OA =OE 2+EA 2=6,则球的表面积S =4πR 2=24π.★★答案★★:24π14. 解析:曲线c 如图,要使l :y =x +b 与曲线仅有一个交点,需要-1≤b <1或b = 2.★★答案★★:{b |b =2或-1≤b <1} 15.解:(1)由题意知:P 在直线l 1,l 2上 ∴⎩⎨⎧m ·m +8·(-1)+n =0,2·m +m ·(-1)-1=0,∴⎩⎨⎧m =1,n =7.(1)∵l 1∥l 2∴A 1B 2-A 2B 1=0,且B 1C 2-B 2C 1≠0, 即⎩⎨⎧m ·m -2×8=0,8×(-1)-m ×n ≠0,∴⎩⎨⎧ m =4,n ≠-2,或⎩⎨⎧m =-4,n ≠2.(2)由l 1在y 轴上的截距为-1得: m ·0+8×(-1)+n =0,∴n =8. 又l 1⊥l 2,∴A 1A 2+B 1B 2=0, 即m ×2+8m =0,∴m =0.∴⎩⎨⎧m =0,n =8.16.解:(1)由题意知,圆心O 到直线x -y +22=0的距离d =2212+(-1)2=2=r ,所以圆O 的方程为x 2+y 2=4.(2)若直线l 的斜率不存在,则直线l 的方程为x =1, 此时直线l 截圆所得弦长为23,符合题意. 若直线l 的斜率存在,设直线l 的方程为y -33=k (x -1),即3kx -3y +3-3k =0, 由题意知,圆心到直线l 的距离d 1=|3-3k |9k 2+9=1,所以k =-33, 则直线l 的方程为x +3y -2=0.所以所求的直线l 的方程为x =1或x +3y -2=0.(3)设A (x A,0),B (x B ,y B ).由题意知,A (-2,0),设直线AB :y =k 1(x +2),则⎩⎪⎨⎪⎧y =k 1(x +2),x 2+y 2=4,得(1+k 21)x 2+4k 21x +4k 21-4=0, 所以x A ·x B =4k 21-41+k 21,所以x B =2-2k 211+k 21,y B =4k 11+k 21,即 B (2-2k 211+k 21,4k 11+k 21), 因为k 1k 2=-2,用-2k 1代替k 1,得C (2k 21-84+k 21,-8k 14+k 21),所以直线BC 的方程为y --8k 14+k 21=4k 11+k 21--8k 14+k 212-2k 211+k 21-2k 21-84+k 21(x -2k 21-84+k 21), 即y --8k 14+k 21=3k 12-k 21(x -2k 21-84+k 21), 得y =3k 12-k 21x +2k 12-k 21=3k 12-k 21(x +23), 所以直线BC 恒过定点(-23,0).17.解:(1)证明:由题设知,BB 1綊DD 1, ∴BB 1D 1D 是平行四边形,∴BD ∥B 1D 1. 又BD ⊄平面CD 1B 1,∴BD ∥平面CD 1B 1.∵A 1D 1綊B 1C 1綊BC ,∴A 1BCD 1是平行四边形,∴A 1B ∥D 1C . 又A 1B ⊄平面CD 1B 1,∴A 1B ∥平面CD 1B 1. 又∵BD ∩A 1B =B ,∴平面A 1BD ∥平面CD 1B 1.(2)∵A 1O ⊥平面ABCD ,∴A 1O 是三棱柱ABD -A 1B 1D 1的高. 又∵AO =12AC =1,AA 1=2,∴A 1O =AA 21-OA 2=1. 又∵S △ABD =12×2×2=1,∴VABD -A 1B 1D 1=S △ABD ×A 1O =1.18.解:由⎩⎪⎨⎪⎧x 2+y 2=4,x 2+y 2-2x -4y +4=0,得圆C 1和C 2的交点A (0,2),B (85,65),可求得线段AB 的垂直平分线的方程为2x -y =0, 则所求圆的圆心C 在此直线上.设所求圆的圆心C 的坐标为(a,2a ),由点C 到点A 的距离等于点C 到直线l 的距离且等于半径,得a 2+(2a -2)2=|a +4a |5,得a =12,圆心C 的坐标为(12,1),半径为52,故所求圆的方程为(x -12)2+(y -1)2=54.19.证明:(1)连结AC 交BD 于点O ,连结OM .因为四边形ABCD 是正方形,所以O 为AC 的中点,因为M 为AF 的中点,所以FC ∥MO ,又因为MO ⊂平面MBD ,FC ⊄平面MBD , 所以FC ∥平面MBD .(2)因为正方形ABCD 和矩形ABEF 所在的平面互相垂直, 所以AF ⊥平面ABCD ,又BD ⊂平面ABCD ,所以AF ⊥BD .又因为四边形ABCD 是正方形,所以AC ⊥BD .因为AC ∩AF =A ,所以BD ⊥平面ACF ,因为FC ⊂平面ACF ,所以FC ⊥BD , 因为AB ⊥BC ,AB ⊥BE ,BC ∩BE =B ,所以AB ⊥平面BCE . 因为BN ⊂平面BCE ,所以AB ⊥BN ,易知EF ∥AB ,所以EF ⊥BN , 又因为EC ⊥BN ,EF ∩EC =E ,所以BN ⊥平面CEF , 因为FC ⊂平面CEF ,所以BN ⊥FC , 因为BD ∩BN =B ,所以CF ⊥平面BDN .20.解:(1)证明:在等边三角形ABC 中,AB =AC . ∵AD =AE ,∴AD DB =AEEC ,∴DE ∥BC ,∴DG ∥BF ,在题图2中,DG ⊄平面BCF , ∴DG ∥平面BCF . 同理可证GE ∥平面BCF .∵DG ∩GE =G ,∴平面GDE ∥平面BCF ,又DE ⊂平面BCF ,∴DE ∥平面BCF .(2)证明:在等边三角形ABC 中,F 是BC 的中点, ∴AF ⊥FC , ∵BF =FC =12BC =12.在题图2中,∵BC =22,∴BC 2=BF 2+FC 2, ∴∠BFC =90°,∴FC ⊥BF . ∵BF ∩AF =F ,∴CF ⊥平面ABF . (3)∵AD =23,∴BD =13,AD ∶DB =2∶1,在题图2中,AF ⊥FC ,AF ⊥BF ,∴AF ⊥平面BCF , 由(1)知平面GDE ∥平面BCF ,∴AF ⊥平面GDE . 在等边三角形ABC 中,AF =32AB =32, ∴FG =13AF =36,DG =23BF =23×12=13=GE ,∴S △DGE =12DG ·EG =118,∴V F -DEG =13S △DGE ·FG =3324.。
模块综合测评(时间120分钟,满分150分)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求)1.复数z 满足(3-2i)z =4+3i(i 为虚数单位),则复数在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限A [由题意得,z =4+3i 3-2i =(4+3i )(3+2i )(3-2i )(3+2i )=613+17i 13,则复数z 在复平面内对应的点位于第一象限,故选A.]2.将一颗质地均匀的骰子(一种各个面分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和为大于8的偶数的概率为( )A.112B.19C.16D.14B [将先后两次的点数记为有序实数对(x ,y ),则共有6×6=36(个)基本事件,其中点数之和为大于8的偶数有(4,6),(6,4),(5,5),(6,6),共4种,则满足条件的概率为436=19.故选B. ]3.从2名男同学和3名女同学中任选2人参加社区服务,则选中的恰有一名女同学的概率为( )A .0.3B .0.4C .0.5D .0.6D [设2名男生为a ,b,3名女生为A ,B ,C, 则任选2人的种数为ab ,aA ,aB ,aC ,bA ,bB ,bC ,AB ,AC ,BC 共10种,其中恰有一名女生为aA ,aB ,aC ,bA ,bB ,bC 共6种, 故恰有一名女同学的概率P =610=0.6 .故选D.]4.已知△ABC 为等腰三角形,满足AB =AC =3,BC =2,若P 为底边BC上的动点,则AP→(AB →+AC →)( ) A .有最大值8B .是定值2C .有最小值1D .是定值4D [如图,设AD 是等腰三角形底边BC 上的高,长度为3-1= 2.故AP →·(AB →+AC →)=(AD →+DP →)·2AD→=2AD →2+2DP →·AD→=2AD →2=2×(2)2=4.故选D.] 5.在△ABC 中,若lg sin A -lg cos B -lg sin C =lg 2,则△ABC 是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形A [因为lg sin A -lg cosB -lg sinC =lg 2,所以lg sin A cos B sin C=lg 2. 所以sin A =2cos B sin C .因为∠A +∠B +∠C =180°,所以sin(B +C )=2cos B sin C ,所以sin(B -C )=0.所以∠B =∠C ,所以△ABC 为等腰三角形.]6.《九章算术》中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳌臑.在鳌臑P -ABC 中,P A ⊥平面ABC ,P A =4,AB =BC =2,鳌臑P -ABC 的四个顶点都在同一个球上,则该球的表面积是( )A .16πB .20πC .24πD .64πC [四棱锥P -ABC 的四个面都是直角三角形,∵AB =BC =2,∴AB ⊥BC ,又P A ⊥平面ABC ,∴AB 是PB 在平面ABC上的射影,P A ⊥CA ,∴BC ⊥PB ,取PC 中点O ,则O 是P -ABC外接球球心.由AB =BC =2得AC =22,又P A =4,则PC =8+16=26,OP =6, 所以球表面积为S =4π(OP )2=4π×(6)2=24π.故选C.]7.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知三个向量m =⎝ ⎛⎭⎪⎫a ,cos A 2,n =⎝ ⎛⎭⎪⎫b ,cos B 2,p =⎝ ⎛⎭⎪⎫c ,cos C 2共线,则△ABC 的形状为( ) A .等边三角形 B .等腰三角形C .直角三角形D .等腰直角三角形 A [∵向量m =⎝ ⎛⎭⎪⎫a ,cos A 2,n =⎝ ⎛⎭⎪⎫b ,cos B 2共线, ∴a cos B 2=b cos A 2.由正弦定理得sin A cos B 2=sin B cos A 2.∴2sin A 2cos A 2 cos B 2=2sin B 2cos B 2cos A 2.则sin A 2=sin B 2.∵0<A 2<π2,0<B 2<π2,∴A 2=B 2,即A =B .同理可得B =C .∴△ABC 的形状为等边三角形.故选A.]8.如图,在正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别为棱BB 1,CC 1的中点,点O 为上底面的中心,过E ,F ,O 三点的平面把正方体分为两部分,其中含A 1的部分为V 1,不含A 1的部分为V 2,连接A 1和V 2的任一点M ,设A 1M 与平面A 1B 1C 1D 1所成角为α,则sin α的最大值为( )A.22B.255C.265D.266B [连接EF ,因为EF ∥平面ABCD ,所以过EFO 的平面与平面ABCD 的交线一定是过点O且与EF 平行的直线,过点O 作GH ∥BC 交CD 于点G ,交AB 于H 点,则GH ∥EF ,连接EH ,FG ,则平行四边形EFGH 即为截面,则五棱柱A 1B 1EHA -D 1C 1FGD 为V 1,三棱柱EBH -FCG 为V 2,设M 点为V 2的任一点,过M 点作底面A 1B 1C 1D 1的垂线,垂足为N ,连接A 1N , 则∠MA 1N 即为A 1M 与平面A 1B 1C 1D 1所成的角,所以∠MA 1N =α.因为sin α=MN A 1M ,要使α的正弦值最大,必须MN 最大,A 1M 最小,当点M 与点H 重合时符合题意.故(sin α)max =⎝ ⎛⎭⎪⎫MN A 1M max =HN A 1H =255.故选B.] 二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.如图是2020年春运期间十二个城市售出的往返机票的平均价格以及相比去年同期变化幅度的数据统计图,给出下列4个结论其中结论正确的是( )A .深圳的变化幅度最小,北京的平均价格最高;B .深圳和厦门往返机票的平均价格同去年相比有所下降;C .平均价格从高到低位于前三位的城市为北京,深圳,广州;D .平均价格的涨幅从高到低位于前三位的城市为天津,西安,上海.ABC [对于A.由图可知深圳对应的小黑点最接近0%,故变化幅度最小,北京对应的条形图最高,则北京的平均价格最高,故A 正确;对于B.由图可知深圳和厦门对应的小黑点在0%以下,故深圳和厦门的价格同去年相比有所下降,故B 正确; 对于C 由图可知条形图由高到低居于前三位的城市为北京、深圳和广州,故C 正确;对于D 由图可知平均价格的涨幅由高到低分别为天津、西安和南京,故D 错误.故选ABC.]10.已知圆锥的顶点为P ,母线长为2,底面半径为3,A ,B 为底面圆周上两个动点,则下列说法正确的是( )A .圆锥的高为1B .三角形P AB 为等腰三角形C.三角形P AB面积的最大值为3D.直线P A与圆锥底面所成角的大小为π6ABD[如图所示:PO=22-()32=1,A正确;P A=PB=2,B正确;易知直线P A与圆锥底面所成的角为∠P AO=π6,D正确;取AB中点为C,设∠P AC=θ,则θ∈⎣⎢⎡⎭⎪⎫π6,π2,S△P AB=2sin θ·2cos θ=2sin 2θ,当θ=π4时,面积有最大值为2,C错误.故选ABD.]11.以下对各事件发生的概率判断正确的是()A.连续抛两枚质地均匀的硬币,有3个基本事件,出现一正一反的概率为1 3B.每个大于2的偶数都可以表示为两个素数的和,例如12=5+7,在不超过15的素数中随机选取两个不同的数,其和等于14的概率为1 15C.将一个质地均匀的骰子先后抛掷2次,记下两次向上的点数,则点数之和为6的概率是5 36D.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是12BCD[对于A,连续抛两枚质地均匀的硬币,其样本区间为Ω={(正,正),(正,反),(反,正),(反,反)};有4个基本事件,出现一正一反事件A包含的样本点为(正,反),(反,正),所以A错误;对于B,从集合{2,3,5,7, 11,13}中取出两个数,其样本空间Ω={(2,3),(2,5),(2,7),(2,11),(2,13),(3,5),(3,7),(3,11),(3,13),(5,7),(5,11),(5,13),(7,11),(7,13),(11,13)},即包含15个基本等可能事件,“两个数的和为14”的事件B仅包含一个样本点(3,11),所以P(B)=115,所以B正确;对于C,样本空间有36个样本点,“点数和为6”的事件C包含5个样本点(1,5),(2,4),(3,3),(4,2),(5,1),即P(C)=536,所以C正确;对于D,从四件产品中取出两件,其样本空间为Ω={(正1,正2),(正2,正3),(正1,正3),(正1,次),(正2,次),(正3,次)},故共有6个基本等可能事件,“全是正品”的事件的样本点为3个,所以P(D)=12,所以故选BCD.]12.已知复数z对应复平面内点A,则下列关于复数z,z1,z2结论正确的是()A. |z+2i|表示点A到点(0,2)的距离B. 若|z-1|=|z+2i|,则点A的轨迹是直线C. ||z1|-|z2||≤|z1+z2|≤|z1|+|z2|D. |z1z2|=|z1||z2|BCD[对于A,|z+2i|表示点A到点(0,-2)的距离,所以A错误;对于B, |z-1|=|z+2i|表示A点到M(1,0)和N(0,-2)的距离相等,所以A的轨迹是MN的垂直平分线,是一条直线,所以B正确;由复数模的性质知,C、D均正确,故选BCD.]三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.2019年国际山地旅游大会于8月29日在贵州黔西南州召开,据统计有来自全世界的4 000名女性和6 000名男性徒步爱好者参与徒步运动,其中抵达终点的女性与男性徒步爱好者分别为1 000名和2 000名,抵达终点的徒步爱好者可获得纪念品一份.若记者随机电话采访参与本次徒步运动的1名女性和1名男性徒步爱好者,其中恰好有1名徒步爱好者获得纪念品的概率是________.512[“男性获得纪念品,女性没有获得纪念品”的概率为2 0006 000×3 0004 000=14,“男性没有获得纪念品,女性获得纪念品”的概率为4 0006 000×1 0004 000=16,故“恰好有1名徒步爱好者获得纪念品”的概率为14+16=512.]14.已知向量a=(1,-2),b=(x,3y-5),且a∥b,若x,y均为正数,则xy 的最大值是________.2524[∵a∥b,∴(3y-5)×1+2x=0,即2x+3y=5.∵x>0,y>0,∴5=2x+3y≥26xy,∴xy≤2524,当且仅当3y=2x时取等号.]15.掷红、白两颗骰子,事件A={红骰子点数小于3},事件B={白骰子点数小于3},则事件P(AB)=__________,P(A+B)=________.1 959[由掷红、白两颗骰子,向上的点数共6×6=36种可能,红色骰子的点数分别记为红1,红2,…,白色骰子的点数分别记为白1,白2,…其中红骰子点数小于3的有1,2二种可能,其中白骰子点数小于3的有1,2二种可能,事件A={红1,白1},{红1,白2},{红1,白3},{红1,白4},{红1,白5},{红1,白6},{红2,白1},{红2,白2},{红2,白3},{红2,白4},{红2,白5},{红2,白6},共12种事件B={白1,红1},{白1,红2},{白1,红3},{白1,红4},{白1,红5},{白1,红6},{白2,红1},{白2,红2},{白2,红3},{白2,红4},{白2,红5},{白2,红6},共12种,事件AB={红1,白1},{红1,白2},{红2,白1},{红2,白2},共4种,故P(AB)=436=19,事件A+B共有12+12-4=20种,故P(A+B)=2036=59.]16.如图,四棱锥P-ABCD中,ABCD是矩形,P A⊥平面ABCD,P A=AB=1,BC=2,四棱锥外接球的球心为O,点E是棱AD上的一个动点.给出如下命题:①直线PB与直线CE是异面直线;②BE与PC一定不垂直;③三棱锥E-BCO的体积为定值;④CE+PE的最小值为2 2.其中正确命题的序号是________.(将你认为正确的命题序号都填上)①③④[对于①,∵直线PB经过平面ABCD内的点B,而直线CE在平面ABCD内不过B,∴直线PB与直线CE是异面直线,故①正确;对于②,当E在线AD上且AE=14AD位置时,BE⊥AC,因为P A⊥平面ABCD,BE⊂平面ABCD,所以P A⊥BE,又P A∩AC=A,P A⊂平面P AC,AC⊂平面P AC,∴BE⊥平面P AC,则BE垂直PC,故②错误;对于③,由题意知,四棱锥P-ABCD的外接球的球心为O是PC的中点,则△BCE的面积为定值,且O到平面ABCD的距离为定值,∴三棱锥E-BCO的体积为定值,故③正确;对于④,设AE=x,则DE=2-x,∴PE+EC=1+x2+1+(2-x)2.由其几何意义,即平面内动点(x,1)与两定点(0,0),(2,0)距离和的最小值知,其最小值为22,故④正确.故答案为①③④.]四、解答题(本大题共6小题,共10分,解答应写出文字说明、证明过程或演算)17.(本小题满分10分)benti从青岛市统考的学生数学考试试卷中随机抽查100份数学试卷作为样本,分别统计出这些试卷总分,由总分得到如下的频率分布直方图.(1)求这100份数学试卷成绩的中位数;(2)从总分在[55,65)和[135,145)的试卷中随机抽取2份试卷,求抽取的2份试卷中至少有一份总分少于65分的概率.[解](1)记这100份数学试卷成绩的中位数为x(95<x<105),则0.002×10+0.008×10+0.013×10+0.015×10+(x-95)×0.024=0.5,解得x=100,所以中位数为100.(2)总分在[55,65)的试卷共有0.002×10×100=2(份),记为A,B,总分在[135,145)的试卷共有0.004×10×100=4(份),记为a,b,c,d,则从上述6份试卷中随机抽取2份的结果为{A,B},{A,a},{A,b},{A,c},{A,d},{B,a},{B,b},{B,c},{B,d},{a ,b },{a ,c },{a ,d },{b ,c },{b ,d },{c ,d },共计15个样本点,且是等可能的.至少有一份总分少于65分的有:{A ,B },{A ,a },{A ,b },{A ,c },{A ,d },{B ,a },{B ,b },{B ,c },{B ,d },共计9个样本点,所以抽取的2份至少有一份总分少于65分的概率P =915=35.18.(本小题满分12分)已知向量m =(cos α,sin α),n =(-1,2).(1)若m ∥n ,求sin α-2cos αsin α+cos α的值; (2)若|m -n |=2,α∈⎝ ⎛⎭⎪⎫π2,π,求cos ⎝ ⎛⎭⎪⎫α+π4的值. [解] (1)因为m ∥n ,所以sin α=-2cos α.所以原式=-2cos α-2cos α-2cos α+cos α=-4cos α-cos α=4. (2)因为 |m -n |=2,所以2sin α-cos α=2.所以cos 2α=4(sin α-1)2,所以1-sin 2α=4(sin α-1)2,所以α∈⎝ ⎛⎭⎪⎫π2,π, 所以sin α=35,cos α=-45. 所以原式=-7210.19.(本小题满分12分)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A .(1)证明:sin B =cos A ;(2)若sin C -sin A cos B =34,且B 为钝角,求A ,B ,C .[解] (1)证明:由正弦定理知a sin A =b sin B =c sin C =2R ,∴a =2R sin A ,b =2R sin B ,代入a =b tan A 得sin A =sin B ·sin A cos A ,又∵A ∈(0,π),∴sin A >0,∴1=sin B cos A ,即sin B =cos A .(2)由sin C -sin A cos B =34知,sin(A +B )-sin A cos B =34,∴cos A sin B =34.由(1)知,sin B =cos A ,∴cos 2A =34,由于B 是钝角,故A ∈⎝ ⎛⎭⎪⎫0,π2,∴cos A =32,A =π6. sin B =32,B =2π3,∴C =π-(A +B )=π6.20.(本小题满分12分)如图,E 是以AB 为直径的半圆上异于A ,B 的点,矩形ABCD 所在的平面垂直于该半圆所在的平面,且AB =2AD =2.(1)求证:EA ⊥EC ;(2)设平面ECD 与半圆弧的另一个交点为F .①证明:EF ∥AB ;②若EF =1,求三棱锥E -ADF 的体积.[解] (1)证明:∵平面ABCD ⊥平面ABE ,平面ABCD ∩平面ABE =AB ,BC ⊥AB ,BC ⊂平面ABCD ,∴BC ⊥平面ABE .又∵AE ⊂平面ABE ,∴BC ⊥AE .∵E 在以AB 为直径的半圆上,∴AE ⊥BE ,又∵BE ∩BC =B ,BC ,BE ⊂平面BCE ,∴AE ⊥平面BCE .又∵CE ⊂平面BCE ,∴EA ⊥EC .(2)①证明:∵AB ∥CD ,AB ⊄平面CED ,CD ⊂平面CED ,∴AB ∥平面CED .又∵AB ⊂平面ABE ,平面ABE ∩平面CED =EF ,∴AB ∥EF .②取AB 的中点O ,EF 的中点O ′,在Rt △OO ′F 中,OF =1,O ′F =12,∴OO ′=32.由(1)得BC ⊥平面ABE ,又已知AD ∥BC ,∴AD ⊥平面ABE .故V E -ADF =V D -AEF =13·S △AEF ·AD =13·12·EF ·OO ′·AD =312.21.(本小题满分12分)已知△ABC 中,三个内角A ,B ,C 所对的边分别是a ,b ,c .(1)证明:a cos B +b cos A =c ;(2)在①2c -b cos B =a cos A ,②c cos A =2b cos A -a cos C ,③2a -b cos C cos A =c cos B cos A 这三个条件中任选一个补充在下面问题中,并解答若a =7,b =5,________,求△ABC 的周长.[解] (1)根据余弦定理:a cos B +b cos A =a ·a 2+c 2-b 22ac +b ·b 2+c 2-a 22bc=a 2+c 2-b 2+b 2+c 2-a 22c=c ,所以a cos B +b cos A =c . (2)选①:因为2c -b cos B =a cos A ,所以2c ·cos A =b cos A +a cos B ,所以由(1)中所证结论可知,2c cos A =c ,即cos A =12,因为A ∈(0,π),所以A =π3;选②:因为c cos A =2b cos A -a cos C ,所以2b cos A =a cos C +c cos A , 由(1)中的证明过程同理可得,a cos C +c cos A =b ,所以2b cos A =b ,即cos A =12,因为A ∈(0,π),所以A =π3;选③:因为2a -b ·cos C cos A =c ·cos B cos A ,所以2a cos A =b cos C +c cos B ,由(1)中的证明过程同理可得,b cos C +c cos B =a ,所以2a cos A =a ,即cos A =12,因为A ∈(0,π),所以A =π3.在△ABC 中,由余弦定理知,a 2=b 2+c 2-2bc cos A =25+c 2-10c ·12=49,即c 2-5c -24=0,解得c =8或c =-3(舍),所以a +b +c =7+5+8=20,即△ABC 的周长为20.22. (本小题满分12分)如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,小区的两个出入口设置在点 A 及点 C 处,且小区里有一条平行于 BO 的小路CD .(1)已知某人从 C 沿 CD 走到 D 用了10分钟,从D 沿DA 走到 A 用了6分钟,若此人步行的速度为每分钟50米,求该扇形的半径OA 的长(精确到1米)(2)若该扇形的半径为OA =a ,已知某老人散步,从 C 沿CD 走到D ,再从D 沿DO 走到O ,试确定C 的位置,使老人散步路线最长.[解] (1)法一:设该扇形的半径为r 米,连接CO . 由题意,得CD =500(米),DA =300(米),∠CDO =60°,在△CDO 中,CD 2+OD 2-2CD ·OD ·cos 60 °=OC 2,即5002+()r -3002-2×500×()r -300×12=r 2, 解得r =4 90011≈445(米).法二:连接AC ,作OH ⊥AC ,交AC 于H ,由题意,得CD =500(米), AD =300(米),∠CDA =120° ,在△CDA 中,AC 2=CD 2+AD 2-2·CD ·AD ·cos 120°=5002+3002+2×500×300×12=7002.AC =700(米). cos ∠CAD =AC 2+AD 2-CD 22·AC ·AD=1114. 在直角△HAO 中,AH =350(米),cos ∠HAO =1114,OA =AH cos ∠HAO=4 90011≈445(米). (2)连接OC ,设∠DOC =θ,θ∈⎝ ⎛⎭⎪⎫0,2π3, 在△DOC 中,由正弦定理得CD sin θ=DO sin ⎝ ⎛⎭⎪⎫2π3-θ=OC sin π3=2a 3, 于是CD =2a 3sin θ,DO =2a 3sin ⎝⎛⎭⎪⎫2π3-θ,则 DC +DO =2a 3⎣⎢⎡⎦⎥⎤sin θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=2a sin ⎝ ⎛⎭⎪⎫θ+π6 ,θ∈⎝ ⎛⎭⎪⎫0,2π3 所以当θ=π3时,DC +DO 最大为2a ,此时C 在弧AB 的中点处.。
模块综合检测卷(二)(测试时间:120分钟评价分值:150分)一、选择题(每小题共12个小题,每小题共5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求)1.对于任意实数a,b,c,d命题:①若a>b,c≠0,则ac>bc;②若a<b,则ac2>bc2;③若ac2>bc2,则a>b.其中真命题的个数是()A.0B.1C.2D.3解析:当c<0时,①不正确;当c=0时,②不正确;只有③正确.答案:B2.历届现代奥运会召开时间表如下:A.29 B.30 C.31 D.32解析:由题意得,历届现代奥运会召开时间构成以1 896为首项,4为公差的等差数列,所以2 016=1 896+(n-1)·4,解得n=31.答案:C3.若点(x,y)位于曲线y=|x|与y=2所围成的封闭区域,则2x -y的最小值为()A .-6B .-2C .0D .2解析:y =|x |与y =2的图象围成一个三角形区域,如图所示,3个顶点的坐标分别是(0,0),(-2,2),(2,2).在封闭区域内平移直线y =2x ,在点(-2,2)时,2x -y =-6取最小值.答案:A4.如图所示,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的长为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为()A .50 2 mB .50 3 mC .25 2 mD.2522m解析:由正弦定理得AB sin ∠ACB =ACsin ∠ABC ,又因为∠ABC =180°-45°-105°=30°, 所以AB =AC sin ∠ACB sin ∠ABC=50×2212=502(m).答案:A5.等比数列{a n }前n 项的积为T n ,若a 3a 6a 18是一个确定的常数,那么数列T 10,T 13,T 17,T 25中也是常数的项是( )A .T 10B .T 13C .T 17D .T 25解析:因为a 3·a 6·a 18=a 9q 6·a 9q 3·a 9·q 9=a 39是一个确定常数,所以a 9为确定的常数.T 17=a 1·a 2·…·a 17=(a 9)17,所以选C. 答案:C6.以原点为圆心的圆全部都在平面区域⎩⎪⎨⎪⎧x -3y +6≥0,x -y +2≥0内,则圆面积的最大值为( )A.18π5B.9π5C .2πD .π 解析:作出不等式组表示的平面区域如图所示,由图可知,最大圆的半径为点(0,0)到直线x -y +2=0的距离, 即|0-0+2|12+(-1)2=2,所以圆面积的最大值为π·(2)2=2π. 答案:C7.已知三角形的两边长分别为4,5,它们夹角的余弦值是方程2x 2+3x -2=0的根,则第三边长是( )A.20B.21C.22D.61解析:设长为4,5的两边的夹角为θ,由2x 2+3x -2=0得x =12或x =-2(舍),所以cos θ=12,所以第三边长为 42+52-2×4×5×12=21.答案:B8.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 等于( )A .6B .7C .8D .9解析:a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2=⎩⎨⎧-8,n =1,-10+2n ,n ≥2.因为n =1时适合a n =2n -10, 所以a n =2n -10(n ∈N *). 因为5<a k <8,所以5<2k -10<8. 所以152<k <9.又因为k ∈N *,所以k =8.答案:C9.函数f (x )=1x ln(x 2-3x +2+-x 2-3x +4)的定义域为( )A .(-∞,-4)∪[2,+∞)B .(-4,0)∪(0,1)C .[-4,0)∪(0,1]D .[-4,0)∪(0,1)解析:函数f (x )有定义等价于⎩⎪⎨⎪⎧x ≠0,x 2-3x +2≥0,-x 2-3x +4>0或⎩⎪⎨⎪⎧x ≠0,x 2-3x +2>0,-x 2-3x +4≥0,解得-4≤x <0或0<x <1.答案:D10.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定解析:因为b cos C +c cos B =b ·b 2+a 2-c 22ab +c ·c 2+a 2-b 22ac=b 2+a 2-c 2+c 2+a 2-b 22a=2a 22a =a =a sin A , 所以sin A =1.因为A ∈(0,π),所以A =π2,即△ABC 是直角三角形.答案:B11.在数列{x n }中,2x n =1x n -1+1x n +1(n ≥2),且x 2=23,x 4=25,则x 10等于( )A.211B.16C.112D.15解析:由已知可得⎩⎨⎧⎭⎬⎫1x n 成等差数列,而1x 2=32,1x 4=52,所以2d =52-32=1,即d =12.故1x 10=1x 1+(10-1)d =⎝ ⎛⎭⎪⎫32-12+9×12=112.所以x 10=211. 答案:A12.已知x >0,y >0,且2x +1y =1,若x +2y >m 2+2m 恒成立,则实数m 的取值范围是( )A .(-∞,-2]∪[4,+∞)B .(-∞,-4]∪[2,+∞)C .(-2,4)D .(-4,2)解析:因为x >0,y >0且2x +1y =1,所以x +2y =(x +2y )⎝ ⎛⎭⎪⎫2x +1y =4+4y x +xy ≥4+24y x ·x y =8,当且仅当4y x =x y,即x =4,y =2时取等号, 所以(x +2y )min =8.要使x +2y >m 2+2m 恒成立, 只需(x +2y )min >m 2+2m 恒成立, 即8>m 2+2m ,解得-4<m <2. 答案:D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,-x ,x ≤0.则不等式f (x )<4的解集是________.解析:不等式f (x )<4等价于⎩⎨⎧x >0,x 2+1<4或⎩⎨⎧x ≤0,-x <4,即0<x <3或-4<x ≤0.因此,不等式f (x )<4的解集是(-4,3). 答案:(-4,3)14.已知数列{a n }的通项公式为a n =2n -2004,则这个数列的前________项和最小.解析:设a n =2n -2 004的对应函数为y =2x -2 004.易知函数y =2x -2 004在R 上是增函数,且当y =0时,x =1 002. 因此,数列{a n }是单调递增数列,且当1≤n ≤1 002时,a n ≤0;当n >1 002时,a n >0. 所以数列{a n }的前1 001项或前1 002项的和最小. 答案:1 001或1 002.15.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sin C =23sin B ,则A 等于________.解析:由正弦定理,且sin C =23sin B ⇒c =23b .又a 2-b 2=3bc ,故由余弦定理得cos A =b 2+c 2-a 22bc =b 2+c 2-(b 2+3bc )2bc =c 2-3bc 2bc =(23b )2-3b ·23b 2b ·23b=32,所以A =30°. 答案:30°16.(2015·山东卷)定义运算“⊗”:x ⊗y =x 2-y 2xy (x ,y ∈R ,xy ≠0).当x >0,y >0时,x ⊗y +(2y )⊗x 的最小值为________.解析:因为x ⊗y =x 2-y 2xy ,所以(2y )⊗x =4y 2-x 22xy .又x >0,y >0,故x ⊗y +(2y )⊗x =x 2-y 2xy +4y 2-x 22xy =x 2+2y 22xy ≥22xy2xy =2,当且仅当x =2y 时,等号成立. 答案: 2三、解答题(本大题共6小题,共70分.解答题应写出文字说明、证明过程或推演步骤)17.(本小题满分10分)(2015·江苏卷)在△ABC 中,已知AB =2,AC =3,A =60°.(1)求BC 的长; (2)求sin 2C 的值.解:(1)由余弦定理知,BC 2=AB 2+AC 2-2AB ·AC ·cos A =4+9-2×2×3×12=7,所以BC =7.(2)由正弦定理知,AB sin C =BCsin A ,所以sin C =ABBC ·sin A =2sin 60°7=217.因为AB <BC ,所以C 为锐角, 则cos C =1-sin 2C =1-37=277. 因此sin 2C =2sin C ·cos C =2·217·277=437.18.(本小题满分12分)设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4.(1)求{a n }的通项公式;(2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n .解:(1)设q 为等比数列{a n }的公比,则由a 1=2,a 3=a 2+4得2q 2=2q +4,即q 2-q -2=0,解得q =2或q =-1(舍去),因此q =2,所以{a n }的通项为a n =2·2n -1=2n (n ∈N +).(2)S n =2(1-2n )1-2+n ·1+n (n -1)2·2=2n +1+n 2-2.19.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的周长为2+1,且sin A +sin B =2sin C .(1)求边c 的长;(2)若△ABC 的面积为16sin C ,求C 的大小.解:(1)由sin A +sin B =2sin C 及正弦定理可知: a +b =2c .又因为a +b +c =2+1,所以2c +c =2+1,从而c =1. (2)三角形面积S =12ab sin C =16sin C ,所以ab =13,a +b = 2.因为cos C =a 2+b 2-c 22ab =(a +b )2-2ab -12ab =12,又因为0<C <π,所以C =π3.20.(本小题满分12分)如图所示,公园有一块边长为2的等边三角形ABC 的边角地,现修成草坪,图中DE 把草坪分成面积相等的两部分,点D 在AB 上,点E 在AC 上.(1)设AD =x (x ≥0),ED =y ,求用x 表示y 的函数关系式; (2)如果DE 是灌溉水管,为节约成本,希望它最短,DE 的位置应在哪里?如果DE 是参观线路,则希望它最长,DE 的位置又在哪里?解:S △ABC =34×4=3,所以S △ADE =12·x ·AE · sin 60°=32,所以x ·AE =2,所以AE =2x≤2,所以x ≥1.(1)在△ADE 中,y 2=x 2+⎝ ⎛⎭⎪⎫2x 2-2·x ·2x ·cos 60°=x 2+4x 2-2,所以y =x 2+4x2-2(1≤x ≤2).(2)令t =x 2,则1≤t ≤4,所以y =t +4t-2(1≤t ≤4). 当t =2,即x =2时,即当AD =2,AE =2时,DE 最短为2;当t =1或4,即AD =2,AE =1或AD =1,AE =2时,DE 最长为 3.21.(本小题满分12分)已知函数f (x )=x 2-ax (a ∈R), (1)若不等式f (x )>a -3的解集为R ,求实数a 的取值范围; (2)设x >y >0,且xy =2,若不等式f (x )+f (y )+2ay ≥0恒成立,求实数a 的取值范围.解:(1)不等式f (x )>a -3的解集为R ,即不等式x 2-ax -a +3>0的解集为R ,所以Δ=a 2+4(a -3)<0恒成立,即a 2+4a -12<0恒成立,所以-6<a <2.(2)不等式f (x )+f (y )+2ay ≥0恒成立,即不等式x 2-ax +y 2-ay +2ay ≥0恒成立,所以x 2+y 2≥a (x -y )恒成立.所以实数a 的取值范围为(-∞,4].22.(本小题满分12分)已知公差大于0的等差数列{a n }的前n 项和为S n ,且满足:a 3a 4=117,a 2+a 5=22.(1)求数列{a n }的通项公式a n ;(2)若数列{b n }是等差数列,且b n =S n n +c,求非零常数c ; (3)若(2)中的{b n }的前n 项和为T n ,求证:2T n -3b n -1>64b n (n +9)b n +1. (1)解:{a n }为等差数列,因为a 3+a 4=a 2+a 5=22, 又因为a 3·a 4=117,所以a 3,a 4是方程n 2-22x +117=0的两个根. 又因为公差d >0,所以a 3<a 4,所以a 3=9,a 4=13.所以⎩⎨⎧a 1+2d =9,a 1+3d =13即⎩⎨⎧a 1=1,d =4,所以a n =4n -3.(2)解:由(1)知,S n =n ·1+n (n -1)2·4=2n 2-n , 所以b n =S n n +c =2n 2-n n +c ,所以b 1=11+c ,b 2=62+c, b 3=153+c. 因为{b n }是等差数列,所以2b 2=b 1+b 3,所以2c 2+c =0,所以c =-12或c =0(舍去). (3)证明:由(2)得b n =2n 2-n n -12=2n ,T n =2n +n (n -1)·22=n 2+n ,2T n -3b n -1=2(n 2+n )-3(2n -2)=2(n -1)2+4≥4,当n =1时取“=”,又n >1,所以取不到“=”,即2T n -3b n -1>4.64b n (n +9)b n +1=64×2n (n +9)·2(n +1)=64n n 2+10n +9=64n +9n+10≤4,当n =3时取“=”.上述两式中“=”不可能同时取到,所以2T n -3b n -1>64b n (n +9)b n +1.。
模块综合测评(B卷)(满分:150分时间:120分钟)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.过点(1,0)且与直线x-2y-2=0平行的直线方程是()A.x-2y-1=0B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=0A[设直线方程为x-2y+c=0,∵直线经过点(1,0),∴1-0+c=0,故c=-1,∴所求直线方程为x-2y-1=0.]2.设一球的球心为空间直角坐标系的原点O,球面上有两个点A,B的坐标分别为(1,2,2),(2,-2,1),则|AB|=()A.18 B.12C.3 2 D.2 3C[由空间两点间的距离公式可知,|AB|=(1-2)2+(2+2)2+(2-1)2=3 2.故选C.]3.直线x-3y+3=0与圆(x-1)2+(y-3)2=10相交所得弦的长为()A.30B.53 2C.4 2 D.3 3A[由题知,题中圆的圆心坐标为(1,3),半径长r=10,则圆心到直线的距离d=|1-9+3|12+(-3)2=102,所以弦长为2r2-d2=210-104=30.]4.圆x2+y2+4x-4y+7=0与圆x2+y2-4x-10y-7=0的位置关系是() A.外切B.内切C.相交D.相离B[圆x2+y2+4x-4y+7=0的圆心是C1(-2,2),半径长r1=1.圆x2+y2-4x-10y-7=0的圆心是C2(2,5),半径长r2=6,则|C1C2|=(2+2)2+(5-2)2=5=r2-r1,故两圆内切.]5.将直线2x-y+λ=0沿x轴向右平移1个单位长度所得直线与圆x2+y2+2x-4y=0相切,则实数λ的值为()A.1或11 B.-3或7C.0或10 D.-2或8A[将直线2x-y+λ=0沿x轴向右平衡1个单位长度得到直线2(x-1)-y+λ=0,即2x-y-2+λ=0,此直线与圆(x+1)2+(y-2)2=5相切,即圆心(-1,2)到直线的距离d=|-2-2-2+λ|5=5,∴|λ-6|=5,解得λ=1或λ=11.故选A.]6.平面α截球O所得截面圆的半径为1,球心O到平面α的距离为2,则此球的体积为()A.6πB.43πC.46πD.63πB[球的半径R=12+(2)2=3,所以球的体积V=43π×(3)3=43π.]7.点P(2,3)到直线l:ax+y-2a=0的距离为d,则d的最大值为() A.3 B.4C.5 D.7A[直线ax+y-2a=0即a(x-2)+y=0,易得直线经过定点Q(2,0),则当PQ⊥l时,d取得最大值|PQ|,|PQ|=(2-2)2+32=3.]8.已知a,b为直线,α,β为平面,给出下列四个命题:①若a⊥α,b⊥α,则a∥b;②若a∥α,b∥α,则a∥b;③若a⊥α,a⊥β,则α∥β;④若α∥b,β∥b,则α∥β.其中正确命题的个数是()A.1 B.3C.2 D.0C[由“垂直于同一平面的两直线平行”知①正确;由“平行于同一平面的两直线平行或异面或相交”知②不正确;由“垂直于同一直线的两平面平行”知③正确;在长方体中可以找到满足要求的平面α,β和直线b ,易知α,β不一定平行,故④不正确.故选C.]9.当a 为任意实数时,直线(a -1)x -y +a +1=0恒过点C ,则以C 为圆心,5为半径长的圆的方程为( )A .x 2+y 2-2x +4y =0B .x 2+y 2+2x +4y =0C .x 2+y 2+2x -4y =0D .x 2+y 2-2x -4y =0C [直线方程可化为(x +1)a -(x +y -1)=0,直线过定点,即对任意实数a ,方程恒成立,故有⎩⎪⎨⎪⎧x +1=0,x +y -1=0,解得⎩⎪⎨⎪⎧x =-1,y =2,即直线过定点C (-1,2),故所求圆的方程为(x +1)2+(y -2)2=5,即x 2+y 2+2x -4y =0.]10.如果圆(x -a )2+(y -a )2=8上总存在到原点的距离为2的点,则实数a 的取值范围是( )A .(-3,-1)∪(1,3)B .(-3,3)C .[-1,1]D .[-3,-1]∪[1,3]D [圆(x -a )2+(y -a )2=8上总存在到原点的距离为2的点,可转化为圆(x -a )2+(y -a )2=8和圆x 2+y 2=2有交点.大圆半径长为22,小圆半径长为2,圆心距为(a -0)2+(a -0)2=2|a |,所以22-2≤2|a |≤22+2,所以1≤|a |≤3,所以-3≤a ≤-1或1≤a ≤3,即a ∈[-3,-1]∪[1,3].]11.三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥BC ,AB =BC =1,P A =3,则该三棱锥外接球的表面积为 ( )A .5π B.2π C .20π D .4πA [如图,取PC的中点O,连接OA,OB,∵P A⊥平面ABC,AC平面ABC,∴P A⊥AC.在Rt△P AC中,∵O为PC的中点,∴OA=12PC,又∵P A⊥BC,AB⊥BC,P A,AB是平面P AB内的两条相交直线,∴BC⊥平面P AB,∴BC⊥PB,在Rt△PBC中,可得OB=12PC,∴O是三棱锥P-ABC的外接球的球心.∵Rt△P AC中,AC=2,P A=3,∴PC=5,∴三棱锥P-ABC的外接球的半径长R=12PC=5 2,∴该三棱锥外接球的表面积S=4πR2=5π.故选A.]12.如图,在四边形ABCD中,AB=AD=CD=1,BD=2,BD⊥CD.将四边形ABCD沿对角线BD折成三棱锥A′BCD,使平面A′BD⊥平面BCD,则下列结论正确的是()A.A′C⊥BDB.∠BA′C=90°C.直线CA′与平面A′BD所成的角为30°D .三棱锥A ′BCD 的体积为13B [如图所示,取BD 的中点O ,连接OA ′,OC ,∵A ′B =A ′D ,∴A ′O ⊥BD ,又平面A ′BD ⊥平面BCD ,平面A ′BD ∩平面BCD =BD ,∴A ′O ⊥平面BCD .∵CD ⊥BD ,∴OC 不垂直于BD .假设A ′C ⊥BD ,∵A ′O ⊥BD ,又A ′O ∩A ′C =A ′,∴BD ⊥平面A ′OC ,∴BD ⊥OC ,矛盾,∴A ′C 不垂直于BD ,故A 错误;∵CD ⊥BD ,平面A ′BD ⊥平面BCD ,平面A ′BD ∩平面BCD =BD ,∴CD ⊥平面A ′BD ,∴CD ⊥A ′B ,又A ′B ⊥A ′D ,CD ∩A ′D =D ,∴A ′B ⊥平面A ′CD ,∴A ′B ⊥A ′C ,故B 正确;易知∠CA ′D 为直线CA ′与平面A ′BD 所成的角,∠CA ′D =45°,故C 错误;V 三棱锥A ′BCD =V 三棱锥C -A ′BD =13S△A ′BD ·CD =16,故D 错误.] 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知点M (0,-1),N (2,3).如果直线MN 垂直于直线ax +2y -3=0,那么a 等于________.1 [∵点M (0,-1),N (2,3),∴直线MN 的斜率k MN =3+12-0=2.∵直线MN垂直于直线ax +2y -3=0,∴2×⎝ ⎛⎭⎪⎫-a 2=-1,解得a =1.] 14.设圆C :(x -3)2+(y -5)2=5,过圆心C 作直线l 交圆于A ,B 两点,交y 轴于点P ,若点A 恰好为线段BP 的中点,则直线l 的方程为________.2x -y -1=0或2x +y -11=0 [如图,因为点A为PB的中点,而点C为AB的中点,所以点C为PB的一个四等分点,而C(3,5),点P的横坐标为0,因此A,B两点的横坐标分别为2,4,将点A的横坐标代入圆的方程,可得A(2,3)或A(2,7),根据直线的两点式得到直线l的方程为2x-y-1=0或2x+y-11=0.]15.已知四边形ABCD为正方形,P为平面ABCD外一点,PD⊥AD,PD=AD=2,二面角P-AD-C为60°,则点C到平面P AB的距离为________.2217[由题易得∠PDC就是二面角P-AD-C的平面角,则△PDC为正三角形,且平面PDC与平面ABCD垂直.取CD的中点O,AB的中点M,连接OM,PM,过点O作OH⊥PM于点H,易证OH⊥平面P AB,故点C到平面P AB的距离即为OH的长.计算得PO=3,又OM=2,则PM=7,故在Rt△POM中,由面积相等可得OH=PO×OMPM =2217.]16.如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为棱DD1,AB上的点.下列命题中正确的是________(写出所有正确命题的序号)①A1C⊥平面B1EF;②在平面A1B1C1D1内总存在与平面B1EF平行的直线;③△B1EF在侧面BCC1B1上的正投影是面积为定值的三角形;④当E,F为中点时,平面B1EF截该正方体所得的截面图形是五边形.②③④ [由正方体的性质可得A 1C ⊥平面AB 1D 1,所以显然有A 1C 与平面B 1EF 不垂直,故①错误;由题图可知,平面A 1B 1C 1D 1与平面B 1EF 相交,则一定有一条交线,所以在平面A 1B 1C 1D 1内一定存在直线与此交线平行,则此直线与平面B 1EF 平行,故②正确;点F 在侧面BCC 1B 1上的投影为点B ,点E 在侧面BCC 1B 1上的投影在棱CC 1上,所以投影三角形的面积为S =12BB 1·BC =12,为定值,故③正确;在D 1C 1上取点M ,使D 1M =14D 1C 1,在AD 上取点N ,使AN =23AD ,连接B 1M ,EM ,EN ,FN ,则五边形B 1MENF 即为截面,故④正确.所以正确命题的序号为②③④.]三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知直线l 的方程为2x -y +1=0.(1)求过点A (3,2),且与l 垂直的直线的方程;(2)求与l 平行,且到点P (3,0)的距离为5的直线的方程.[解] (1)∵直线l 的斜率为2,∴所求直线的斜率为-12.∵所求直线过点A (3,2),∴所求直线的方程为y -2=-12(x -3),即x +2y -7=0.(2)由题意可设所求直线的方程为2x -y +c =0(c ≠1),∵点P (3,0)到该直线的距离为5, ∴|6+c |22+(-1)2=5,解得c =-1或c =-11,故所求直线的方程为2x -y -1=0或2x -y -11=0.18.(本小题满分12分)如图,矩形ABCD 中,AB =1,BC =2,E 为AD 的中点,将△CDE 沿CE 折起,使得△CDE 所在平面与梯形ABCE 所在平面垂直(如图30),M 是BD 的中点.(1)求证:AM ∥平面CDE ;(2)求三棱锥M -AED 的体积.[解] (1)取BC 的中点N ,连结MN ,AN ,(图略)∵AE ∥BC 且AE =NC =1,∴四边形ANCE 为平行四边形,∴AN ∥EC ,又M 为BD 的中点,∴MN ∥DC .∵AN ∩MN =N ,EC ∩DC =C ,AN ,MN 平面AMN ,EC ,DC 平面EDC , ∴平面AMN ∥平面EDC ,∴AM ∥平面EDC .(2)连接BE ,S △ABE =12×AB ×AE =12×1×1=12,三棱锥M -AED 的体积V =12V三棱锥B -AED =12V 三棱锥D -ABE =12×13×22×S △ABE =224.19.(本小题满分12分)如图所示,平行四边形ABCD ⊥平面CDE ,AD =DC =DE =4,∠ADC =60°,AD ⊥DE .(1)求证:DE ⊥平面ABCD ;(2)求二面角C -AE -D 的余弦值.[解] (1)证明:如图,过A 作AH ⊥DC 交DC 于点H .∵平行四边形ABCD⊥平面CDE,平行四边形ABCD∩平面CDE=DC,AH 平面ABCD,∴AH⊥平面CDE.又DE平面CDE,∴AH⊥DE①.已知AD⊥DE②,AH∩AD=A③,由①②③得,DE⊥平面ABCD.(2)如图,过点C作CM⊥AD交AD于点M,过点C作CN⊥AE交AE于点N,连接MN.由(1)得DE⊥平面ABCD,又DE平面ADE,∴平面ADE⊥平面ABCD,∴CM⊥AE,CM⊥MN.∵CN⊥AE,且CM∩CN=C,∴AE⊥平面CMN,∴∠CNM就是所求二面角的一个平面角.在Rt△CMN中,CM=23,MN=2,∴CN=14,∴所求二面角的余弦值为MNCN =214=77.20.(本小题满分12分)已知圆O:x2+y2=4,直线l1:3x+y-23=0与圆O相交于A,B两点,且点A在第一象限.(1)求|AB|;(2)设P(x0,y0)(x0≠±1)是圆O上的一个动点,点P关于原点O的对称点为P1,点P关于x轴的对称点为P2,如果直线AP1,AP2与y轴分别交于(0,m)和(0,n)两点,问mn是否为定值?若是,求出定值;若不是,请说明理由.[解](1)圆心O(0,0)到直线l1:3x+y-23=0的距离d=3,圆O的半径长r=2,所以|AB|=2r2-d2=2.(2)mn 是定值,且mn =4.理由如下:联立⎩⎪⎨⎪⎧x 2+y 2=4,3x +y -23=0,解得⎩⎪⎨⎪⎧x =2,y =0 或⎩⎪⎨⎪⎧x =1,y = 3.又点A 在第一象限,所以A (1,3). 由P (x 0,y 0)(x 0≠±1),得P 1(-x 0,-y 0),P 2(x 0,-y 0),又P 为圆O 上一点,所以x 20+y 20=4,所以直线AP 1的方程为y -3=3+y 01+x 0(x -1),令x =0,得m =3x 0-y 01+x 0;直线AP 2的方程为y -3=3+y 01-x 0(x -1),令x =0,得n =-3x 0-y 01-x 0,所以mn =3x 0-y 01+x 0·-3x 0-y 01-x 0=-4(x 20-1)1-x 20=4. 21.(本小题满分12分)如图,在四棱锥P -ABCD 中,AD ∥BC ,AB =AD =2BC =2,PB =PD ,P A = 3.(1)求证:P A ⊥BD ;(2)若P A ⊥AB ,BD =22,E 为P A 的中点.(ⅰ)过点C 作一直线l 与BE 平行,在图中画出直线l 并说明理由; (ⅱ)求平面BEC 将三棱锥P -ACD 分成的两部分体积的比.[解](1)如图,取BD的中点O,连接AO,PO.∵AB=AD,O为BD中点,∴AO⊥BD,又PB=PD,O为BD中点,∴PO⊥BD,又AO∩PO=O,∴BD⊥平面P AO,又P A平面P AO,∴P A⊥BD.(2)(ⅰ)如图,取PD的中点F,连接CF,EF,则DF∥BE,CF即所求作直线l.理由如下:∵在△P AD中,E,F分别为P A,PD的中点,∴EF∥AD,且EF=12AD=1,又AD∥BC,BC=12AD=1,∴EF∥BC且EF=BC,∴四边形BCFE为平行四边形.∴CF∥BE.(ⅱ)∵P A⊥AB,P A⊥BD,AB∩BD=B,∴P A⊥平面ABD,又在△ABD中,AB=AD=2,BD=22,∴AB2+AD2=BD2,∴AB⊥AD.又P A⊥AB,P A∩AD=A,∴AB⊥平面P AD.法一:V三棱锥P-ACD=13×12×2×2×3=233,V四棱锥C-AEFD=13×12×(1+2)×32×2=32.∵V 三棱锥P -ECF =233-32=36,∴V 三棱锥P -ECF V 四棱锥C -AEFD =3632=13. 法二:∵在△P AD 中,EF 为中位线,∴S △PEF S △P AD=14, ∴V 三棱锥C -PEF V 三棱锥C -P AD =13×S △PEF ×AB 13×S △P AD ×AB=14, ∴V 三棱锥P -ECF V 四棱锥C -AEFD=13. 法三:设三棱锥F -PEC 的高为h ,则易知三棱锥D -P AC 的高为2h ,则V 三棱锥F -PEC V 三棱锥D -P AC =13×S △PCE ×h 13×S △P AC ×2h=14.∴V 三棱锥P -ECF V 四棱锥C -AEFD=13. 22.(本小题满分12分)如图,已知圆心坐标为M (3,1)的圆M 与x 轴及直线y =3x 分别相切于A ,B 两点,另一圆N 与圆M 外切,且与x 轴及直线y=3x 分别相切于C ,D 两点.(1)求圆M 与圆N 的方程;(2)过点B 作直线MN 的平行线l ,求直线l 被圆N 截得的弦长.[解](1)因为点M的坐标为(3,1),所以点M到x轴的距离为1,即圆M的半径长为1,所以圆M的方程为(x-3)2+(y-1)2=1.设圆N的半径长为r,连接MA,NC,OM,如图所示,则MA⊥x轴,NC⊥x轴.由题意知,点M,N都在∠COD的平分线上,所以O,M,N三点共线.又MA∥NC,所以Rt△OAM∽Rt△OCN,所以|OM||ON|=|MA||NC|,即23+r=1r,解得r=3,所以|OC|=33,N(33,3),故圆N的方程为(x-33)2+(y-3)2=9.(2)由对称性可知,所求的弦长等于过点A与MN平行的直线被圆N截得的弦长.设过点A与MN平行的直线为l′,则直线l′的方程是y=3-133-3(x-3)=33(x-3),即x-3y-3=0,圆心N到直线l′的距离d=|33-3×3-3|1+(-3)2=32.则所求弦长为2r2-d2=33.。
高中数学学习材料马鸣风萧萧*整理制作模块综合测评(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.请把答案填写在题中横线上)1.下列叙述中不正确的序号是________.①若直线的斜率存在,则必有倾斜角与之对应;②每一条直线都有唯一对应的倾斜角;③与坐标轴垂直的直线的倾斜角为0°或90°;④若直线的倾斜角为α,则直线的斜率为tan α.【解析】当α=90°时,tan α不存在,所以④错误,由直线斜率和倾斜角的知识知①②③正确.【答案】④2.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是________.【解析】如图所示,由V=Sh得,S=4,即正四棱柱底面边长为2.∴A1O1=2,A1O=R= 6.=4πR2=24π.∴S球【答案】24π3.已知直线l1:ax+4y-2=0与直线l2:2x-5y+b=0互相垂直,垂足为(1,c),则a+b+c的值为________.【解析】垂足(1,c)是两直线的交点,且l1⊥l2,故-a4·25=-1,∴a=10.l1:10x+4y-2=0.将(1,c)代入l1,得c=-2;将(1,-2)代入l2,得b=-12.则a+b+c=10+(-12)+(-2)=-4.【答案】-44.圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角的度数为________.【解析】S底+S侧=3S底,2S底=S侧,即2πr2=πrl,得2r=1.设侧面展开图的圆心角为θ,则θπl180°=2πr,∴θ=180°.【答案】180°5.过点(3,-4)且在两坐标轴上的截距相等的直线的方程是________. 【导学号:60420098】【解析】当截距均为0时,设方程为y=kx,将点(3,-4),代入得k=-43,即直线方程为4x+3y=0;当截距不为0时,设方程为xa+ya=1,将点(3,-4)代入得a=-1,即直线方程为x+y+1=0.【答案】4x+3y=0或x+y+1=06.若x,y满足x2+y2-2x+4y-20=0,则x2+y2的最小值为________.【解析】配方得(x-1)2+(y+2)2=25,圆心坐标为(1,-2),半径r=5,所以x2+y2的最小值为半径减去原点到圆心的距离,即5-5,故可求x2+y2的最小值为30-10 5.【答案】30-10 57.设α,β是两个不同的平面,l是一条直线,以下命题正确的是________.(填序号)①若l⊥α,α⊥β,则l⊂β;②若l∥α,α∥β,则l⊂β;③若l⊥α,α∥β,则l⊥β;④若l∥α,α⊥β,则l⊥β.【解析】当l⊥α,α⊥β时不一定有l⊂β,还有可能l∥β,故①不对;当l∥α,α∥β时,l⊂β或l∥β,故②不对;若α∥β,α内必有两条相交直线m,n 与平面β内的两条相交直线m′,n′平行,又l⊥α,则l⊥m,l⊥n,即l⊥m′,l⊥n′,故l⊥β,因此③正确;若l∥α,α⊥β,则l与β相交或l∥β或l⊂β,故④不对.【答案】③8.在正方体ABCD-A1B1C1D1中,直线BD1与平面A1B1CD所成角的正切值是________.【解析】连结B1C交BC1于O,则B1C⊥BC1,又A1B1⊥BC1,所以BC1⊥平面A1B1CD,取D1B的中点O1,连结O1O,则∠BO1O就是直线BD1与平面A1B1CD所成的角.不妨设正方体棱长为1,则BD1=3,BO=22,O1O=12,在Rt△BOO1中,tan∠BO1O=BOO1O= 2.【答案】 29.已知直线l:y=x+m(m∈R),若以点M(2,0)为圆心的圆与直线l相切于点P,且点P在y轴上,则该圆的方程为__________.【解析】由题意知P(0,m),又直线l与圆相切于点P,则MP⊥l,且直线l的倾斜角为45°,所以点P的坐标为(0,2),|MP|=22,于是所求圆的方程为(x-2)2+y2=8.【答案】(x-2)2+y2=810.从直线3x+4y+8=0上一点P向圆C:x2+y2-2x-2y+1=0引切线P A,PB,A,B为切点,则四边形P ACB的周长的最小值为__________.【解析】圆心到直线的距离为d=|3+4+8|5=3,圆的半径为1,所以四边形P ACB的周长的最小值为232-12+2=42+2.【答案】42+211.图1如图1,在正方体ABCD-A1B1C1D1中,E,F,G,H分别为AA1,AB,BB1,B1C1的中点,则异面直线EF与GH所成的角等于________.【解析】如图,取A1B1的中点M,连结GM,HM.由题意易知EF∥GM,且△GMH为正三角形.∴异面直线EF与GH所成的角即为GM与GH的夹角∠HGM.而在正三角形GMH中,∠HGM=60°.【答案】60°12.侧棱长为a的正三棱锥P-ABC的侧面都是直角三角形,且四个顶点都在一个球面上,则该球的表面积为__________.【解析】侧棱长为a的正三棱锥P-ABC其实就是棱长为a的正方体的一角,所以球的直径就是正方体的对角线,所以球的半径为3a2,该球的表面积为3πa2.【答案】3πa213.若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦的长为23,则a =________.【解析】两圆的方程相减,得公共弦所在的直线方程为(x2+y2+2ay-6)-(x2+y2)=0-4⇒y=1a,又a>0,结合图象(略),再利用半径、弦长的一半及弦心距所构成的直角三角形,可知1a=22-(3)2=1⇒a=1.【答案】 114.(2014·全国卷Ⅱ改编)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是________.【解析】如图,过点M 作⊙O 的切线,切点为N ,连接ON .M 点的纵坐标为1,MN 与⊙O 相切于点N .设∠OMN =θ,则θ≥45°,即sin θ≥22,即ON OM ≥22.而ON =1, ∴OM ≤ 2.∵M 为(x 0,1),∴x 20+1≤2,∴x 20≤1,∴-1≤x 0≤1,∴x 0的取值范围为[-1,1].【答案】 [-1,1]二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)已知两直线l 1:mx +8y +n =0和l 2:2x +my -1=0.试确定m ,n 的值,使(1)l 1∥l 2;(2)l 1⊥l 2,且l 1在y 轴上的截距为-1.【解】 (1)∵l 1∥l 2,∴A 1B 2-A 2B 1=0,且B 1C 2-B 2C 1≠0, 即⎩⎨⎧m ·m -2×8=0,8×(-1)-m ×n ≠0, ∴⎩⎨⎧ m =4,n ≠-2,或⎩⎨⎧m =-4,n ≠2. (2)由l 1在y 轴上的截距为-1,得 m ·0+8×(-1)+n =0,∴n =8. 又l 1⊥l 2,∴A 1A 2+B 1B 2=0, 即m ×2+8m =0,∴m =0. ∴⎩⎨⎧m =0,n =8.16.(本小题满分14分)在三棱柱ABC-A1B1C1中,已知平面BB1C1C⊥平面ABC,AB=AC,D是BC的中点,且B1D⊥BC1.(1)求证:A1C∥平面B1AD;(2)求证:BC1⊥平面B1AD.图2【证明】(1)如图,连结BA1交AB1于点O,连结OD.由棱柱知侧面AA1B1B 为平行四边形,所以O为BA1的中点.又D是BC的中点,所以OD∥A1C.因为A1C⊄平面B1AD,OD⊂平面B1AD,所以A1C∥平面B1AD.(2)因为D是BC的中点,AB=AC,所以AD⊥BC.因为平面BB1C1C⊥平面ABC,平面BB1C1C∩平面ABC=BC,AD⊂平面ABC,所以AD⊥平面BB1C1C.因为BC1⊂平面BB1C1C,所以AD⊥BC1.又BC1⊥B1D,且AD∩B1D=D,所以BC1⊥平面B1AD.图317.(本小题满分14分)如图3所示,圆x2+y2=8内有一点P(-1,2),AB为过点P且倾斜角为α的弦.(1)当α=135°时,求|AB|;(2)当弦AB被点P平分时,求直线AB的方程.【解】(1)过点O作OG⊥AB于G,连接OA,当α=135°时,直线AB的斜率为-1,故直线AB 的方程为x +y -1=0,∴|OG |=|0+0-1|2=22, ∴|GA |=8-12=152=302,∴|AB |=2|GA |=30.(2)连结OP .当弦AB 被P 平分时,OP ⊥AB ,此时k OP =-2,∴k AB =12, ∴直线AB 的方程为y -2=12(x +1),即x -2y +5=0.图418.(本小题满分16分)(2015·安徽高考)如图4,三棱锥P -ABC 中,P A ⊥平面ABC ,P A =1,AB =1,AC =2,∠BAC =60°.(1)求三棱锥P -ABC 的体积;(2)证明:在线段PC 上存在点M ,使得AC ⊥BM ,并求PMMC的值. 【解】 (1)由题设AB =1,AC =2,∠BAC =60°, 可得S △ABC =12·AB ·AC ·sin 60°=32.由P A ⊥平面ABC ,可知P A 是三棱锥P -ABC 的高.又P A =1, 所以三棱锥P -ABC 的体积V =13·S △ABC ·P A =36.(2)证明:在平面ABC 内,过点B 作BN ⊥AC ,垂足为N .在平面P AC 内,过点N 作MN ∥P A 交PC 于点M ,连接BM .由P A ⊥平面ABC 知P A ⊥AC ,所以MN ⊥AC . 由于BN ∩MN =N ,故AC ⊥平面MBN . 又BM ⊂平面MBN ,所以AC ⊥BM . 在直角△BAN 中,AN =AB ·cos ∠BAC =12,从而NC =AC -AN =32.由MN ∥P A ,得PM MC =AN NC =13.19.(本小题满分16分)(2014·全国卷Ⅰ)已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.【解】 (1)圆C 的方程可化为x 2+(y -4)2=16,所以圆心为C (0,4),半径为4.设M (x ,y ),则CM→=(x ,y -4),MP →=(2-x,2-y ). 由题设知CM →·MP →=0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆. 由于|OP |=|OM |,故O 在线段PM 的垂直平分线上. 又P 在圆N 上,从而ON ⊥PM .因为ON 的斜率为3,所以l 的斜率为-13, 故l 的方程为y =-13x +83.又|OM |=|OP |=22,O 到l 的距离为4105,|PM |=4105,所以△POM 的面积为165.20.(本小题满分16分)如图5(1),在边长为1的等边三角形ABC 中,D ,E 分别是AB ,AC 上的点,AD =AE ,F 是BC 的中点,AF 与DE 交于点G .将△ABF 沿AF 折起,得到如图5(2)所示的三棱锥A -BCF ,其中BC =22.(1) (2)图5(1)证明:DE∥平面BCF;(2)证明:CF⊥平面ABF;(3)当AD=23时,求三棱锥F-DEG的体积V F-DEG.【解】(1)证法一:在折叠后的图形中,因为AB=AC,AD=AE,所以AD AB=AEAC,所以DE∥BC.因为DE⊄平面BCF,BC⊂平面BCF,所以DE∥平面BCF.证法二:在折叠前的图形中,因为AB=AC,AD=AE,所以ADAB=AEAC,所以DE∥BC,即DG∥BF,EG∥CF.在折叠后的图形中,仍有DG∥BF,EG∥CF.又因为DG⊄平面BCF,BF⊂平面BCF,所以DG∥平面BCF,同理可证EG∥平面BCF.又DG∩EG=G,DG⊂平面DEG,EG⊂平面DEG,故平面DEG∥平面BCF.又DE⊂平面DEG,所以DE∥平面BCF.(2)证明:在折叠前的图形中,因为△ABC为等边三角形,BF=CF,所以AF⊥BC,则在折叠后的图形中,AF⊥BF,AF⊥CF.又BF=CF=12,BC=22,所以BC2=BF2+CF2,所以BF⊥CF.又BF∩AF=F,BF⊂平面ABF,AF⊂平面ABF,所以CF⊥平面ABF.(3)由(1)知,平面DEG∥平面BCF,由(2)知AF⊥BF,AF⊥CF,又BF∩CF=F,所以AF⊥平面BCF,所以AF⊥平面DEG,即GF⊥平面DEG.在折叠前的图形中,AB =1,BF =CF =12,AF =32. 由AD =23知AD AB =23,又DG ∥BF , 所以DG BF =AG AF =AD AB =23,所以DG =EG =23×12=13,AG =23×32=33, 所以FG =AF -AG =36.故三棱锥F -DEG 的体积为V 三棱锥F -DEG =13S △DEG ·FG =13×12×⎝ ⎛⎭⎪⎫132×36=3324.。
模块综合检测[考试时间:120分钟试卷总分:160分]一、填空题(本大题共14个小题,每小题5分,共70分)1.下列命题正确的是________.①若两条直线和同一个平面所成的角相等,则这两条直线平行;②若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行;③若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行;④若两个平面都垂直于第三个平面,则这两个平面平行.2.已知直线l1:Ax+3y+C=0与l2:2x-3y+4=0.若l1,l2的交点在y轴上,则C的值为________.3.已知两条直线a,b与两个平面α,β,b⊥α,则下列命题中正确的是________.①若a∥α,则a⊥b;②若a⊥b,则a∥α;③若b⊥β,则α∥β;④若α⊥β,则b∥β;4.直线x+2y-5+5=0被圆x2+y2-2x-4y=0截得的弦长为________.5.已知一个圆锥的母线长是5 cm,高为4 cm,则该圆锥的侧面积是________.6.如图,在长方体ABCD-A1B1C1D1中,AB=AD=3 cm,AA1=2 cm,则四棱锥A -BB1D1D的体积为________cm3.7.若直线x+ay-2a-2=0与直线ax+y-a-1=0平行,则实数a=________.8.圆心在直线y=-4x上,并且与直线l:x+y-1=0相切于点P(3,-2)的圆的方程为________.9.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱AB ,BC 中点,则三棱锥B -B 1EF 的体积为________.10.已知直线l :y =-3(x -1)与圆O :x 2+y 2=1在第一象限内交于点M ,且l 与y 轴交于点A ,则△MOA 的面积等于________.11.已知直线l ⊥平面α,有以下几个判断: ①若m ⊥l ,则m ∥α;②若m ⊥α,则m ∥l ; ③若m ∥α,则m ⊥l ;④若m ∥l ,则m ⊥α. 上述判断中正确命题的序号是________.12.在平面直角坐标系xOy 中,已知圆C :x 2+y 2-(6-2m)·x -4my +5m 2-6m =0,直线l 经过点(1,0).若对任意的实数m ,直线l 被圆C 截得的弦长为定值,则直线l 的方程为________.13.(新课标全国卷Ⅱ)已知正四棱锥O-ABCD 的体积为322,底面边长为3,则以O为球心,OA 为半径的球的表面积为________.14.直线l :y =x +b 与曲线c :y =1-x 2仅有一个公共点,则b 的取值范围________. 二、解答题(本大题共6小题,共90分)15.(14分)已知两直线l 1:mx +8y +n =0和l 2:2x +my -1=0.试确定m ,n 的值,使 (1)l 1∥l 2;(2)l 1⊥l 2,且l 1在y 轴上的截距为-1.16.(14分)已知圆O :x 2+y 2=r 2(r>0)与直线x -y +22=0相切. (1)求圆O 的方程; (2)过点(1,33)的直线l 截圆所得弦长为23,求直线l 的方程; 17.(14分)(陕西高考)如图,四棱柱ABCD-A 1B 1C 1D 1的底面ABCD 是正方形,O 是底面中心, A 1O ⊥底面ABCD ,AB =AA 1= 2.(1)证明:平面 A 1BD ∥平面CD 1B 1; (2)求三棱柱ABD-A 1B 1D 1的体积.18.(16分)已知两圆C 1:x 2+y 2=4,C 2:x 2+y 2-2x -4y +4=0,直线l :x +2y =0,求经过圆C 1和C 2的交点且和直线l 相切的圆的方程.19.(16分)在如图所示的几何体中,正方形ABCD 和矩形ABEF 所在的平面互相垂直,M 为AF 的中点,BN ⊥CE.(1)求证:CF ∥平面MBD ; (2)求证:CF ⊥平面BDN.20.(16分)(广东高考)如图1,在边长为1的等边三角形ABC 中,D ,E 分别是AB ,AC 边上的点,AD =AE ,F 是BC 的中点,AF 与DE 交于点G ,将△ABF 沿AF 折起,得到如图2所示的三棱锥A-BCF ,其中BC =22.(1)证明:DE ∥平面BCF ; (2)证明:CF ⊥平面ABF ;(3)当AD =23时,求三棱锥F-DEG 的体积V F-DEG . 答案1.解析:对于①,两条直线与同一个平面所成角相等,根据线面角定义,可知两条直线可能平行,可能相交,也可能异面,故①错;对于②,若三点在同一条直线上,则两平面可能相交,故②错;对于③,设α∩β=l ,m ∥α,m ∥β,利用线面平行的性质定理可以证明m ∥l ,故③正确;对于④,两平面都垂直于第三个平面,则这两个平面可能相交,也可能平行,故④错,所以选③.答案:③2.解析:l 2与y 轴交于点(0,43),∴将该点代入l 1的方程,得C =-4.答案:-43.解析:对于①:a ∥α,在α内存在a ′∥a ,又b ⊥α,∴b ⊥a ′,∴b ⊥a 正确;对于②:a 还可以在α内;对于③:b ⊥β,b ⊥α,∴α∥β,正确;对于④:b ⊂β或b ∥β,故错误.答案:①③4.解析:圆心(1,2),圆心到直线的距离d =|1+4-5+5|5=1,半径r =5,所以截得的弦长为2(5)2-12=4.答案45.解析:由于圆锥的母线长是5 cm ,高为4 cm ,所以其底面半径为3 cm ,其侧面积S侧=12×2×3π×5=15 π(cm 2). 答案:15π cm 26.解析:由题意得VA -BB 1D 1D =23VABD -A 1B 1D 1=23×12×3×3×2=6.答案:67.解析:两直线平行,故1a =a 1≠2a +2a +1,得a =1.答案:18.解析:据已知过点P 且与直线l 垂直的直线方程为y =x -5,由圆的几何性质可知圆心为直线y =x -5与y =-4x 的交点,即圆心坐标为A (1,-4),故半径为点A 到直线x +y -1=0的距离,即r =42=22,故圆的方程为(x -1)2+(y +4)2=8. 答案:(x -1)2+(y +4)2=89.解析:VB -B 1EF =VB 1-BEF =13×12×1×1×2=13.答案:1310.解析: 依题意,直线l :y =-3(x -1)与y 轴的交点A 的坐标为(0,3).由⎩⎨⎧x 2+y 2=1,y =-3(x -1)得,点M 的横坐标x M =12,所以△MOA 的面积为S =12|OA |×x M =12×3×12=34. 答案3411.解析:对①,若m ⊥l ,则m ∥α或m ⊂α,故①错误;②正确;③正确;④正确. 答案:②③④12.解析:将圆的方程化为标准方程得[x -(3-m )]2+(y -2m )2=9, 所以圆心C 在直线y =-2x +6上.直线l 被圆截得的弦长为定值,即圆心C 到直线l 的距离是定值, 即直线l 过(1,0)且平行于直线y =-2x +6, 故直线l 的方程是y =-2(x -1),即为2x +y -2=0.答案2x +y -2=013.解析:过O 作底面ABCD 的垂线段OE ,则E 为正方形ABCD 的中心.由题意可知13×(3)2×OE =322,所以OE =322,故球的半径R =OA =OE 2+EA 2=6,则球的表面积S =4πR 2=24π.答案:24π14. 解析:曲线c 如图,要使l :y =x +b 与曲线仅有一个交点,需要-1≤b <1或b = 2.答案:{b |b =2或-1≤b <1}15.解:(1)由题意知:P 在直线l 1,l 2上 ∴⎩⎨⎧m ·m +8·(-1)+n =0,2·m +m ·(-1)-1=0,∴⎩⎨⎧m =1,n =7.(1)∵l 1∥l 2∴A 1B 2-A 2B 1=0,且B 1C 2-B 2C 1≠0, 即⎩⎨⎧m ·m -2×8=0,8×(-1)-m ×n ≠0,∴⎩⎨⎧ m =4,n ≠-2,或⎩⎨⎧m =-4,n ≠2.(2)由l 1在y 轴上的截距为-1得: m ·0+8×(-1)+n =0,∴n =8. 又l 1⊥l 2,∴A 1A 2+B 1B 2=0, 即m ×2+8m =0,∴m =0.∴⎩⎨⎧m =0,n =8.16.解:(1)由题意知,圆心O 到直线x -y +22=0的距离d =2212+(-1)2=2=r ,所以圆O 的方程为x 2+y 2=4.(2)若直线l 的斜率不存在,则直线l 的方程为x =1, 此时直线l 截圆所得弦长为23,符合题意. 若直线l 的斜率存在,设直线l 的方程为y -33=k (x -1),即3kx -3y +3-3k =0, 由题意知,圆心到直线l 的距离d 1=|3-3k |9k 2+9=1,所以k =-33, 则直线l 的方程为x +3y -2=0.所以所求的直线l 的方程为x =1或x +3y -2=0.(3)设A (x A,0),B (x B ,y B ).由题意知,A (-2,0),设直线AB :y =k 1(x +2),则⎩⎪⎨⎪⎧y =k 1(x +2),x 2+y 2=4,得(1+k 21)x 2+4k 21x +4k 21-4=0, 所以x A ·x B =4k 21-41+k 21,所以x B =2-2k 211+k 21,y B =4k 11+k 21,即 B (2-2k 211+k 21,4k 11+k 21), 因为k 1k 2=-2,用-2k 1代替k 1,得C (2k 21-84+k 21,-8k 14+k 21), 所以直线BC 的方程为y --8k 14+k 21=4k 11+k 21--8k 14+k 212-2k 211+k 21-2k 21-84+k 21(x -2k 21-84+k 21), 即y --8k 14+k 21=3k 12-k 21(x -2k 21-84+k 21), 得y =3k 12-k 21x +2k 12-k 21=3k 12-k 21(x +23), 所以直线BC 恒过定点(-23,0).17.解:(1)证明:由题设知,BB 1綊DD 1, ∴BB 1D 1D 是平行四边形,∴BD ∥B 1D 1. 又BD ⊄平面CD 1B 1,∴BD ∥平面CD 1B 1.∵A 1D 1綊B 1C 1綊BC ,∴A 1BCD 1是平行四边形,∴A 1B ∥D 1C . 又A 1B ⊄平面CD 1B 1,∴A 1B ∥平面CD 1B 1. 又∵BD ∩A 1B =B ,∴平面A 1BD ∥平面CD 1B 1.(2)∵A 1O ⊥平面ABCD ,∴A 1O 是三棱柱ABD -A 1B 1D 1的高. 又∵AO =12AC =1,AA 1=2,∴A 1O =AA 21-OA 2=1. 又∵S △ABD =12×2×2=1,∴VABD -A 1B 1D 1=S △ABD ×A 1O =1.18.解:由⎩⎪⎨⎪⎧x 2+y 2=4,x 2+y 2-2x -4y +4=0,得圆C 1和C 2的交点A (0,2),B (85,65),可求得线段AB 的垂直平分线的方程为2x -y =0, 则所求圆的圆心C 在此直线上.设所求圆的圆心C 的坐标为(a,2a ),由点C 到点A 的距离等于点C 到直线l 的距离且等于半径,得a 2+(2a -2)2=|a +4a |5,得a =12,圆心C 的坐标为(12,1),半径为52,故所求圆的方程为(x -12)2+(y -1)2=54.19.证明:(1)连结AC 交BD 于点O ,连结OM .因为四边形ABCD 是正方形,所以O 为AC 的中点,因为M 为AF 的中点,所以FC ∥MO ,又因为MO ⊂平面MBD ,FC ⊄平面MBD , 所以FC ∥平面MBD .(2)因为正方形ABCD 和矩形ABEF 所在的平面互相垂直, 所以AF ⊥平面ABCD ,又BD ⊂平面ABCD ,所以AF ⊥BD .又因为四边形ABCD 是正方形,所以AC ⊥BD .因为AC ∩AF =A ,所以BD ⊥平面ACF ,因为FC ⊂平面ACF ,所以FC ⊥BD , 因为AB ⊥BC ,AB ⊥BE ,BC ∩BE =B ,所以AB ⊥平面BCE . 因为BN ⊂平面BCE ,所以AB ⊥BN ,易知EF ∥AB ,所以EF ⊥BN , 又因为EC ⊥BN ,EF ∩EC =E ,所以BN ⊥平面CEF , 因为FC ⊂平面CEF ,所以BN ⊥FC , 因为BD ∩BN =B ,所以CF ⊥平面BDN .20.解:(1)证明:在等边三角形ABC 中,AB =AC . ∵AD =AE ,∴AD DB =AEEC ,∴DE ∥BC ,∴DG ∥BF ,在题图2中,DG ⊄平面BCF , ∴DG ∥平面BCF . 同理可证GE ∥平面BCF .∵DG ∩GE =G ,∴平面GDE ∥平面BCF ,又DE ⊂平面BCF ,∴DE ∥平面BCF .(2)证明:在等边三角形ABC 中,F 是BC 的中点, ∴AF ⊥FC , ∵BF =FC =12BC =12.在题图2中,∵BC =22,∴BC 2=BF 2+FC 2, ∴∠BFC =90°,∴FC ⊥BF . ∵BF ∩AF =F ,∴CF ⊥平面ABF . (3)∵AD =23,∴BD =13,AD ∶DB =2∶1,在题图2中,AF ⊥FC ,AF ⊥BF ,∴AF ⊥平面BCF , 由(1)知平面GDE ∥平面BCF ,∴AF ⊥平面GDE . 在等边三角形ABC 中,AF =32AB =32, ∴FG =13AF =36,DG =23BF =23×12=13=GE ,∴S △DGE =12DG ·EG =118,∴V F -DEG=13S △DGE ·FG =3324.。
模块综合检测卷(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若PQ 是圆x 2+y 2=9的弦,PQ 的中点是M (1,2),则直线PQ 的方程是( ) A .x +2y -3=0 B .x +2y -5=0 C .2x -y +4=0D .2x -y =0解析:由题意知k OM =2-01-0=2,所以k PQ =-12.所以直线PQ 的方程为:y -2=-12(x -1),即:x +2y -5=0. 答案:B2.直线l 通过两直线7x +5y -24=0和x -y =0的交点,且点(5,1)到l 的距离为10,则l 的方程是( )A .3x +y +4=0B .3x -y +4=0C .3x -y -4=0D .x -3y -4=0解析:由⎩⎪⎨⎪⎧7x +5y -24=0,x -y =0,得交点(2,2).设l 的方程为y -2=k (x -2), 即kx -y +2-2k =0,所以|5k -1+2-2k |k 2+(-1)2=10,解得k =3.所以l 的方程为3x -y -4=0. 答案:C3.在坐标平面xOy 上,到点A (3,2,5),B (3,5,1)距离相等的点有( ) A .1个 B .2个 C .不存在D .无数个解析:在坐标平面xOy 内,设点P (x ,y ,0),依题意得(x -3)2+(y -2)2+25=(x -3)2+(y -5)2+1, 整理得y =-12,x ∈R ,所以符合条件的点有无数个. 答案:D4.已知直线l :x +ay -1=0(a ∈R)是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=( )A .2B .4 2C .6D .210 解析:圆C 的标准方程为(x -2)2+(y -1)2=4, 圆心为C (2,1),半径为r =2,因此2+a ·1-1=0,a =-1,即A (-4,-1), |AB |=|AC |2-r 2=(-4-2)2+(-1-1)2-4=6. 答案:C5.已知两点A (-2,0),B (0,2).点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 面积的最小值是( )A .3- 2B .3+ 2C .3-22D.3-22解析:l AB :x -y +2=0, 圆心(1,0)到l 的距离d =|3|2=32, 所以AB 边上的高的最小值为32-1.所以S min =12×22×⎝ ⎛⎭⎪⎫32-1=3- 2.答案:A6.若点P (-4,-2,3)关于坐标平面xOy 及y 轴的对称点的坐标分别是(a ,b ,c ),(e ,f ,d ),则c 与e 的和为( )A .7B .-7C .-1D .1 答案:D7.一个多面体的三视图如左下图所示,则该多面体的体积为( )A.233 B.476C .6D .7 解析:该几何体是正方体去掉两个角所形成的多面体,如图所示,其体积为V =2×2×2-2×13×12×1×1×1=233.答案:A8.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成的角等于( )A .45°B .60°C .90°D .120°解析:如图所示,取A 1B 1的中点M ,连接GM ,HM .由题意易知EF ∥GM ,且△GMH 为正三角形.所以异面直线EF 与GH 所成的角即为GM 与GH 的夹角∠HGM .而在正三角形GMH 中∠HGM =60°.答案:B9.若曲线C 1:x 2+y 2-2x =0与曲线C 2:y (y -mx -m )=0有四个不同的交点,则实数m 的取值范围是( )A.⎝ ⎛⎭⎪⎫-33,33 B.⎝ ⎛⎭⎪⎫-33,0∪⎝ ⎛⎭⎪⎫0,33 C.⎣⎢⎡⎦⎥⎤-33,33D.⎝ ⎛⎭⎪⎫-∞,-33∪⎝ ⎛⎭⎪⎫33,+∞ 解析:C 1:(x -1)2+y 2=1,C 2:y =0或y =mx +m =m (x +1).如图所示,当m =0时,C 2:y =0,此时C 1与C 2显然只有两个交点;当m ≠0时,要满足题意,需圆(x -1)2+y 2=1与直线y =m (x +1)有两交点,当圆与直线相切时,m =±33, 即直线处于两切线之间时满足题意, 则-33<m <0或0<m <33. 答案:B10.已知实数x ,y 满足x 2+y 2=4,则S =x 2+y 2-6x -8y +25的最大值和最小值分别为( )A .49,9B .7,3 C.7, 3D .7, 3解析:函数S =x 2+y 2-6x -8y +25化为(x -3)2+(y -4)2=S ,它是以点C (3,4)为圆心,半径为S 的圆,当此圆和已知圆x 2+y 2=4外切和内切时,对应的S 的值即为要求的最小值和最大值.当圆C 与已知圆x 2+y 2=4相外切时,对应的S 为最小值,此时两圆圆心距等于两圆半径之和,即5=S min +2,求得S min =9;当圆C 与已知圆x 2+y 2=4相内切时,对应的S 为最大值,此时两圆圆心距等于两圆半径之差,即5=S max -2,求得S max =49.答案:A11.圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0(a ,b ∈R)对称,则ab 的取值范围是( )A.⎝⎛⎦⎥⎤-∞,14 B.⎝ ⎛⎦⎥⎤0,14C.⎝ ⎛⎭⎪⎫-14,0D.⎝⎛⎭⎪⎫-∞,14 解析:圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0(a ,b ∈R)对称,则圆心在直线上,求得a +b =1,ab =a (1-a )=-a 2+a =-⎝ ⎛⎭⎪⎫a -122+14≤14,ab 的取值范围是⎝ ⎛⎦⎥⎤-∞,14,故选A.答案:A12.已知半径为1的动圆与圆(x -5)2+(y +7)2=16相切,则动圆圆心的轨迹方程是( )A .(x -5)2+(y +7)2=25B .(x -5)2+(y +7)2=17或(x -5)2+(y +7)2=15 C .(x -5)2+(y +7)2=9D .(x -5)2+(y +7)2=25或(x -5)2+(y +7)2=9解析:设动圆圆心为P ,已知圆的圆心为A (5,-7),则外切时|PA |=5,内切时|PA |=3,所以P 的轨迹为以A 为圆心,3或5为半径的圆,选D.答案:D二、填空题(本大题共4小题,每小题5分,共20分.将正确答案填在题中的横线上) 13.若函数y =ax +8与y =-12x +b 的图象关于直线y =x 对称,则a +b =________.解析:直线y =ax +8关于y =x 对称的直线方程为x =ay +8, 所以x =ay +8与y =-12x +b 为同一直线,故得⎩⎪⎨⎪⎧a =-2,b =4,所以a +b =2.答案:214.圆x 2+(y +1)2=3绕直线kx -y -1=0旋转一周所得的几何体的表面积为________. 解析:由题意,圆心为(0,-1),又直线kx -y -1=0恒过点(0,-1),所以旋转一周所得的几何体为球,球心即为圆心,球的半径即是圆的半径,所以S =4π(3)2=12π.答案:12π15.过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________. 解析:借助圆的几何性质,确定圆的最短弦的位置,利用半径、弦心距及半弦长的关系求弦长.设A (3,1),易知圆心C (2,2),半径r =2,当弦过点A (3,1)且与|CA |=(2-3)2+(2-1)2= 2. 所以半弦长=r 2-|CA |2=4-2= 2. 所以最短弦长为2 2. 答案:2216.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于________cm 3.解析:由三视图可知该几何体为一个直三棱柱被截去了一个小三棱锥,如图所示.三棱柱的底面为直角三角形,且直角边长分别为3和4,三棱柱的高为5,故其体积V 1=12×3×4×5=30(cm 3),小三棱锥的底面与三棱柱的上底面相同,高为3,故其体积V 2=13×12×3×4×3=6(cm 3),所以所求几何体的体积为30-6=24(cm 3). 答案:24三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程及演算步骤)17.(本小题满分10分)已知两条直线l 1:mx +8y +n =0和l 2:2x +my -1=0,试确定m ,n 的值,使:(1)l 1与l 2相交于点(m ,-1); (2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1. 解:(1)因为l 1与l 2相交于点(m ,-1), 所以点(m ,-1)在l 1,l 2上.将点(m ,-1)代入l 2,得2m -m -1=0,解得m =1. 又因为m =1,把(1,-1)代入l 1,所以n =7. 故m =1,n =7.(2)要使l 1∥l 2,则有⎩⎪⎨⎪⎧m 2-16=0,m ×(-1)-2n ≠0,解得⎩⎪⎨⎪⎧m =4,n ≠-2或⎩⎪⎨⎪⎧m =-4,n ≠2. (3)要使l 1⊥l 2,则有m ·2+8×m =0,得m =0. 则l 1为y =-n8,由于l 1在y 轴上的截距为-1,所以-n8=-1,即n =8.故m =0,n =8.18.(本小题满分12分)有一块扇形铁皮OAB ,∠AOB =60°,OA =72 cm ,要剪下来一个扇环形ABCD ,作圆台容器的侧面,并且在余下的扇形OCD 内能剪下一块与其相切的圆形使它恰好作圆台容器的下底面(大底面).(1)AD 应取多长? (2)容器的容积为多大?解:(1)如图①和图②所示,设圆台上、下底面半径分别为r ,R ,AD =x ,则OD =72-x .图① 图②由题意得⎩⎪⎨⎪⎧2πR =60×π180·72,2πr =60×π180(72-x ),72-x =3R .所以R =12,r =6,x =36, 所以AD =36 cm.(2)圆台所在圆锥的高H =722-R 2=1235, 圆台的高h =H2=635,小圆锥的高h ′=635,所以V 容=V 大锥-V 小锥=13πR 2H -13πr 2h ′=50435π.19.(本小题满分12分)如图所示,在三棱锥S -ABC 中,平面SAB ⊥平面SBC ,AB ⊥BC ,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.证明:(1)因为AS=AB,AF⊥SB,垂足为F,所以F是SB的中点.又因为E是SA的中点,所以EF∥AB.因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.同理EG∥平面ABC.又EF∩EG=E,所以平面EFG∥平面ABC.(2)因为平面SAB⊥平面SBC,且交线为SB,又AF⊂平面SAB,AF⊥SB,所以AF⊥平面SBC.因为BC⊂平面SBC,所以AF⊥BC.又因为AB⊥BC,AF∩AB=A,AF⊂平面SAB,AB⊂平面SAB.所以BC⊥平面SAB.因为SA⊂平面SAB,所以BC⊥SA.20.(本小题满分12分)已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.(1)求线段AP中点的轨迹方程;(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.解:(1)设AP中点为M(x,y),由中点坐标公式可知,P点坐标为(2x-2,2y).因为P点在圆x2+y2=4上,所以(2x-2)2+(2y)2=4.故线段AP中点的轨迹方程为(x-1)2+y2=1.(2)设PQ的中点为N(x,y).在Rt△PBQ中,|PN|=|BN|,设O为坐标原点,连接ON,则ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2.所以x2+y2+(x-1)2+(y-1)2=4.故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.21.(本小题满分12分)如图所示,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E-ABC的体积.(1)证明:在三棱柱ABC-A1B1C1中,BB1⊥底面ABC,所以BB1⊥AB.又因为AB⊥BC,所以AB⊥平面B1BCC1.又AB⊂平面ABE,所以平面ABE⊥平面B1BCC1.(2)证明:如图所示,取AB的中点G,连接EG,FG. 因为E,F分别是A1C1,BC的中点,所以FG ∥AC ,且FG =12AC . 因为AC ∥A 1C 1,且AC =A 1C 1,所以FG ∥EC 1,且FG =EC 1,所以四边形FGEC 1为平行四边形.所以C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE ,所以C 1F ∥平面ABE .(3)解:因为AA 1=AC =2,BC =1,AB ⊥BC ,所以AB =AC 2-BC 2= 3.所以三棱锥E -ABC 的体积 V =13S △ABC ·AA 1=13×12×3×1×2=33. 22.(本小题满分12分)已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B .(1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L :y =k (x -4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.解:(1)圆C 1的标准方程为(x -3)2+y 2=4.所以圆C 1的圆心坐标为(3,0).(2)设动直线l 的方程为y =kx .联立⎩⎪⎨⎪⎧(x -3)2+y 2=4,y =kx ⇒(k 2+1)x 2-6x +5=0, 则Δ=36-4(k 2+1)×5>0⇒k 2<45. 设A ,B 两点坐标为(x 1,y 1),(x 2,y 2),则x 1+x 2=6k 2+1⇒AB 中点M 的轨迹C 的参数方程为 ⎩⎪⎨⎪⎧x =3k 2+1,y =3k k 2+1⎝ ⎛⎭⎪⎫-255<k <255,即轨迹C 的方程为⎝ ⎛⎭⎪⎫x -322+y 2=94,53<x ≤3. (3)联立⎩⎪⎨⎪⎧x 2-3x +y 2=0,y =k (x -4)⇒(1+k 2)x 2-(3+8k )x +16k 2=0.令Δ=(3+8k )2-4(1+k 2)16k 2=0⇒k =±34. 又因为轨迹C (即圆弧)的端点⎝ ⎛⎭⎪⎫53,±253与点(4,0)决定的直线斜率为±257. 所以当直线y =k (x -4)与曲线C 只有一个交点时,k 的取值范围为⎝ ⎛⎭⎪⎫-257,257∪⎝ ⎛⎭⎪⎫-34,34.。