(完整)高中数学必修2综合测试题
- 格式:doc
- 大小:622.45 KB
- 文档页数:7
综合检测试卷一(时间:120分钟 满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分)1.在等差数列{a n }中,a 4=2,a 8=14,则a 15等于( )A .32B .-32C .35D .-35答案 C解析 ∵{a n }是等差数列,∴d =a 8-a 48-4=3,∴a 15=a 4+11d =2+11×3=35.2.函数y =2x 3-3x 2-12x +5在[-2,1]上的最大值、最小值分别是() A .12,-8 B .1,-8C .12,-15D .5,-16答案 A解析 y ′=6x 2-6x -12,由y ′=0⇒x =-1或x =2(舍去).x =-2时,y =1;x =-1时,y =12;x =1时,y =-8.所以y max =12,y min =-8.3.在数列{a n }中,a 1=13,a n =(-1)n ·2a n -1(n ≥2),则a 5等于( )A .-163 B.163 C .-83 D.83答案 B解析 ∵a 1=13,a n =(-1)n ·2a n -1,∴a 2=(-1)2×2×13=23,a 3=(-1)3×2×23=-43,a 4=(-1)4×2×⎝⎛⎭⎫-43=-83,a 5=(-1)5×2×⎝⎛⎭⎫-83=163.4.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a 等于( )A .0B .1C .2D .3答案 D解析 令f (x )=ax -ln(x +1),则f ′(x )=a -1x +1. 由导数的几何意义可得在点(0,0)处的切线的斜率为f ′(0)=a -1.又切线方程为y =2x , 则有a -1=2,所以a =3.5.若互不相等的实数a ,b ,c 成等差数列,a 是b ,c 的等比中项,且a +3b +c =10,则a 的值是( )A .1B .-1C .-3D .-4答案 D解析 由题意,得⎩⎪⎨⎪⎧ 2b =a +c ,a 2=bc ,a +3b +c =10,解得a =-4,b =2,c =8.6.一个等比数列的前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列有( )A .13项B .12项C .11项D .10项答案 B解析 设数列的通项公式为a n =a 1q n -1,则前三项分别为a 1,a 1q ,a 1q 2,后三项分别为a 1q n -3,a 1q n -2,a 1q n -1.由题意得a 31q 3=2,a 31q3n -6=4, 两式相乘得a 61q 3(n -1)=8,即a 21q n -1=2. 又∵a 1·a 1q ·a 1q 2·…·a 1q n -1=64,()12164n n na q -∴=,即(a 21q n -1)n =642,解得n =12.7.设曲线y =sin x 上任一点(x ,y )处的切线斜率为g (x ),则函数y =x 2g (x )的部分图象可以为( )答案 C解析 由曲线方程y =sin x ,可知g (x )=cos x ,所以y =x 2g (x )=x 2cos x 为偶函数,排除A ,B ;当x =0时,y =0,排除D ,故选C.8.某厂生产某种电子元件,如果生产出一件正品,可获利200元,如果生产出一件次品,则损失100元,已知该厂在制造电子元件过程中,次品率p 与日产量x 的函数关系是p =3x 4x +32(x ∈N *),为获得最大盈利,该厂的日产量应定为( )A .14件B .16件C .24件D .32件答案 B解析 因为该厂的日产量为x ,则其次品数为px =3x 24x +32,正品数为(1-p )x =x 2+32x 4x +32, 根据题意得盈利T (x )=200×x 2+32x 4x +32-100×3x 24x +32, 化简整理得T (x )=-25x 2+1 600x x +8. 因为T (x )=-25x 2+1 600x x +8, 所以T ′(x )=(-50x +1 600)(x +8)-(-25x 2+1 600x )(x +8)2=-25×x 2+16x -64×8(x +8)2=-25×(x +32)(x -16)(x -8), 当0<x <16时,T ′(x )>0;当x >16时,T ′(x )<0.所以x =16时,T (x )有最大值,即T (x )max =T (16)=800(元).二、多项选择题(本大题共4小题,每小题5分,共20分.全部选对的得5分,部分选对的得3分,有选错的得0分)9.设f (x ),g (x )在[a ,b ]上可导,且f ′(x )>g ′(x ),则当a <x <b 时,有( )A .f (x )>g (x )B .f (x )<g (x )C .f (x )+g (a )>g (x )+f (a )D .f (x )+g (b )<g (x )+f (b )答案 CD解析 因为f ′(x )-g ′(x )>0,所以[f (x )-g (x )]′>0,所以f (x )-g (x )在[a ,b ]上单调递增,所以当a <x <b 时,f (b )-g (b )>f (x )-g (x )>f (a )-g (a ),所以f (x )+g (a )>g (x )+f (a ),f (x )+g (b )<g (x )+f (b ).10.设{a n }是等比数列,S n 为其前n 项和,已知a 2a 4=1,S 3=7,则S 5等于() A.152 B.314 C.334 D.619答案 BD解析 设数列{a n }的公比为q ,由a 2a 4=1得a 23=1,∴a 3=±1.∵S 3=7,∴a 1+a 2+a 3=a 3q 2+a 3q +a 3=7,当a 3=-1时,得8q 2+q +1=0无解,当a 3=1时,得6q 2-q -1=0,解得q =12或q =-13,当q =-13时,a 1=1q 2=9.∴S 5=9×⎝⎛⎭⎫1+1351+13=274×⎝⎛⎭⎫1+135=619. 当q =12时,a 1=1q 2=4. ∴S 5=4×⎝⎛⎭⎫1-1251-12=8×⎝⎛⎭⎫1-125=314. 11.函数f (x )=x 2-ln 2x 在下列区间上单调的是( )A.⎝⎛⎭⎫-∞,22B.⎝⎛⎭⎫22,+∞ C.⎝⎛⎭⎫-22,0 D.⎝⎛⎭⎫0,22 答案 BD解析 因为f ′(x )=2x -1x =2x 2-1x, 所以f ′(x ) <0⇔⎩⎪⎨⎪⎧ x >0,2x 2-1<0,解得0<x <22; f ′(x ) >0⇔⎩⎪⎨⎪⎧x >0,2x 2-1>0,解得x >22. 12.已知f (x )为定义在(0,+∞)上的可导函数,且f (x )>xf ′(x )恒成立,可以使不等式x 2f ⎝⎛⎭⎫1x -f (x )>0的x 的取值范围为( )A .(0,1)B .(1,2)C .(1,+∞)D .(2,+∞) 答案 BCD解析 令F (x )=f (x )x, 则F ′(x )=xf ′(x )-f (x )x 2, 因为f (x )>xf ′(x ),所以F ′(x )<0,F (x )为定义域上的减函数,由不等式x 2f ⎝⎛⎭⎫1x -f (x )>0得f ⎝⎛⎭⎫1x 1x>f (x )x, 所以1x<x ,所以x >1. 三、填空题(本大题共4小题,每小题5分,共20分)13.已知数列{a n }的通项公式为a n =2 020-3n ,则使a n >0成立的最大正整数n 的值为________.答案 673解析 由a n =2 020-3n >0,得n <2 0203=67313, 又∵n ∈N *,∴n 的最大值为673.14.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)等于________.答案 6解析 每天植树的棵数构成以2为首项,2为公比的等比数列,其前n 项和S n =a 1(1-q n )1-q =2(1-2n )1-2=2n +1-2.由2n +1-2≥100,得2n +1≥102. 由于26=64,27=128,则n +1≥7,即n ≥6.15.已知a <0,函数f (x )=ax 3+12aln x ,且f ′(1)的最小值是-12,则实数a 的值为________. 函数f (x )在区间[1,2]上的最大值为________.答案 -2 -2解析 f ′(x )=3ax 2+12ax, 所以f ′(1)=3a +12a ≥-12,即a +4a≥-4. 又a <0,有a +4a≤-4, 所以a +4a=-4,故a =-2. 所以f (x )=-2x 3-6ln x ,f ′(x )=-6x 2-6x=-6⎝⎛⎭⎫x 2+1x <0,所以函数f (x )在区间[1,2]上单调递减,函数f (x )在区间[1,2]上的最大值是 f (1)=-2.16.若函数f (x )=4x x 2+1在区间(m ,2m +1)上单调递增,则实数m 的取值范围是________. 答案 (-1,0]解析 f ′(x )=4-4x 2(x 2+1)2. 由f ′(x )>0,解得-1<x <1,所以函数f (x )的单调递增区间为(-1,1).又因为f (x )在(m ,2m +1)上单调递增,所以⎩⎪⎨⎪⎧ m ≥-1,m <2m +1,2m +1≤1,解得-1<m ≤0,所以实数m 的取值范围是(-1,0].四、解答题(本大题共6小题,共70分)17.(10分)设函数f (x )=2x 3-3(a +1)x 2+6ax +8,其中a ∈R .已知f (x )在x =3处取得极值.(1)求f (x )的解析式;(2)求f (x )在点A (1,16)处的切线方程.解 (1)f ′(x )=6x 2-6(a +1)x +6a .因为f (x )在x =3处取得极值,所以f ′(3)=6×9-6(a +1)×3+6a =0,解得a =3.所以f (x )=2x 3-12x 2+18x +8.(2)A 点在f (x )上,由(1)可知f ′(x )=6x 2-24x +18,f ′(1)=6-24+18=0,所以切线方程为y =16.18.(12分)在①S n =n 2+n ,②a 3+a 5=16,S 3+S 5=42,③a n +1a n =n +1n,S 7=56这三个条件中任选一个补充在下面的问题中,并加以解答.设等差数列{a n }的前n 项和为S n ,数列{b n }为等比数列,________,b 1=a 1,b 2=a 1a 22. 求数列⎩⎨⎧⎭⎬⎫1S n +b n 的前n 项和T n . 注:如果选择多个条件分别解答,按第一个解答计分.解 选①:当n =1时,a 1=S 1=2,当n ≥2时,a n =S n -S n -1=2n ,又n =1满足a n =2n ,所以a n =2n ,S n =n (2+2n )2=n 2+n (n ∈N *); 选②:设数列{a n }的公差为d ,由a 3+a 5=16,S 3+S 5=42,得⎩⎪⎨⎪⎧ 2a 1+6d =16,8a 1+13d =42,解得⎩⎪⎨⎪⎧a 1=2,d =2,所以a n =2n ,S n =n (2+2n )2=n 2+n (n ∈N *); 选③:由a n +1a n =n +1n, 得a n +1n +1=a n n , 所以a n n =a 11, 即a n =a 1·n , S 7=7a 4=28a 1=56,所以a 1=2,所以a n =2n ,S n =n (2+2n )2=n 2+n (n ∈N *). ①②③均可求得a n =2n ,S n =n (2+2n )2=n 2+n (n ∈N *), 设{b n }的公比为q ,又因为a 1=2,a 2=4,由b 1=a 1=2,b 2=a 1a 22=4, 得b 1=2,q =2,所以b n =2n (n ∈N *),所以数列{b n }的前n 项和为2-2n +11-2=2n +1-2, 因为1S n =1n 2+n =1n (n +1)=1n -1n +1, 所以数列⎩⎨⎧⎭⎬⎫1S n 的前n 项和为1-12+12-13+…+1n -1n +1=1-1n +1, 故T n =2n +1-2+1-1n +1=2n +1-1n +1-1. 19.(12分)已知函数f (x )=12x 2+a ln x . (1)若a =-1,求函数f (x )的极值,并指出是极大值还是极小值;(2)若a =1,求函数f (x )在[1,e]上的最大值和最小值.解 (1)函数f (x )的定义域为(0,+∞),当a =-1时,f ′(x )=x -1x =(x +1)(x -1)x, 令f ′(x )=0,得x =1或x =-1(舍去),当x ∈(0,1)时,f ′(x )<0,函数f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,函数f (x )单调递增,所以f (x )在x =1处取得极小值,极小值为12,无极大值. (2)当a =1时,易知函数f (x )在[1,e]上单调递增,所以f (x )min =f (1)=12, f (x )max =f (e)=12e 2+1. 20.(12分)已知等比数列{a n }的前n 项和为S n (n ∈N *),a 1=-1,S 10S 5=3132. (1)求等比数列{a n }的公比q ;(2)求a 21+a 22+…+a 2n .解 (1)由S 10S 5=3132,a 1=-1, 知公比q ≠1,S 10-S 5S 5=-132. 由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,q =-12. (2)由(1),得a n =(-1)×⎝⎛⎭⎫-12n -1, 所以a 2n =⎝⎛⎭⎫14n -1,所以数列{a 2n }是首项为1,公比为14的等比数列, 故a 21+a 22+…+a 2n =1×⎝⎛⎭⎫1-14n 1-14=43⎝⎛⎭⎫1-14n . 21.(12分)数学的发展推动着科技的进步,正是基于线性代数、群论等数学知识的极化码原理的应用,华为的5G 技术领先世界.目前某区域市场中5G 智能终端产品的制造由H 公司及G 公司提供技术支持.据市场调研预测,5G 商用初期,该区域市场中采用H 公司与G 公司技术的智能终端产品占比分别为a 0=55%及b 0=45%,假设两家公司的技术更新周期一致,且随着技术优势的体现,每次技术更新后,上一周期采用G 公司技术的产品中有20%转而采用H 公司技术,采用H 公司技术的产品中仅有5%转而采用G 公司技术.设第n 次技术更新后,该区域市场中采用H 公司与G 公司技术的智能终端产品占比分别为a n 及b n ,不考虑其他因素的影响.(1)用a n 表示a n +1,并求实数λ使{a n -λ}是等比数列;(2)经过若干次技术更新后,该区域市场采用H 公司技术的智能终端产品占比能否达到75%以上?若能,至少需要经过几次技术更新;若不能,请说明理由?(参考数据:lg 2≈0.301,lg 3≈0.477)解 (1)由题意知,该区域市场中采用H 公司与G 公司技术的智能终端产品的占比分别为a 0=55%=1120,b 0=45%=920. 易知经过n 次技术更新后a n +b n =1,则a n +1=(1-5%)a n +20%b n =1920a n +15(1-a n ) =34a n +15,即a n +1=34a n +15(n ∈N ),① 由①式,可设a n +1-λ=34(a n -λ)⇔a n +1=34a n +λ4, 对比①式可知λ4=15⇒λ=45. 又a 1=34a 0+15=34×1120+15=4980,a 1-45=4980-45=-316. 从而当λ=45时,⎩⎨⎧⎭⎬⎫a n -45是以-316为首项,34为公比的等比数列. (2)由(1)可知a n -45=-316·⎝⎛⎭⎫34n -1=-14·⎝⎛⎭⎫34n , 所以经过n 次技术更新后,该区域市场采用H 公司技术的智能终端产品占比a n =45-14·⎝⎛⎭⎫34n . 由题意,令a n >75%,得45-14·⎝⎛⎭⎫34n >34⇔⎝⎛⎭⎫34n <15⇔n lg 34<lg 15⇔n >-lg 5lg 3-2lg 2=lg 52lg 2-lg 3=1-lg 22lg 2-lg 3≈1-0.3012×0.301-0.477=0.6990.125=0.699×8=5.592>5.故n ≥6, 即至少经过6次技术更新,该区域市场采用H 公司技术的智能终端产品占比能达到75%以上.22.(12分)已知函数f (x )=x ln x ,g (x )=-x 2+ax -3.(1)求函数f (x )在[t ,t +2](t >0)上的最小值;(2)对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数a 的取值范围;(3)探讨函数F (x )=ln x -1e x +2e x是否存在零点?若存在,求出函数F (x )的零点,若不存在,请说明理由.解 (1)f ′(x )=ln x +1(x >0),由f ′(x )<0得0<x <1e ,由f ′(x )>0得x >1e, ∴函数f (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增. 当0<t ≤1e 时,t +2>1e, ∴f (x )min =f ⎝⎛⎭⎫1e =-1e. 当t >1e时,f (x )在[t ,t +2]上单调递增,f (x )min =f (t )=t ln t , ∴f (x )min =⎩⎨⎧ -1e ,0<t ≤1e ,t ln t ,t >1e .(2)原问题可化为a ≤2ln x +x +3x, 设h (x )=2ln x +x +3x(x >0), 则h ′(x )=(x +3)(x -1)x 2, 当0<x <1时,h ′(x )<0,h (x )单调递减;当x >1时,h ′(x )>0,h (x )单调递增,∴h (x )min =h (1)=4.∴a 的取值范围为(-∞,4].(3)令F (x )=0,得ln x -1e x +2e x=0, 即x ln x =x e x -2e(x >0), 由(1)知当且仅当x =1e 时,f (x )=x ln x (x >0)的最小值是f ⎝⎛⎭⎫1e =-1e, 设φ(x )=x e x -2e (x >0),则φ′(x )=1-x e x , 易知φ(x )在(0,1)上单调递增,在(1,+∞)上单调递减,∴当且仅当x =1时,φ(x )取最大值,且φ(1)=-1e, ∴对x ∈(0,+∞)都有x ln x >x e x -2e,即F (x )=ln x -1e x +2e x>0恒成立. ∴函数F (x )无零点.。
人教版高中数学必修第二册第九章~第十章综合测试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.现要完成下列两项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查;②东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是()A.①抽签法,②比例分配的分层随机抽样B.①随机数法,②比例分配的分层随机抽样C.①随机数法,②抽签法D.①抽签法,②随机数法2.若A,B为对立事件,则下列式子中成立的是()A.P(A)+P(B)<1B.P(A)+P(B)>1C.P(A)+P(B)=0D.P(A)+P(B)=13.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的产品不是一等品”的概率为()A.0.2B.0.35C.0.3D.0.44.某宠物商店对30只宠物狗的体重(单位:千克)作了测量,并根据所得数据画出了频率分布直方图如图C6-1所示,则这30只宠物狗体重的平均值大约为()图C6-1A.15.5千克B.15.6千克C.15.7千克D.16千克5.以下数据为参加数学竞赛决赛的15人的成绩(单位:分):78,70,72,86,88,79,80,81,94,84,56,98,83,90,91,则这15人成绩的第80百分位数是()A.90分B.91.5分C.91分D.90.5分6.一组样本数据a,3,4,5,6的平均数是b,且不等式x2-6x+c<0的解集为(a,b),则这组样本数据的标准差是()A.1B.2C.3D.27.我国历史上有田忌与齐王赛马的故事:“田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.”若双方各自拥有上、中、下等马各1匹,双方各随机选1匹马进行1场比赛,则齐王的马获胜的概率为()A.23B.13C.12D.568.在发生某公共卫生事件期间,有专业机构认为在一段时间内没有发生规模群体感染的标志为“连续10天,每天新增疑似病例数量不超过7”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是()A.甲地:总体的平均数为3,中位数为4B.乙地:总体的平均数为1,总体方差大于0C.丙地:中位数为2,众数为3D.丁地:总体的平均数为2,总体方差为3二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,至少有两项是符合题目要求的)9.给出下列四个说法,其中正确的说法有()A.做100次抛硬币的试验,结果有51次出现正面朝上,因此,出现正面朝上的概率是51100B.随机事件发生的频率就是这个随机事件发生的概率C.抛掷骰子100次,得点数是1的结果有18次,则出现1点的频率是950D.随机事件发生的频率不一定是这个随机事件发生的概率10.在某次高中学科竞赛中,4000名考生的参赛成绩统计如图C6-2所示,60分以下视为不及格,若同一组中的数据用该组区间的中点值为代表,则下列说法中正确的是()图C6-2A.成绩在[70,80)内的考生人数最多B.不及格的考生人数为1000C.考生竞赛成绩的平均数约为70.5分D.考生竞赛成绩的中位数为75分11.某健身房为了解运动健身减肥的效果,调查了20名肥胖者健身前(如直方图C6-3(1)所示)后(如直方图(2)所示)的体重(单位:kg)变化情况:图C6-3对比数据,关于这20名肥胖者,下面结论正确的是()A.健身后,体重在区间[90,100)内的人数较健身前增加了2B.健身后,体重原在区间[100,110)内的人员一定无变化C.健身后,20人的平均体重大约减少了8kgD.健身后,原来体重在区间(110,120]内的肥胖者体重都有减少12.从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋中各摸出一个球,下列结论正确的是()A.2个球都是红球的概率为16B.2个球不都是红球的概率为13C.至少有1个红球的概率为23D.2个球中恰有1个红球的概率为12请将选择题答案填入下表:题号12345678总分答案题号9101112答案第Ⅱ卷(非选择题共90分)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.从甲、乙两个厂家生产的同一种产品中各抽取8件产品,对其使用寿命(单位:年)跟踪调查的结果如下:甲:3,4,5,6,8,8,8,10;乙:3,3,4,7,9,10,11,12.两个厂家在广告中都称该产品的使用寿命是8年,请根据结果判断厂家在广告中分别采用了平均数、众数、中位数中的哪一个特征数:甲:,乙:.14.如图C6-4是容量为100的样本数据的频率分布直方图,则样本数据落在区间[6,18)内的频数为.图C6-415.已知甲、乙、丙3名运动员射击一次击中目标的概率分别为0.7,0.8,0.85,若这3人向目标各射击一次,则目标没有被击中的概率为.16.甲、乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a,再由乙猜甲刚才想的数字,把乙猜的数字记为b,且a,b∈{0,1,2,…,9}.若|a-b|≤1,则称甲、乙两人“心有灵犀”.现任意找两人玩这个游戏,则这两人“心有灵犀”的概率为.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)某班选派5人,参加学校举行的数学竞赛,获奖的人数及其概率如下:获奖人数012345概率0.10.16x y0.2z(1)若获奖人数不超过2的概率为0.56,求x的值;(2)若获奖人数最多为4的概率为0.96,获奖人数最少为3的概率为0.44,求y,z的值.18.(12分)甲、乙两台机床同时加工直径为100cm的零件,为检验质量,各从中抽取6个零件测量其直径,所得数据如下.甲:99,100,98,100,100,103;乙:99,100,102,99,100,100.(1)分别计算两组数据的平均数及方差;(2)根据计算结果判断哪台机床加工零件的质量更稳定.19.(12分)某校高一年级举行了一次数学竞赛,为了了解参加本次竞赛的学生的成绩情况,从中抽取了部分学生的成绩(取正整数,单位:分)作为样本(样本量为n)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图如图C6-5所示,已知成绩在[50,60),[90,100]内的频数分别为8,2.(1)求样本量n和频率分布直方图中的x,y的值;(2)估计参加本次竞赛的学生成绩的众数、中位数、平均数.图C6-520.(12分)生产同一种产品,甲机床的废品率为0.04,乙机床的废品率为0.05,从甲、乙机床生产的产品中各任取1件,求:(1)至少有1件废品的概率;(2)恰有1件废品的概率.21.(12分)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图C6-6所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯的概率与获得饮料的概率的大小,并说明理由.图C6-622.(12分)2020年新冠肺炎疫情期间,某区政府为了解本区居民对区政府防疫工作的满意度,从本区居民中随机抽取若干居民进行评分(满分100分).根据调查数据制成如下表格和如图C6-7所示的频率分布直方图.已知评分在[80,100]内的居民有600人.满意度评分[40,60)[60,80)[80,90)[90,100]满意度等级不满意基本满意满意非常满意(1)求频率分布直方图中a的值及参与评分的总人数.(2)定义满意度指数η=(满意程度的平均分)/100,若η<0.8,则防疫工作需要进行大的调整,否则不需要进行大调整.根据所学知识判断该区防疫工作是否需要进行大调整.(3)为了解部分居民不满意的原因,从不满意的居民(评分在[40,50),[50,60)内)中用比例分配的分层随机抽样的方法抽取6位居民,倾听他们的意见,并从6人中抽取2人担任防疫工作的监督员,求这2人中仅有1人对防疫工作的评分在[40,50)内的概率.图C6-7参考答案与解析1.A[解析]①总体较少,宜用抽签法;②各层间差异明显,宜用分层随机抽样.故选A.2.D[解析]若事件A与事件B是对立事件,则P(A)+P(B)=1.故选D.3.B[解析]∵事件A={抽到一等品},且P(A)=0.65,∴事件“抽到的产品不是一等品”的概率P=1-P(A)=1-0.65=0.35.4.B[解析]由频率分布直方图可以计算出各组的频率分别为0.1,0.2,0.3,0.2,0.1,0.1,故各组的频数分别为3,6,9,6,3,3,则这30只宠物狗体重的平均值为11×3+13×6+15×9+17×6+19×3+21×330=15.6(千克),故选B.5.D[解析]将这15人的成绩(单位:分)由小到大依次排列为56,70,72,78,79,80,81,83,84,86,88,90,91,94,98,因为15×80%=12,第12,13个数据分别为90分、91分,所以这15人成绩的第80百分位数是90.5分.故选D.6.B[解析]由题意得a+3+4+5+6=5b,a+b=6,解得a=2,b=4,所以样本数据的方差s2=15×[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2]=2,所以标准差s=2.故答案为B.7.A[解析]依题意,记田忌的上等马、中等马、下等马分别为a,b,c,齐王的上等马、中等马、下等马分别为A,B,C.由题意可知,样本空间Ω={aA,bA,cA,aB,bB,cB,aC,bC,cC},共有9个样本点,其中事件“田忌可以获胜”包含的样本点为aB,aC,bC,共3个,则齐王的马获胜的概率P=1-39=23.故选A.8.D[解析]由于甲地总体数据的平均数为3,中位数为4,即按从小到大排序后,中间两个数据的平均数为4,因此后面的数据可以大于7,故甲地不一定符合.乙地总体数据的平均数为1,因此这10天的新增疑似病例总数为10,又由于方差大于0,故这10天中新增疑似病例数量不可能每天都是1,可以有一天大于7,故乙地不一定符合.丙地总体数据的中位数为2,众数为3,故数据中可以出现8,故丙地不一定符合.丁地总体数据的平均数为2,方差为3,故丁地一定符合.9.CD[解析]对于A,混淆了频率与概率的区别,故A错误;对于B,混淆了频率与概率的区别,故B 错误;对于C,抛掷骰子100次,得点数是1的结果有18次,则出现1点的频率是950,符合频率定义,故C正确;对于D,频率是概率的估计值,故D正确.故选CD.10.ABC [解析]由频率分布直方图可得,成绩在[70,80)内的频率最高,考生人数最多,故A 正确;由频率分布直方图可得,成绩在[40,60)内的频率为0.25,则不及格的考生人数为4000×0.25=1000,故B 正确;由频率分布直方图可得,平均数为45×0.1+55×0.15+65×0.2+75×0.3+85×0.15+95×0.1=70.5(分),故C 正确;因为成绩在[40,70)内的频率为0.45,在[70,80)内的频率为0.3,所以中位数为70+10×0.050.3≈71.67(分),故D 错误.故选ABC .11.AD[解析]体重在区间[90,100)内的肥胖者由健身前的6人增加到健身后的8人,增加了2人,故A 正确;健身后,体重在区间[100,110)内的频率没有变,但人员组成可能改变,故B 错误;健身后,20人的平均体重大约减少了(0.3×95+0.5×105+0.2×115)-(0.1×85+0.4×95+0.5×105)=5(kg),故C 错误;因为图(2)中没有体重在区间(110,120]内的人员,所以原来体重在区间(110,120]内的肥胖者体重都有减少,故D 正确.故选AD .12.ACD[解析]设“从甲袋中摸出一个红球”为事件A 1,“从乙袋中摸出一个红球”为事件A 2,则P (A 1)=13,P (A 2)=12,且A 1,A 2独立;在A 中,“2个球都是红球”为事件A 1A 2,其概率为13×12=16,A 正确;在B中,“2个球不都是红球”是“2个球都是红球”的对立事件,其概率为56,B 错误;在C 中,“2个球中至少有1个红球”的概率为1-P ( )P ( )=1-23×12=23,C 正确;在D 中,2个球中恰有1个红球的概率为13×12+23×12=12,D 正确.故选ACD .13.众数中位数[解析]对甲厂的数据进行分析:该组数据中8年出现的次数最多,故广告中采用了众数;对乙厂的数据进行分析:该组数据最中间的是7年与9年,故中位数是7+92=8(年),故广告中采用了中位数.14.80[解析]由题图知,样本数据落在区间[6,18)内的频数为100×0.8=80.15.0.009[解析]由相互独立事件的概率计算公式知,3人向目标各射击一次,目标没有被击中的概率P=(1-0.7)×(1-0.8)×(1-0.85)=0.3×0.2×0.15=0.009.16.725[解析]从{0,1,2,…,9}中任意取两个数(可重复),该试验共有100个样本点,事件“|a-b|≤1”包含的样本点为(0,0),(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(7,7),(8,8),(9,9),(0,1),(1,0),(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(4,5),(5,4),(5,6),(6,5),(6,7),(7,6),(7,8),(8,7),(8,9),(9,8),共有28个,所以所求概率P=28100=725.17.解:记事件“在竞赛中,有k 人获奖”为A k (k ∈N,k ≤5),则事件A k 彼此互斥.(1)∵获奖人数不超过2的概率为0.56,∴P (A 0)+P (A 1)+P (A 2)=0.1+0.16+x=0.56,解得x=0.3.(2)由获奖人数最多为4的概率为0.96,得P (A 5)=1-0.96=0.04,即z=0.04.由获奖人数最少为3的概率为0.44,得P (A 3)+P (A 4)+P (A 5)=0.44,即y+0.2+0.04=0.44,解得y=0.2.18.解:(1)由题中数据可得 甲=16×(99+100+98+100+100+103)=100(cm); 乙=16×(99+100+102+99+100+100)=100(cm).甲2=16×(1+0+4+0+0+9)=73, 乙2=16×(1+0+4+1+0+0)=1.(2)由(1)知两台机床所加工零件的直径的平均数相同,又 甲2> 乙2,所以乙机床加工零件的质量更稳定.19.解:(1)由题意可知,样本量n=80.016×10=50,y=250×10=0.004,x=0.1-0.016-0.04-0.01-0.004=0.03.(2)由频率分布直方图可估计,参加本次竞赛的学生成绩的众数为75分.设样本数据的中位数为m ,因为(0.016+0.03)×10<0.5<(0.016+0.03+0.04)×10,所以m ∈[70,80),所以(0.016+0.03)×10+(m-70)×0.04=0.5,解得m=71,故估计参加本次竞赛的学生成绩的中位数为71分.由频率分布直方图可估计,参加本次竞赛的学生成绩的平均数为55×0.16+65×0.3+75×0.4+85×0.1+95×0.04=70.6(分).20.解:记从甲、乙机床生产的产品中取1件是废品分别为事件A ,B ,则事件A ,B 相互独立,且P (A )=0.04,P (B )=0.05.(1)设“至少有1件废品”为事件C ,则P (C )=1-P ( )=1-P ( )P ( )=1-(1-0.04)×(1-0.05)=0.088.(2)设“恰有1件废品”为事件D ,则P (D )=P (A )+P ( B )=0.04×(1-0.05)+(1-0.04)×0.05=0.086.21.解:(1)试验的所有样本点为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),( 4,3),(4,4),共16个.事件“xy≤3”包含的样本点有(1,1),(1,2),(1,3),(2,1),(3,1),共5个,所以小亮获得玩具的概率为516.(2)事件“xy≥8”包含的样本点有(2,4),(3,3),(3,4),(4,2),(4,3),(4,4),共6个,所以小亮获得水杯的概率为38,小亮获得饮料的概率为1-516-38=516,所以小亮获得水杯的概率大于获得饮料的概率.22.解:(1)由频率分布直方图知(0.002+0.004+0.014+0.02+0.035+a)×10=1,即10×(0.075+a)=1,解得a=0.025,设共有n人参与评分,则600 =(0.035+0.025)×10,解得n=1000,即参与评分的总人数为1000.(2)由频率分布直方图知各组的频率分别为0.02,0.04,0.14,0.2,0.35,0.25,所以η=45×0.02+55×0.04+65×0.14+75×0.2+85×0.35+95×0.25100=0.807>0.8,所以该区防疫工作不需要进行大调整.(3)因为0.002×10×1000=20,0.004×10×1000=40,所以评分在[40,50),[50,60)内的居民人数分别为20,40,所以所抽取的评分在[40,50)内的居民人数为20×660=2,将这2人分别记为a,b,所抽取的评分在[50,60)内的居民人数为40×660=4,将这4人分别记为A,B,C,D.从这6人中抽取2人,试验的样本点有ab,aA,aB,aC,aD,bA,bB,bC,bD,AB,AC,AD,BC,BD,CD,共15个.而“仅有1人对防疫工作的评分在[40,50)内”包含的样本点有aA,aB,aC,aD,bA,bB,bC,bD,共8个,则所求事件的概率为815.。
高中数学必修二练习题(人教版,附答案)本文适合复习评估,借以评价学习成效。
一、选择题1. 已知直线经过点A(0,4)和点B(1,2),则直线AB的斜率为()A.3B.-2C. 2D. 不存在2.过点且平行于直线的直线方程为()A. B.C.D.3. 下列说法不正确的....是()A.空间中,一组对边平行且相等的四边形是一定是平行四边形;B.同一平面的两条垂线一定共面;C. 过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;D. 过一条直线有且只有一个平面与已知平面垂直.4.已知点、,则线段的垂直平分线的方程是()A. B. C. D.5. 研究下在同一直角坐标系中,表示直线与的关系6. 已知a、b是两条异面直线,c∥a,那么c与b的位置关系()A.一定是异面B.一定是相交C.不可能平行D.不可能相交7. 设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,,则②若,,,则③若,,则④若,,则其中正确命题的序号是( )(A)①和②(B)②和③(C)③和④(D)①和④8. 圆与直线的位置关系是()A.相交 B.相切 C.相离 D.直线过圆心9. 两圆相交于点A(1,3)、B(m,-1),两圆的圆心均在直线x-y+c=0上,则m+c的值为()A.-1 B.2 C.3 D.010. 在空间四边形ABCD各边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF、GH相交于点P,那么( )A.点P必在直线AC上 B.点P必在直线BD上C.点P必在平面DBC内 D.点P必在平面ABC外11. 若M、N分别是△ABC边AB、AC的中点,MN与过直线BC的平面β的位置关系是(C )A.MN∥βB.MN与β相交或MNβC. MN∥β或MNβD. MN∥β或MN与β相交或MNβ12. 已知A、B、C、D是空间不共面的四个点,且AB⊥CD,AD⊥BC,则直线BD与AC(A )A.垂直B.平行C.相交D.位置关系不确定二填空题13.已知A(1,-2,1),B(2,2,2),点P在z轴上,且|PA|=|PB|,则点P的坐标为;14.已知正方形ABCD的边长为1,AP⊥平面ABCD,且AP=2,则PC=;15.过点(1,2)且在两坐标轴上的截距相等的直线的方程 ___________;16.圆心在直线上的圆C与轴交于两点,,则圆C的方程为.三解答题17(12分) 已知△ABC三边所在直线方程为AB:3x+4y+12=0,BC:4x-3y+16=0,CA:2x+y-2=0 求AC边上的高所在的直线方程.18(12分)如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点,求证:(1) FD∥平面ABC;(2) AF⊥平面EDB.19(12分)如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点,(1)求证:平面A B1D1∥平面EFG;(2)求证:平面AA1C⊥面EFG.20(12分)已知圆C同时满足下列三个条件:①与y轴相切;②在直线y=x上截得弦长为2;③圆心在直线x-3y=0上. 求圆C的方程.设所求的圆C与y轴相切,又与直线交于AB,2分)设有半径为3的圆形村落,A、B两人同时从村落中心出发,B向北直行,A先向东直行,出村后不久,改变前进方向,沿着与村落周界相切的直线前进,后来恰与B相遇.设A、B两人速度一定,其速度比为3:1,问两人在何处相遇?22(14分)已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,写出直线l的方程;(3) 当直线l的倾斜角为45度时,求弦AB的长.一、选择题(5’×12=60’)(参考答案)题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B A D B C C A A C A C A二、填空题:(4’×4=16’) (参考答案)13. (0,0,3) 14. 15 y=2x或x+y-3=0 16. (x-2)2+(y+3)2=5三解答题17(12分) 解:由解得交点B(-4,0),. ∴AC边上的高线BD的方程为.18(12分) 解:(1)取AB的中点M,连FM,MC,∵F、M分别是BE、BA的中点∴ FM∥EA, FM=EA∵ EA、CD都垂直于平面ABC ∴ CD∥EA∴ CD∥FM又 DC=a, ∴ FM=DC ∴四边形FMCD是平行四边形∴FD∥MCFD∥平面ABC(2)因M是AB的中点,△ABC是正三角形,所以CM⊥AB又 CM⊥AE,所以CM⊥面EAB, CM⊥AF, FD⊥AF,因F是BE的中点, EA=AB所以AF⊥EB.19解:略20解:∵圆心C在直线上,∴圆心C(3a,a),又圆与y轴相切,∴R=3|a|. 又圆心C到直线y-x=0的距离在Rt△CBD中,.∴圆心的坐标C分别为(3,1)和(-3,-1),故所求圆的方程为或.21解解:如图建立平面直角坐标系,由题意可设A、B两人速度分别为3v千米/小时,v千米/小时,再设出发x0小时,在点P改变方向,又经过y0小时,在点Q处与B相遇.则P、Q两点坐标为(3vx0, 0),(0,vx0+vy0).由|OP|2+|OQ|2=|PQ|2知,………………3分(3vx0)2+(vx0+vy0)2=(3vy0)2,即.……①………………6分将①代入……………8分又已知PQ与圆O相切,直线PQ在y轴上的截距就是两个相遇的位置. 设直线相切,则有……………………11分答:A、B相遇点在离村中心正北千米处………………12分22解:(1)已知圆C:的圆心为C(1,0),因直线过点P、C,所以直线l的斜率为2,直线l的方程为y=2(x-1),即 2x-y-20.(2)当弦AB被点P平分时,l⊥PC, 直线l的方程为, 即 x+2y-6=0(3)当直线l的倾斜角为45度时,斜率为1,直线l的方程为y-2=x-2 ,即 x-y=0圆心C到直线l的距离为,圆的半径为3,弦AB的长为.。
加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!第十章综合测试一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向,事件“甲向南”与事件“乙向南”的关系为()A.互斥但非对立事件B.对立事件C.相互独立事件D.以上都不对2.甲、乙、丙、丁、戊5名同学参加“《论语》知识大赛”,决出了第1名到第5名的名次.甲、乙两名参赛者去询问成绩,回答者对甲说“虽然你的成绩比乙好,但是你俩都没得到第一名”;对乙说“你当然不会是最差的”从上述回答分析,丙是第一名的概率是()A.15B.13C.14D.163.甲骑自行车从A地到B地,途中要经过4个十字路口,已知甲在每个十字路口遇到红灯的概率都是,且在每个路口是否遇到红灯相互独立,那么甲在前两个十字路口都没有遇到红灯,直到第三个路口才首次遇到红灯的概率是()A.13B.427C.49D.1274.从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于()A.110B.18C.16D.155.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.13B.12C.23D.346.某袋中有编号为1,2,3,4,5,6的6个球(小球除编号外完全相同),甲先从袋中摸出一个球,记下编号后放回,乙再从袋中摸出一个球,记下编号,则甲、乙两人所摸出球的编号不同的概率是()A.15B.16C.56D.35367.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A.15B.25C.825D.9258.四个人围坐在一张圆桌旁,每个人面前都放着一枚完全相同的硬币,所有人同时抛出自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么没有相邻的两个人站起来的概率为()A.14B.716C.12D.9169.在2,0,1,5这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为()A .34B .58C .12D .1410.设一元二次方程20x Bx C ++=,若B ,C 是一枚质地均匀的骰子连续投掷两次出现的点数,则方程有实数根的概率为( )A .112B .736C .1336D .1936二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)11.某中学青年教师、中年教师和老年教师的人数比例为451::,其中青年教师有120人.现采用分层抽样的方法从这所学校抽取容量为30的教师样本以了解教师的工作压力情况,则每位老年教师被抽到的概率为________.12.甲、乙、丙三人独立破译同一份密码.已知甲、乙、丙各自独立破译出密码的概率分别为12,13,14且他们是否破译出密码互不影响,则至少有1人破译出密码的概率是________.13.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数: 907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989 据此估计,该运动员三次投篮恰有两次命中的概率为________.14.如图10-4-6所示的茎叶图是甲、乙两人在4次模拟测试中的成绩,其中一个数字被污损,则甲的平均成绩不超过乙的平均成绩的概率为________. 三、解答题(本大题共4小题,共50分,解答时写出必要的文字说明、证明过程或演算步骤)15.[12分]围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,都是白子的概率是1235,求从中任意取出2粒恰好是同一色的概率.16.[12分]某日用品按行业质量标准分成五个等级,等级系数X 依次为1,2,3,4,5,现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到如下频率分布表:X 1 2 3 4 5 fa0.20.45bc(1)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a ,b ,c 的值; (2)在(1)的条件下,将等级系数为4的3件日用品记为1x ,2x ,3x ,等级系数为5的2件日用品记为1y ,2y ,现从1x ,2x ,3x ,1y ,2y 这5件日用品中任取2件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这2件日用品的等级系数恰好相等的概率.17.[13分]某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)参加书法社团未参加书法社团参加演讲社团 8 5 未参加演讲社团230(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学1A ,2A ,3A ,4A ,5A ,3名女同学1B ,2B ,3B .现从这5名男同学和3名女同学中各随机选1人,求1A 被选中且1B 未被选中的概率.18.[13分]一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同,随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c .(1)求“抽取的卡片上的数字满足a b c +=”的概率; (2)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率. (注:若三个数a ,b ,c 满足a b c ≤≤,则称b 为这三个数的中位数)第十章综合测试答案解析一、 1.【答案】A 2.【答案】B 3.【答案】B 4.【答案】D 5.【答案】A 6.【答案】C 7.【答案】B【解析】从甲、乙等5名学生中随机选2人共有10种情况,甲被选中有4种情况,则甲被选中的概率为42105=. 8.【答案】B【解析】四个人按顺序围成一桌,同时抛出自己的硬币,抛出的硬币正面记为0,反面记为1,则总的样本点为(0,0,0,0),(0,0,0,1),(0,0,1,0),(0,0,1,1),(0,1,0,0),(0,1,0,1),(0,1,1,0),(0,1,1,1),(1,0,0,0),(1,0,0,1),(1,0,1,0),(1,0,1,1),(1,1,0,0),(1,1,0,1),(1,1,1,0),(1,1,1,1),共有16种情况.若四个人同时坐着,有1种情况;若三个人坐着,一个人站着,有4种情况;若两个人坐着,两个人站着,此时没有相邻的两个人站起来有2种情况,所以没有相邻的两个人站起来的情况共有1427++=(种),故所求概率716P =. 9.【答案】C【解析】分析题意可知,共有(0,1,2),(0,2,5),(1,2,5),(0,1,5),4种取法,符合题意的取法有2种,故所求概率12P =. 10.【答案】D【解析】因为B ,C 是一枚质地均匀的骰子连续投掷两次出现的点数,所以一共有36种情况。
全册综合检测试题时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)一、单项选择题每小题5分,共40分 1.下列命题为假命题的是( D ) A .复数的模是非负实数B .复数等于零的充要条件是它的模等于零C .两个复数的模相等是这两个复数相等的必要条件D .复数z 1>z 2的充要条件是|z 1|>|z 2|解析:A 中,任何复数z =a +b i(a ,b ∈R )的模|z |=a 2+b 2≥0总成立,所以A 正确;B 中,由复数为零的条件z =0⇔⎩⎪⎨⎪⎧a =0,b =0⇔|z |=0,故B 正确;C 中,若z 1=a 1+b 1i ,z 2=a 2+b 2i(a 1,b 1,a 2,b 2∈R ),且z 1=z 2,则有a 1=a 2,b 1=b 2,所以|z 1|=|z 2|;反之,由|z 1|=|z 2|,推不出z 1=z 2,如z 1=1+3i ,z 2=1-3i 时,|z 1|=|z 2|,故C 正确;D 中,若z 1=a 1+b 1i ,z 2=a 2+b 2i ,z 1>z 2,则a 1>a 2,b 1=b 2=0,此时|z 1|>|z 2|;若|z 1|>|z 2|,z 1与z 2不一定能比较大小,所以D 错误.2.随机调查某校50个学生在学校的午餐费,结果如表:餐费/元 6 7 8 人数102020这50A .7.2,0.56 B .7.2,0.56 C .7,0.6 D .7,0.6解析:根据题意,计算这50个学生午餐费的平均值是x =150×(6×10+7×20+8×20)=7.2,方差是s 2=150[10×(6-7.2)2+20×(7-7.2)2+20×(8-7.2)2]=150(14.4+0.8+12.8)=0.56.3.设α,β为两个平面,则α∥β的充要条件是( B ) A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面解析:当α内有无数条直线与β平行,也可能两平面相交,故A 错.同样当α,β平行于同一条直线或α,β垂直于同一平面时,两平面也可能相交,故C ,D 错.由面面平行的判定定理可得B 正确.4.如图,在三棱柱ABC A 1B 1C 1中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则CC 1与平面AB 1C 1所成的角为( A )A.π6B.π4 C.π3D.π2解析:如图,取B 1C 1中点为D ,连接AD ,A 1D ,因为侧棱垂直于底面,底边是边长为2的正三角形,所以三棱柱ABC A 1B 1C 1是正三棱柱,所以CC 1∥AA 1,所以AA 1与平面AB 1C 1所成的角即是CC 1与平面AB 1C 1所成的角,因为B 1C 1⊥A 1D ,B 1C 1⊥AA 1,所以B 1C 1⊥平面AA 1D ,所以平面AA 1D ⊥平面AB 1C 1,所以AA 1与平面AB 1C 1所成角为∠A 1AD ,因为AA 1=3,A 1D =3,所以tan ∠A 1AD =A 1D AA 1=33,所以∠A 1AD =π6,所以CC 1与平面AB 1C 1所成角为π6.5.正方形ABCD 的边长为2,点E 为BC 边的中点,F 为CD 边上一点,若AF →·AE →=|AE →|2,则|AF →|=( D )A .3B .5 C.32D.52解析:以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立坐标系,如图所示,因为E 为BC 边的中点,所以E (2,1),因为F 为CD 边上一点,所以可设F (t,2)(0≤t ≤2),所以AF →=(t,2),AE →=(2,1),由AF →·AE →=|AE →|2可得:2t +2=22+1=5,所以t =32,所以AF →=⎝ ⎛⎭⎪⎫32,2, 所以|AF →|=322+22=52.6.已知点O 是△ABC 内部一点,并且满足OA →+2OB →+3OC →=0,△BOC 的面积为S 1,△ABC 的面积为S 2,则S 1S 2=( A )A.16B.13C.23D.34 解析:因为OA →+2OB →+3OC →=0,所以OA →+OC →=-2(OB →+OC →),如图,分别取AC ,BC 的中点D ,E ,则 OA →+OC →=2OD →,OB →+OC →=2OE →, 所以OD →=-2OE →,即O ,D ,E 三点共线且|OD →|=2|OE →|, 则S △OBC =13S △DBC ,由于D 为AC 中点,所以S △DBC =12S △ABC ,所以S △OBC =16S △ABC ,即S 1S 2=16.7.为向国际化大都市目标迈进,某市今年新建三大类重点工程,它们分别是30项基础设施类工程,20项民生类工程和10项产业建设类工程.现有3名民工相互独立地从这60个项目中任选一个项目参与建设,则这3名民工选择的项目所属类别互异的概率是( D )A.12B.13C.14D.16解析:记第i 名民工选择的项目属于基础设施类、民生类、产业建设类分别为事件A i ,B i ,C i ,i =1,2,3.由题意,事件A i ,B i ,C i (i =1,2,3)相互独立,则P (A i )=3060=12,P (B i )=2060=13,P (C i )=1060=16,i =1,2,3,故这3名民工选择的项目所属类别互异的概率是P =6P (A i B i C i )=6×12×13×16=16.8.如图,△ABC 是边长为23的正三角形,P 是以C 为圆心,半径为1的圆上任意一点,则AP →·BP →的取值X 围是( A )A .[1,13]B .(1,13)C .(4,10)D .[4,10]解析:取AB 的中点D ,连接CD ,CP ,则CA →+CB →=2CD →,所以AP →·BP →=(CP →-CA →)·(CP →-CB →)=CA →·CB →-2CD →·CP →+1=(23)2cos π3-2×3×1×cos〈CD →,CP →〉+1=7-6cos 〈CD →,CP →〉,所以当cos 〈CD →,CP →〉=1时,AB →·BP →取得最小值为1;当cos 〈CD →,CP →〉=-1时,AP →·BP→取得最大值为13,因此AP →·BP →的取值X 围是[1,13].二、多项选择题每小题5分,共20分9.为了反映各行业对仓储物流业务需求变化的情况,以及重要商品库存变化的动向,中国物流与采购联合会和中储发展股份某某通过联合调查,制定了中国仓储指数.由2017年1月至2018年7月的调查数据得出的中国仓储指数,绘制出如下的折线图.根据该折线图,下列结论错误的是( ABC ) A .2017年各月的仓储指数最大值是在3月份 B .2018年1月至7月的仓储指数的中位数约为55 C .2018年1月与4月的仓储指数的平均数约为52D .2017年1月至4月的仓储指数相对于2018年1月至4月,波动性更大解析:2017年各月的仓储指数最大值是在11月份,所以A 错误;由题图知,2018年1月至7月的仓储指数的中位数约为52,所以B 错误;2018年1月与4月的仓储指数的平均数约为51+552=53,所以C 错误;由题图可知,2017年1月至4月的仓储指数比2018年1月至4月的仓储指数波动更大.所以D 正确.10.已知数据x 1,x 2,x 3,…,x n 是A 市n (n ≥3,n ∈N *)个普通职工的年收入,设这n 个数据的中位数为x ,平均数为y ,方差为z ,如果再加上世界首富的年收入x n +1,对于这(n +1)个数据,下列说法错误的是( ACD )A .年收入平均数可能不变,中位数可能不变,方差可能不变B .年收入平均数大大增大,中位数可能不变,方差变大C .年收入平均数大大增大,中位数可能不变,方差也不变D .年收入平均数大大增大,中位数一定变大,方差可能不变解析:∵数据x 1,x 2,x 3,…,x n 是A 市n (n ≥3,n ∈N *)个普通职工的年收入,而x n +1为世界首富的年收入,则x n +1会远大于x 1,x 2,x 3,…,x n ,∴对于这(n +1)个数据,年收入平均数大大增大,但中位数可能不变,也可能稍微变大,但由于数据的集中程度受到x n +1比较大的影响,数据更加离散,则方差变大.故A 、C 、D 说法错误,符合题意.11.已知向量a ,e 满足a ≠e ,|e |=1,且对任意t ∈R ,恒有|a -t e |≥|a -e |成立,则( BC )A .a ⊥eB .a·e =1C .e ⊥(a -e )D .(a +e )⊥(a -e )解析:由条件可知|a -t e |2≥|a -e |2对t ∈R 恒成立,又∵|e |=1,∴t 2-2t a ·e +2a ·e -1≥0对t ∈R 恒成立,即Δ=(-2a ·e )2-8a ·e +4≤0恒成立,∴(a ·e -1)2≤0恒成立,而(a ·e -1)2≥0,∴a ·e -1=0,即a ·e =1=e 2,∴e ·(a -e )=0,即e ⊥(a -e ).12.如图,在矩形ABCD 中,AB =2AD =2,E 为AB 的中点,将△ADE 沿DE 翻折到△A 1DE 的位置,A 1∉平面ABCD ,M 为A 1C 的中点,则在翻折过程中,下列结论正确的是( ABC )A .恒有BM ∥平面A 1DEB .B 与M 两点间距离恒为定值C .三棱锥A 1DEM 的体积的最大值为212D .存在某个位置,使得平面A 1DE ⊥平面A 1CD解析:如图,取A 1D 的中点N ,连接MN ,EN ,可得四边形BMNE 是平行四边形,所以BM ∥EN ,所以BM ∥平面A 1DE ,故A 正确;(也可以延长DE ,CB 交于H ,可证明MB ∥A 1H ,从而证 BM ∥平面A 1DE ) 因为DN =12,DE =2,∠A 1DE =∠ADE =45°,根据余弦定理得EN 2=14+2-2×2×12×22,得EN =52, 因为EN =BM ,故BM =52,故B 正确; 因为M 为A 1C 的中点,所以三棱锥C A 1DE 的体积是三棱锥M A 1DE 的体积的两倍,故三棱锥C A 1DE 的体积VC A 1DE =VA 1DEC =13S △CDE ·h ,其中h 表示A 1到底面ABCD 的距离,当平面A 1DE ⊥平面ABCD 时,h 达到最大值,此时VA 1DEC 取到最大值26,所以三棱锥M A 1DE 体积的最大值为212,即三棱锥A 1DEM 体积的最大值为212,故C 正确; 考察D 选项,假设平面A 1DE ⊥平面A 1CD ,因为平面A 1DE ∩平面A 1CD =A 1D ,A 1E ⊥A 1D , 故A 1E ⊥平面A 1CD ,所以A 1E ⊥A 1C , 则在△A 1CE 中,∠EA 1C =90°,A 1E =1,EC =2,所以A 1C =1,又因为A 1D =1,CD =2,所以A 1D +A 1C =CD , 故A 1,C ,D 三点共线.所以A 1∈CD ,得A 1∈平面ABCD ,与题干条件A 1∉平面ABCD 矛盾,故D 不正确.故选ABC.第Ⅱ卷(非选择题,共90分)三、填空题每小题5分,共20分13.随着社会的发展,食品安全问题渐渐成为社会关注的热点,为了提高学生的食品安全意识,某学校组织全校学生参加食品安全知识竞赛,成绩的频率分布直方图如图所示,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若该校的学生总人数为 3 000,则成绩不超过60分的学生人数大约为900.解析:由题图知,成绩不超过60分的学生的频率为(0.005+0.01)×20=0.3,所以成绩不超过60分的学生人数大约为0.3×3 000=900.14.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是710. 解析:从3名男同学和2名女同学中任选2名同学参加志愿者服务,共有10种情况.若选出的2名学生恰有1名女生,有6种情况,若选出的2名学生都是女生,有1种情况,所以所求的概率为6+110=710.15.已知复数z 1=2+3i ,z 2=a +b i ,z 3=1-4i ,它们在复平面上所对应的点分别为A ,B ,C ,若OC →=2OA →+OB →,则a =-3,b =-10. 解析:因为OC →=2OA →+OB →, 所以1-4i =2(2+3i)+(a +b i)即⎩⎪⎨⎪⎧1=4+a ,-4=6+b ,所以⎩⎪⎨⎪⎧a =-3,b =-10.16.已知正方体ABCD A 1B 1C 1D 1的棱长为2,除平面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M ,则四棱锥M EFGH 的体积为23.解析:因为底面EFGH 的对角线EG 与FH 互相垂直, 所以S EFGH =12×EG ×FH =12×2×2=2,又M 到底面EFGH 的距离等于棱长的一半, 即h =12×2=1,所以四棱锥M EFGH 的体积:V M EFGH =13×S EFGH ×h =13×2×1=23.四、解答题写出必要的计算步骤,只写最后结果不得分,共70分17.(10分)某市举办法律知识问答活动,随机从该市18~68岁的人群中抽取了一个容量为n 的样本,并将样本数据分成五组:[18,28),[28,38),[38,48),[48,58),[58,68],并绘制如图所示的频率分布直方图,再将其分别编号为第1组,第2组,…,第5组.该部门对回答问题的情况进行统计后,绘制了下表.组号 分组 回答正确的人数回答正确的人数占本组的比例第1组 [18,28) 5 0.5第2组 [28,38) 18 a第3组 [38,48) 270.9 第4组 [48,58) x0.36 第5组[58,68]30.2(1)分别求出a,x的值;(2)从第2,3,4组回答正确的人中用分层随机抽样的方法抽取6人,则第2,3,4组每组各应抽取多少人?(3)在(2)的前提下,在所抽取的6人中随机抽取2人颁发幸运奖,求第2组至少有1人获得幸运奖的概率.解:(1)第1组的人数为5÷0.5=10,第1组的频率为0.010×10=0.1,所以n=10÷0.1=100.第2组的频率为0.020×10=0.2,人数为100×0.2=20,所以a=18÷20=0.9.第4组的频率为0.025×10=0.25,人数为100×0.25=25,所以x=25×0.36=9.(2)第2,3,4组回答正确的人数的比为18279=231,所以第2,3,4组每组各应抽取2人、3人、1人.(3)记“第2组至少有1人获得幸运奖”为事件A,设抽取的6人中,第2组的2人为a1,a2,第3组的3人为b1,b2,b3,第4组的1人为c,则从6人中任意抽取2人所有可能的结果为(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,c),(a2,b1),(a2,b2),(a2,b3),(a2,c),(b1,b2),(b1,b3),(b1,c),(b2,b3),(b2,c),(b3,c),共15种.其中第2组至少有1人获得幸运奖的结果为(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,c),(a2,b1),(a2,b2),(a2,b3),(a2,c),共9种.故P(A)=915=35.所以抽取的6人中第2组至少有1人获得幸运奖的概率为35.18.(12分)某中学组织了一次数学学业水平模拟测试,学校从测试合格的男、女生中各随机抽取100人的成绩进行统计分析,分别制成了如图所示的男生和女生数学成绩的频率分布直方图.(注:分组区间为[60,70),[70,80),[80,90),[90,100])(1)若得分大于或等于80认定为优秀,则男、女生的优秀人数各为多少?(2)在(1)中所述的优秀学生中用分层随机抽样的方法抽取5人,从这5人中任意选取2人,求至少有一名男生的概率.解:(1)由题可得,男生优秀人数为100×(0.01+0.02)×10=30,女生优秀人数为100×(0.015+0.03)×10=45.(2)因为样本量与总体中的个体数的比是530+45=115,所以样本中包含的男生人数为30×115=2,女生人数为45×115=3.设抽取的5人分别为A ,B, C, D ,E ,其中A ,B 为男生,C, D ,E 为女生,从5人中任意选取2人,试验的样本空间Ω={(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ) },共10个样本点.事件“至少有一名男生”包含的样本点有:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),共7个样本点,故至少有一名男生的概率为P =710,即选取的2人中至少有一名男生的概率为710.19.(12分)已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足sin 2A +sin 2B -sin 2C =-3sin A sin B .(1)求角C 大小;(2)若c =2,求3a +b 的取值X 围.解:(1)因为sin 2A +sin 2B -sin 2C =-3sin A sin B , 所以由正弦定理得a 2+b 2-c 2=-3ab ,所以cos C =a 2+b 2-c 22ab =-3ab 2ab =-32,因为C ∈(0,π),所以C =5π6. (2)由正弦定理得2R =csin C =4,所以3a +b =2R (3sin A +sin B ) =4[3sin A +sin(π6-A )]=4(3sin A +12cos A -32sin A )=4sin(A +π6),因为A ∈(0,π6),所以A +π6∈(π6,π3),所以sin(A +π6)∈(12,32),所以3a +b 的取值X 围是(2,23).20.(12分)如图,A ,C 两岛之间有一片暗礁,一艘小船于某日上午8时从A 岛出发,以10海里/小时的速度,沿北偏东75°方向直线航行,下午1时到达B 处.然后以同样的速度,沿北偏东15°方向直线航行,下午4时到达C 岛.(1)求A ,C 两岛之间的直线距离; (2)求∠BAC 的正弦值.解:(1)在△ABC 中,由已知,AB =10×5=50,BC =10×3=30,∠ABC =180°-75°+15°=120°.根据余弦定理,得AC 2=502+302-2×50×30cos120°=4 900,所以AC =70. 故A ,C 两岛之间的直线距离是70海里. (2)在△ABC 中,据正弦定理,得BC sin ∠BAC =ACsin ∠ABC,所以sin ∠BAC =BC sin ∠ABC AC =30sin120°70=3314, 故∠BAC 的正弦值是3314.21.(12分)如图,在四棱锥P ABCD 中,底面ABCD 为平行四边形,△PCD 为等边三角形,平面PAC ⊥平面PCD ,PA ⊥CD ,CD =2,AD =3.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ; (2)求证:PA ⊥平面PCD ;(3)求直线AD 与平面PAC 所成角的正弦值. 解:(1)证明:连接BD,如图,易知AC∩BD=H,BH=DH,又BG=PG,故GH∥PD,又因为GH⊄平面PAD,PD⊂平面PAD,所以GH∥平面PAD.(2)证明:取棱PC的中点N,连接DN,如图,依题意,得DN⊥PC,又因为平面PAC⊥平面PCD,平面PAC∩平面PCD=PC,所以DN⊥平面PAC,又PA⊂平面PAC,故DN⊥PA,又因为PA⊥CD,CD∩DN=D,所以PA⊥平面PCD.(3)连接AN,如图,由(2)中DN⊥平面PAC,可知∠DAN为直线AD与平面PAC所成的角.因为△PCD为等边三角形,CD=2且N为PC的中点,所以DN=3,又DN⊥AN,在Rt△AND中,sin∠DAN=DNAD =33,所以直线AD与平面PAC所成角的正弦值为33.22.(12分)如图,在四棱锥PABCD中,△PAD为正三角形,平面PAD⊥平面ABCD,AB ∥CD,AB⊥AD,CD=2AB=2AD=4.(1)求证:平面PCD⊥平面PAD;(2)求三棱锥PABC的体积;(3)在棱PC上是否存在点E,使得BE∥平面PAD?若存在,请确定点E的位置,并证明;若不存在,请说明理由.解:(1)证明:因为AB∥CD,AB⊥AD,所以CD⊥AD.因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以CD⊥平面PAD.因为CD⊂平面PCD,所以平面PCD⊥平面PAD.(2)取AD的中点O,连接PO,如图.因为△PAD为正三角形,所以PO⊥AD.因为平面PAD ⊥平面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD,所以PO⊥平面ABCD,所以PO为三棱锥PABC的高.因为△PAD为正三角形,CD=2AB=2AD=4,所以PO=3,所以V三棱锥PABC=S△ABC·PO=13×12×2×2×3=233.(3)在棱PC上存在点E,当E为PC的中点时,BE∥平面PAD.证明:如图,分别取CP,CD的中点E,F,连接BE,BF,EF,所以EF∥PD.因为AB∥CD,CD=2AB,所以AB∥FD,AB=FD,所以四边形ABFD为平行四边形,所以BF∥AD. 因为BF∩EF=F,AD∩PD=D,所以平面BEF∥平面PAD.因为BE⊂平面BEF,所以BE∥平面PAD.。
第二章综合检测题考试时间120分钟,满分150分.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列命题中正确的是( D ) A .OA →-OB →=AB → B .AB →+BA →=0 C .0·AB →=0D .AB →+BC →+CD →=AD →[解析] 起点相同的向量相减,则取终点,并指向被减向量,OA →-OB →=BA →;AB →,BA →是一对相反向量,它们的和应该为零向量,AB →+BA →=0;0·AB →=0.2.如右图,a -b 等于( C )A .2e 1-4e 2B .-4e 1-2e 2C .e 1-3e 2D .3e 1-e 2[解析] a -b =e 1-3e 2.3.设O ,A ,M ,B 为平面上四点,OM →=λOB →+(1-λ)OA →,且λ∈(1,2),则( B ) A .点M 在线段AB 上 B .点B 在线段AM 上 C .点A 在线段BM 上 D .O ,A ,B ,M 四点共线[解析] OM →=λOB →+OA →-λOA →,所以OM →-OA →=λ(OB →-OA →),AM →=λAB →,由λ∈(1,2)可知,A ,B ,M 三点共线,且B 在线段AM 上.4.已知a 、b 、c 分别是△ABC 三个内角A 、B 、C 的对边,b =7,c =3,B =π6,那么a 等于( C )A .1B .2C .4D .1或4[解析] 在△ABC 中,b =7,c =3,cos B =32,由余弦定理有b 2=a 2+c 2-2ac cos B ,即7=a 2+3-3a ,解得a =4或a =-1(舍去).故a 的值为4.5.已知向量a =(1,2),b =(-2,3),c =(4,5),若(a +λb )⊥c ,则实数λ=( C ) A .-12B .12C .-2D .2[解析] a +λb =(1,2)+(-2λ,3λ) =(1-2λ,2+3λ),由(a +λb )⊥c ,可得(1-2λ)×4+(2+3λ)×5=0,解得λ=-2.6.在△ABC 中,已知sin 2A +sin 2B -sin A sin B =sin 2C ,且满足ab =4,则该三角形的面积为(D )A .1B .2C . 2D . 3[解析] 由sin 2A +sin 2B -sin A sin B =sin 2C ,得a 2+b 2-ab =c 2,cos C =a 2+b 2-c 22ab =12.∵C ∈(0°,180°),∴C =60°. ∴sin C =32,∴S △ABC =12ab sin C = 3. 7.在△ABC 中,B =60°,C =45°,BC =8,D 为BC 上一点,且BD →=3-12BC →,则AD 的长为⎝ ⎛⎭⎪⎫sin 75°=6+24( C )A .4(3-1)B .4(3+1)C .4(3-3)D .4(3+3)[解析] 由题意知∠BAC =75°,根据正弦定理,得AB =BC sin 45°sin 75°=8(3-1),因为BD →=3-12BC →,所以BD =3-12BC .又BC =8,所以BD =4(3-1).在△ABD 中,AD =AB 2+BD 2-2AB ·BD ·cos 60° =4(3-3).故选C .8.如图所示,半圆的直径AB =4,O 为圆心,C 是半圆上不同于A ,B 的任意一点,若P 为半径OC 上的动点,则(PA →+PB →)·PC →的最小值是( D )A .2B .0C .-1D .-2[解析] 由平行四边形法则得PA →+PB →=2PO →,故(PA →+PB →)·PC →=2PO →·PC →,又|PC →|=2-|PO →|,且PO →,PC →反向,设|PO →|=t (0≤t ≤2),则(PA →+PB →)·PC →=2PO →·PC →=-2t (2-t )=2(t 2-2t )=2[(t -1)2-1].∵0≤t ≤2,∴当t =1时,(PA →+PB →)·PC →取得最小值-2,故选D .二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分)9.设向量a ,b 满足:|a |=3,|b |=4,a ·b =0,以a ,b ,a -b 的模为边长构成三角形,则它的边与半径为1的圆的公共点个数可以是( ABC )A .0或1B .2或3C .4D .6[解析] 由题意可知该三角形为直角三角形,其内切圆半径恰好为1,它与半径为1的圆的公共点个数可能为0个,1个,2个,3个,4个,故选ABC .10.已知m ,n 是实数,a ,b 是向量,则下列命题中正确的为( AB ) A .m (a -b )=m a -m b B .(m -n )a =m a -n a C .若m a =m b ,则a =bD .若m a =n a ,则m =n[解析] 对于A 和B 属于数乘对向量与实数的分配律,正确;对于C,若m =0,则不能推出a =b ,错误;对于D,若a =0,则m ,n 没有关系,错误.故选AB .11.对于△ABC ,有如下命题,其中正确的有( ACD ) A .若sin 2A =sin 2B ,则△ABC 为等腰三角形 B .若sin A =cos B ,则△ABC 为直角三角形 C .若sin 2A +sin 2B +cos 2C <1,则△ABC 为钝角三角形D .若AB =3,AC =1,B =30°,则△ABC 的面积为34或 32[解析] 对于A,sin 2A =sin 2B ,∴A =B ⇒△ABC 是等腰三角形;对于B,由sin A =cos B ,∴A -B =π2或A +B =π2.∴△ABC 不一定是直角三角形,B 错误;对于C,sin 2A +sin 2B <1-cos 2C=sin 2C ,∴a 2+b 2<c 2,∴△ABC 为钝角三角形,C 正确;对于D,如图所示,由正弦定理,得sin C =c ·sin B b =32.而c >b ,∴C =60°或C =120°,∴A =90°或A =30°,∴S △ABC =12bc sin A =32或34,D 正确.故选ACD .12.给出下列四个命题,其中正确的选项有( ABC )A .非零向量a ,b 满足|a |=|b |=|a -b |,则a 与a +b 的夹角是30°B .若(AB →+AC →)·(AB →-AC →)=0,则△ABC 为等腰三角形C .若单位向量a ,b 的夹角为120°,则当|2a +x b |(x ∈R )取最小值时x =1D .若OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ),∠ABC 为锐角,则实数m 的取值范围是m >-34[解析]A 中,令OA →=a ,OB →=b .以OA →,OB →为邻边作平行四边形OACB . ∵|a |=|b |=|a -b |,∴四边形OACB 为菱形,∠AOB =60°,∠AOC =30°,即a 与a +b 的夹角是30°,故A 正确;B 中,∵(AB →+AC →)·(AB →-AC →)=0,∴|AB →|2=|AC →|2,故△ABC 为等腰三角形,故B 正确;C 中,∵(2a +x b )2=4a 2+4x a ·b +x 2b 2=4+4x cos 120°+x 2=x 2-2x +4=(x -1)2+3,故|2a +x b |取最小值时x =1.故C 正确;D 中,∵BA →=OA →-OB →=(3,-4)-(6,-3)=(-3,-1),BC →=OC →-OB →=(5-m ,-3-m )-(6,-3)=(-1-m ,-m ),又∠ABC 为锐角,∴BA →·BC →>0,即3+3m +m >0,∴m >-34.又当BA →与BC →同向共线时,m =12,故当∠ABC 为锐角时,m 的取值范围是m >-34且m ≠12,故D 不正确.故选ABC .三、填空题(本大题共4小题,每小题5分,共20分)13.已知a ,b 为单位向量,且a ·b =0,若c =2a -5b ,则cos 〈a ,c 〉= 23.[解析] 由题意,得cos 〈a ,c 〉=a ·2a -5b|a |·|2a -5b |=2a 2-5a ·b|a |·|2a -5b |2=21×4+5=23. 14.设向量a ,b ,c 满足a +b +c =0,(a -b )⊥c ,a ⊥b ,若|a|=1,则|a|2+|b|2+|c|2的值是 4 .[解析] 由于a ⊥b ,由此画出以a ,b 为邻边的矩形ABCD ,如图所示,其中,AD →=a ,AB →=b ,∵a +b +c =0,∴CA →=c ,BD →=a -b .∵(a -b )⊥c ,∴矩形的两条对角线互相垂直,则四边形ABCD 为正方形. ∴|a |=|b |=1,|c |=2,|a|2+|b|2+|c|2=4.15.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sin B = 217,c = 3 . [解析] 由正弦定理,得a sin A =b sin B ,∴7sin 60°=2sin B ,得sin B =217,由余弦定理,得cos A =b 2+c 2-a 22bc =4+c 2-74c =12,解得c =3.16.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知(a +b -c )·(a +b +c )=3ab ,且c =4,则△ABC 面积的最大值为 4 3 .[解析] (a +b -c )(a +b +c )=(a +b )2-c 2=a 2+2ab +b 2-c 2=3ab ,∴a 2+b 2-c 2=ab . 又∵a 2+b 2-c 2=2ab cos C , ∴2ab cos C =ab ,∴cos C =12,∵C ∈(0,π),∴C =π3.由余弦定理,得c 2=a 2+b 2-2ab cos C ,∴16=a 2+b 2-2ab cos π3=a 2+b 2-ab ≥2ab -ab =ab ,∴ab ≤16.∴△ABC 面积的最大值S =12ab sin C ≤12×16×sin π3=4 3.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知向量a ,b 满足b =(1,3),a ·b =4,(a -2b )⊥a . (1)求向量a 与b 的夹角; (2)求|2a -b |的值;(3)若向量c =3a -4b ,d =m a +b ,c ∥d ,求m 的值.[解析] (1)因为(a -2b )⊥a ,所以(a -2b )·a =0,|a |2=8,即|a |=2 2.设向量a 与b 的夹角为θ,则cos θ=b ·a |b ||a |=22,又θ∈[0,π],所以θ=π4.(2)由向量模的计算公式|a |=a ·a ,得|2a -b |=2a -b2=4|a |2-4a ·b +|b |2=32-16+4=2 5.(3)因为c ∥d ,所以c =λd ,设3a -4b =λ(m a +b ),则⎩⎪⎨⎪⎧3=λm ,-4=λ,解得m =-34.18.(本小题满分12分)在平面直角坐标系xOy 中,已知点A (-1,-2),B (2,3),C (-2,-1).(1)求以线段AB ,AC 为邻边的平行四边形的两条对角线的长; (2)设实数t 满足(AB →-tOC →)·OC →=0,求t 的值. [解析] (1)AB →=(3,5),AC →=(-1,1),求两条对角线的长即求|AB →+AC →|与|AB →-AC →|的大小.由AB →+AC →=(2,6),得|AB →+AC →|=210,由AB →-AC →=(4,4),得|AB →-AC →|=4 2.∴以线段AB ,AC 为邻边的平行四边形的两条对角线的长分别为210和4 2. (2)OC →=(-2,-1),∵(AB →-tOC →)·OC →=AB →·OC →-tOC →2, 易求AB →·OC →=-11,OC →2=5, ∴由(AB →-tOC →)·OC →=0得t =-115.19.(本小题满分12分)(2021·新高考全国卷Ⅰ)记△ABC 内角A ,B ,C 的对边分别为a ,b ,c .已知b 2=ac ,点D 在边AC 上,BD sin ∠ABC =a sin C .(1)证明:BD =b ;(2)若AD =2DC ,求cos ∠ABC .[解析] (1)由BD sin ∠ABC =a sin C 得,BD =a sin C sin ∠ABC ,在△ABC 中由正弦定理知:csin C=bsin ∠ABC ,即sin C sin ∠ABC =cb,∴BD =acb,又b 2=ac ,∴BD =b . (2)由题意知:BD =b ,AD =2b 3,DC =b3,∴cos ∠ADB =b 2+4b 29-c 22b ·2b 3=13b 29-c 24b 23,同理cos ∠BDC =b 2+b 29-a 22b ·b 3=10b 29-a22b 23, ∵∠ADB =π-∠CDB ,∴cos ∠ADB =-cos ∠BDC ,即13b 29-c 24b 23=a 2-10b 292b 23, 整理得2a 2+c 2=11b 23,又b 2=ac ,∴2a 2+b 4a 2=11b 23,整理得6a 4-11a 2b 2+3b 4=0,解得a 2b 2=13或a 2b 2=32,在由余弦定理知:cos ∠ABC =a 2+c 2-b 22ac =43-a 22b 2,当a 2b 2=13时,cos ∠ABC =76>1不合题意; 当a 2b 2=32时,cos ∠ABC =712; 综上,cos ∠ABC =712.20.(本小题满分12分)△ABC 是等腰直角三角形,∠B =90°,D 是边BC 的中点,BE ⊥AD ,垂足为E ,延长BE 交AC 于F ,连接DF ,求证:∠ADB =∠FDC .[解析] 如图,以B 为原点,BC 所在直线为x 轴建立直角坐标系,设A (0,2),C (2,0),则D (1,0),AC →=(2,-2).设AF →=λAC →,则BF →=BA →+AF →=(0,2)+(2λ,-2λ)=(2λ,2-2λ). 又DA →=(-1,2),BF →⊥DA →, ∴BF →·DA →=0,∴-2λ+2(2-2λ)=0, ∴λ=23.∴BF →=⎝ ⎛⎭⎪⎫43,23,DF →=BF →-BD →=⎝ ⎛⎭⎪⎫13,23.又DC →=(1,0),∴cos ∠ADB =DA →·DB →|DA →|·|DB →|=55,cos ∠FDC =DF →·DC →|DF →|·|DC →|=55,又∠ADB ,∠FDC ∈(0,π), ∴∠ADB =∠FDC .21.(本小题满分12分)如图所示,甲船以每小时30 2 n mile 的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20 n mile.当甲船航行20 min 到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距10 2 n mile,问乙船每小时航行多少n mile?[解析] 如图,连接A 1B 2,由题意知A 2B 2=10 2 n mile,A 1A 2=302×2060=10 2 n mile. 所以A 1A 2=A 2B 2.又∠A 1A 2B 2=180°-120°=60°, 所以△A 1A 2B 2是等边三角形. 所以A 1B 2=A 1A 2=10 2 n mile.由题意知,A 1B 1=20 n mile,∠B 1A 1B 2=105°-60°=45°,在△A 1B 2B 1中,由余弦定理,得B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45°=202+(102)2-2×20×102×22=200. 所以B 1B 2=10 2 n mile.因此,乙船速度的大小为10220×60=302(n mile/h).答:乙船每小时航行30 2 n mile.22.(本小题满分12分)已知向量a =(2+sin x,1),b =(2,-2),c =(sin x -3,1),d =(1,k ),(x ∈R ,k ∈R ).(1)若x ∈⎣⎢⎡⎦⎥⎤-π2,π2,且a ∥(b +c ),求x 的值; (2)若函数f (x )=a ·b ,求f (x )的最小值;(3)是否存在实数k ,使得(a +d )⊥(b +c )?若存在,求出k 的取值范围;若不存在,请说明理由.[解析] (1)∵b +c =(sin x -1,-1),又a ∥(b +c ), ∴-(2+sin x )=sin x -1,即sin x =-12.又x ∈⎣⎢⎡⎦⎥⎤-π2,π2, ∴x =-π6.(2)∵a =(2+sin x,1),b =(2,-2), ∴f (x )=a ·b =2(2+sin x )-2=2sin x +2.又x∈R,∴当sin x=-1时,f(x)有最小值,且最小值为0.(3)∵a+d=(3+sin x,1+k),b+c=(sin x-1,-1),若(a+d)⊥(b+c),则(a+d)·(b+c)=0,即(3+sin x)(sin x-1)-(1+k)=0,∴k=sin2x+2sin x-4=(sin x+1)2-5.由sin x∈[-1,1],∴-5≤(sin x+1)2-5≤-1,得k∈[-5,-1].∴存在k∈[-5,-1],使得(a+d)⊥(b+c).。
高中新课标数学必修②测试卷(4)班别 _____ 姓名 ____________ 座号 ____ 分数______一. 选择题 (每小题4分,共48分)1. 直线0x a ++=(a 为实常数)的倾斜角的大小是( D ).A.030 B. 060 C. 0120 D. 0150 2. 到直线3410x y --=的距离为2的直线方程是( B ).A. 34110x y --=B. 34110x y --=或3490x y -+=C. 3490x y -+=D. 34110x y -+= 或 3490x y --= 3. 下列说法正确的是( C ).A. 经过定点0P (0x ,0y )的直线都可以用方程00()y y k x x -=-表示.B. 经过不同两点1P (1x ,1y ),2P (2x ,2y )的直线都可以用方程112121y y x x y y x x --=--表示.C. 经过定点0P (0,b )且斜率存在的直线都可以用方程y kx b =+表示.D. 不过原点的直线都可以用方程1x ya b+=表示. 4. 无论m 为何值,直线1(2)y m x +=-总过一个定点,其中m R ∈,该定点坐标为( D ). A.(1,2-) B.(1-,2) C.(2-,1-) D.(2,1-) 5. 若直线1l :()34350m x y m +++-=与2l :()2580x m y ++-=平行,则m 的值为( A ).A. 7-B. 17--或C. 6-D. 133-6. 一条直线与一个平面内的( D )都垂直,则该直线与此平面垂直.A. 无数条直线B. 两条直线C. 两条平行直线D.两条相交直线 7. 下列四个命题中错误的个数是( B ). ① 垂直于同一条直线的两条直线相互平行 ② 垂直于同一个平面的两条直线相互平行③ 垂直于同一条直线的两个平面相互平行 ④ 垂直于同一个平面的两个平面相互垂直A. 1B. 2C. 3D. 48. 半径为R 的球内接一个正方体,则该正方体的体积是( C ).A. 3B.343R π3D. 39R 9. 下列命题中错误的是( B ). A. 若//,,m n n m βα⊥⊂,则αβ⊥B. 若α⊥β,a ⊂α,则a ⊥βC. 若α⊥γ,β⊥γ,l αβ=,则l ⊥γD. 若α⊥β,aβ=AB ,a //α,a⊥AB ,则a ⊥β10. P 为ABC 所在平面外一点,PB PC =,P 在平面ABC 上的射影必在ABC 的( A ).A. BC 边的垂直平分线上B. BC 边的高线上C. BC 边的中线上D. BAC ∠的角平分线上11. 圆1C :222880x y x y +++-=与圆2C 224420x y x y +-+-=的位置关系是( A ). A. 相交 B. 外切 C. 内切 D. 相离 12. 直线()110a x y +++=与圆2220x y x +-=相切,则a 的值为( C ).A. 1,1-B. 2-C. 1-D. 1 二. 填空题(每小题4分,共20分)1. 圆224460x y x y +-++=截直线50x y --=所得的弦长为, 2. 过点(1,2)且与直线210x y +-=平行的直线的方程是 250x y +-= 3. 过点A (0,1),B (2,0)的直线的方程为 220x y +-= .4. 已知各面均为等边三角形的四面体的棱长 为2,则它的表面积是5. 如图,在正方体111ABCD A B C D -中,异面 直线1A D 与1D C 所成的角为 060 度;直线1A D 与平面11AB C D 所成的角为 030 度.三. 解答题(第1、2题各9分,第3题14分,共1. 求经过两条直线1l :3420x y +-=与2l :220x y ++=的交点P ,且垂直于直线3l :210x y --=直线l 的方程.1解:由3420220x y x y +-=⎧⎨++=⎩ 解得22x y =-⎧⎨=⎩∴ 点P 的坐标是(2-,2) ∵ 所求直线l 与3l 垂直,∴ 设直线l 的方程为 20x y C ++= 把点P 的坐标代入得 ()2220C ⨯-++= ,得2C =∴ 所求直线l 的方程为 220x y ++= 2. 已知圆心为C 的圆经过点A (0,6-),B (1,5-),且圆心在直线l :10x y -+=上,求圆心为C的圆的标准方程. 解:因为A (0,6-),B (1,5-),所以线段AB 的中点D 的坐标为111,22⎛⎫- ⎪⎝⎭,直线AB 的斜率 ()56110AB k ---==-,因此线段AB 的垂直平分线'l 的方程是11122y x ⎛⎫+=-- ⎪⎝⎭, 即 50x y ++=圆心C 的坐标是方程组 5010x y x y ++=⎧⎨-+=⎩,的解.解此方程组,得 32x y =-⎧⎨=-⎩,所以圆心C 的坐标是(3-,2-). 圆心为C 的圆的半径长所以,圆心为C 的圆的标准方程是3. 如图:在三棱锥S ABC -中,已知点D 、E 、F 分别为棱AC 、SA 、SC 的中点. ①求证:EF ∥平面ABC .②若SA SC =,BA BC =,求证:平面SBD ⊥平面ABC . 解:①证明:∵EF 是SAC 的中位线,∴EF ∥AC ,B又∵EF ⊄平面ABC ,AC ⊂平面ABC ,∴EF ∥平面ABC .②证明:∵SA SC =,AD DC = ∴SD ⊥AC , ∵BA BC =,AD DC = ∴BD ⊥AC ,又∵SD ⊂平面SBD ,BD ⊂平面SBD ,SD DB D =,∴AC ⊥平面SBD , 又∵AC ⊂平面ABC , ∴平面SBD ⊥平面ABC .。
点、直线、平面之间的位置关系一、选择题1.设a、b为两条直线α、β为两个平面则正确的命题是()【09960089】A.若a、b与α所成的角相等则a∥bB.若a∥αb∥βα∥β则a∥bC.若a⊂αb⊂βa∥b则α∥βD.若a⊥αb⊥βα⊥β则a⊥b【解析】A中a、b可以平行、相交或异面;B中a、b可以平行或异面;C中α、β可以平行或相交.【答案】 D2.(2016·山西山大附中高二检测)如图1在正方体ABCD-A1B1C1D1中E、F、G、H分别为AA1、AB、BB1、B1C1的中点则异面直线EF与GH所成的角等于()图1A.45°B.60°C.90°D.120°【解析】如图连接A1B、BC1、A1C1则A1B=BC1=A1C1且EF∥A1B、GH∥BC1所以异面直线EF与GH所成的角等于60°【答案】 B3.设l为直线αβ是两个不同的平面.下列命题中正确的是() A.若l∥αl∥β则α∥βB.若l⊥αl⊥β则α∥βC.若l⊥αl∥β则α∥βD.若α⊥βl∥α则l⊥β【解析】选项A平行于同一条直线的两个平面也可能相交故选项A错误;选项B垂直于同一直线的两个平面互相平行选项B正确;选项C由条件应得α⊥β故选项C错误;选项D l与β的位置不确定故选项D错误.故选B【答案】 B7.(2015·洛阳高一检测)如图2△ADB和△ADC都是以D为直角顶点的等腰直角三角形且∠BAC=60°下列说法中错误的是()图2A.AD⊥平面BDCB.BD⊥平面ADCC.DC⊥平面ABDD.BC⊥平面ABD【解析】由题可知AD⊥BDAD⊥DC所以AD⊥平面BDC又△ABD与△ADC均为以D为直角顶点的等腰直角三角形所以AB=ACBD=DC=22AB又∠BAC=60°所以△ABC为等边三角形故BC=AB=2BD所以∠BDC=90°即BD⊥DC所以BD⊥平面ADC同理DC⊥平面ABD所以A、B、C项均正确.选D【答案】 D8.正四棱锥(顶点在底面的射影是底面正方形的中心)的体积为12底面对角线的长为26则侧面与底面所成的二面角为() A.30°B.45°C.60°D.90°【解析】由棱锥体积公式可得底面边长为23高为3在底面正方形的任一边上取其中点连接棱锥的顶点及其在底面的射影根据二面角定义即可判定其平面角在直角三角形中因为tan θ=3(设θ为所求平面角)所以二面角为60°选C【答案】 C9.将正方形ABCD沿BD折成直二面角M为CD的中点则∠AMD 的大小是()A.45°B.30°C.60°D.90°【解析】 如图设正方形边长为a 作AO ⊥BD 则AM =AO 2+OM 2=⎝ ⎛⎭⎪⎫22a 2+⎝ ⎛⎭⎪⎫12a 2=32a又AD =aDM =a2∴AD 2=DM 2+AM 2∴∠AMD =90° 【答案】 D10.在矩形ABCD 中若AB =3BC =4P A ⊥平面AC 且P A =1则点P 到对角线BD 的距离为( )A 292B 135C 175D 1195【解析】 如图过点A 作AE ⊥BD 于点E 连接PE∵P A ⊥平面ABCDBD ⊂平面ABCD ∴P A ⊥BD ∴BD ⊥平面P AE ∴BD ⊥PE∵AE =AB ·AD BD =125P A =1 ∴PE =1+⎝ ⎛⎭⎪⎫1252=135 【答案】 B11.(2016·大连高一检测)已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直体积为94底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心则P A 与平面ABC 所成角的大小为( )【09960090】A.75°B.60°C.45°D.30°【解析】如图所示P为正三角形A1B1C1的中心设O为△ABC的中心由题意知:PO⊥平面ABC连接OA则∠P AO即为P A与平面ABC 所成的角.在正三角形ABC中AB=BC=AC= 3则S=34×(3)2=334VABC-A1B1C1=S×PO=94∴PO= 3又AO=33×3=1∴tan ∠P AO=POAO=3∴∠P AO=60°【答案】 B12.正方体ABCD-A1B1C1D1中过点A作平面A1BD的垂线垂足为点H以下结论中错误的是()A.点H是△A1BD的垂心B.AH⊥平面CB1D1C.AH的延长线经过点C1D.直线AH和BB1所成的角为45°【解析】因为AH⊥平面A1BDBD⊂平面A1BD所以BD⊥AH又BD⊥AA1且AH∩AA1=A所以BD⊥平面AA1H又A1H⊂平面AA1H所以A1H⊥BD同理可证BH⊥A1D所以点H是△A1BD的垂心A正确.因为平面A1BD∥平面CB1D1所以AH⊥平面CB1D1B正确.易证AC1⊥平面A1BD因为过一点有且只有一条直线与已知平面垂直所以AC1和AH重合.故C正确.因为AA1∥BB1所以∠A1AH为直线AH和BB1所成的角.因为∠AA1H≠45°所以∠A1AH≠45°故D错误.【答案】 D二、填空题(本大题共4小题每小题5分共20分将答案填在题中的横线上)13.设平面α∥平面βA、C∈αB、D∈β直线AB与CD交于点S 且点S位于平面αβ之间AS=8BS=6CS=12则SD=________【解析】由面面平行的性质得AC∥BD ASBS=CSSD解得SD=9【答案】914.如图3四棱锥S-ABCD中底面ABCD为平行四边形E是SA上一点当点E满足条件:________时SC∥平面EBD图3【解析】当E是SA的中点时连接EBEDAC设AC与BD的交点为O连接EO∵四边形ABCD是平行四边形∴点O是AC的中点.又E是SA的中点∴OE是△SAC的中位线.∴OE∥SC∵SC⊄平面EBDOE⊂平面EBD∴SC∥平面EBD【答案】E是SA的中点15.如图4所示在正方体ABCD-A1B1C1D1中MN分别是棱AA1和AB上的点若∠B1MN是直角则∠C1MN等于________.图4【解析】∵B1C1⊥平面A1ABB1MN⊂平面A1ABB1∴B1C1⊥MN又∠B1MN为直角∴B1M⊥MN而B1M∩B1C1=B1∴MN ⊥平面MB 1C 1又MC 1⊂平面MB 1C 1 ∴MN ⊥MC 1∴∠C 1MN =90° 【答案】 90°16.已知四棱锥P -ABCD 的底面ABCD 是矩形P A ⊥底面ABCD 点E 、F 分别是棱PC 、PD 的中点则①棱AB 与PD 所在直线垂直; ②平面PBC 与平面ABCD 垂直; ③△PCD 的面积大于△P AB 的面积; ④直线AE 与直线BF 是异面直线.以上结论正确的是________.(写出所有正确结论的序号) 【解析】 由条件可得AB ⊥平面P AD ∴AB ⊥PD 故①正确;若平面PBC ⊥平面ABCD 由PB ⊥BC得PB ⊥平面ABCD 从而P A ∥PB 这是不可能的故②错;S △PCD =12CD ·PDS △P AB =12AB ·P A由AB =CDPD >P A 知③正确; 由E 、F 分别是棱PC 、PD 的中点 可得EF ∥CD 又AB ∥CD∴EF ∥AB 故AE 与BF 共面④错. 【答案】 ①③三、解答题(本大题共6小题共70分.解答应写出文字说明证明过程或演算步骤)17.(本小题满分10分)如图5所示已知△ABC 中∠ACB =90°SA ⊥平面ABCAD ⊥SC 求证:AD ⊥平面SBC图5【证明】∵∠ACB=90°∴BC⊥AC又∵SA⊥平面ABC∴SA⊥BC∵SA∩AC=A∴BC⊥平面SAC∴BC⊥AD又∵SC⊥ADSC∩BC=C∴AD⊥平面SBC18.(本小题满分12分)如图6三棱柱ABC-A1B1C1的侧棱与底面垂直AC=9BC=12AB=15AA1=12点D是AB的中点.图6(1)求证:AC⊥B1C;(2)求证:AC1∥平面CDB1【证明】(1)∵C1C⊥平面ABC∴C1C⊥AC∵AC=9BC=12AB=15∴AC2+BC2=AB2∴AC⊥BC又BC∩C1C=C∴AC⊥平面BCC1B1而B1C⊂平面BCC1B1∴AC⊥B1C(2)连接BC1交B1C于O点连接OD如图∵OD分别为BC1AB的中点∴OD∥AC1又OD⊂平面CDB1AC1⊄平面CDB1∴AC1∥平面CDB1 19.(本小题满分12分)(2016·德州高一检测)某几何体的三视图如图7所示P是正方形ABCD对角线的交点G是PB的中点.(1)根据三视图画出该几何体的直观图;(2)在直观图中①证明:PD∥面AGC;②证明:面PBD⊥面AGC图7【解】(1)该几何体的直观图如图所示:(2)证明:①连接ACBD交于点O连接OG因为G为PB的中点O为BD 的中点所以OG ∥PD②连接PO 由三视图知PO ⊥平面ABCD 所以AO ⊥PO又AO ⊥BO 所以AO ⊥平面PBD因为AO ⊂平面AGC所以平面PBD ⊥平面AGC20.(本小题满分12分)(2016·济宁高一检测)如图8正方形ABCD 和四边形ACEF 所在的平面互相垂直EF ∥ACAB =2CE =EF =1图8(1)求证:AF ∥平面BDE ;(2)求证:CF ⊥平面BDE【09960091】【证明】 (1)如图设AC 与BD 交于点G因为EF ∥AG 且EF =1AG =12AC =1所以四边形AGEF 为平行四边形.所以AF ∥EG因为EG⊂平面BDEAF⊄平面BDE所以AF∥平面BDE(2)连接FG∵EF∥CGEF=CG=1∴四边形CEFG为平行四边形又∵CE=EF=1∴▱CEFG为菱形∴EG⊥CF在正方形ABCD中AC⊥BD∵正方形ABCD和四边形ACEF所在的平面互相垂直∴BD⊥平面CEFG∴BD⊥CF又∵EG∩BD=G∴CF⊥平面BDE21.(本小题满分12分)(2015·山东高考)如图9三棱台DEF-ABC 中AB=2DEGH分别为ACBC的中点.图9(1)求证:BD∥平面FGH;(2)若CF⊥BCAB⊥BC求证:平面BCD⊥平面EGH【解】(1)证法一:连接DGCD设CD∩GF=M连接MH在三棱台DEF-ABC中AB=2DEG为AC的中点可得DF∥GCDF=GC所以四边形DFCG为平行四边形则M为CD的中点.又H为BC的中点所以MH∥BD又MH⊂平面FGHBD⊄平面FGH所以BD∥平面FGH 证法二:在三棱台DEF-ABC中由BC=2EFH为BC的中点可得BH∥EFBH=EF所以四边形BHFE为平行四边形可得BE∥HF在△ABC中G为AC的中点H为BC的中点所以GH∥AB又GH∩HF=H所以平面FGH∥平面ABED因为BD⊂平面ABED所以BD∥平面FGH(2)连接HE因为GH分别为ACBC的中点所以GH∥AB由AB⊥BC得GH⊥BC又H为BC的中点所以EF∥HCEF=HC因此四边形EFCH是平行四边形.所以CF∥HE又CF⊥BC所以HE⊥BC又HEGH⊂平面EGHHE∩GH=H所以BC⊥平面EGH又BC⊂平面BCD所以平面BCD⊥平面EGH22.(本小题满分12分)(2016·重庆高一检测)如图10所示ABCD是正方形O是正方形的中心PO⊥底面ABCD底面边长为aE是PC的中点.图10(1)求证:P A∥平面BDE;平面P AC⊥平面BDE;(2)若二面角E-BD-C为30°求四棱锥P-ABCD的体积.【解】(1)证明:连接OE如图所示.∵O、E分别为AC、PC的中点∴OE∥P A∵OE⊂平面BDEP A⊄平面BDE∴P A∥平面BDE∵PO⊥平面ABCD∴PO⊥BD在正方形ABCD中BD⊥AC又∵PO∩AC=O∴BD⊥平面P AC又∵BD⊂平面BDE∴平面P AC⊥平面BDE(2)取OC中点F连接EF∵E为PC中点∴EF为△POC的中位线∴EF∥PO又∵PO⊥平面ABCD∴EF⊥平面ABCD∵OF ⊥BD ∴OE ⊥BD∴∠EOF 为二面角E -BD -C 的平面角 ∴∠EOF =30°在Rt △OEF 中OF =12OC =14AC =24a∴EF =OF ·tan 30°=612a ∴OP =2EF =66a∴V P -ABCD =13×a 2×66a =618a 3。
高中数学必修二综合测试卷满分150分,考试时间120分钟.一、选择题:(共10小题,每小题5分) 1.某空间几何体的正视图是三角形,则该几何体不可能是( )A. 圆柱B. 圆锥C. 四面体D. 三棱柱 2.直线1l 与2l 垂直,则( )A .1l 与2l 的斜率之积等于1-B .1l 与2l 的斜率互为相反数C .1l 与2l 的斜率互为倒数D .以上答案都不正确 3.圆2240x y x +-=的圆心坐标和半径分别为( )A .(0,2),2B .(2,0),4C .(2,0),2-D .(2,0),2 4.已知m,n 表示两条不同直线,α表示平面.下列说法正确的是( ) A. 若m∥α,n∥α,则m∥n B. 若m⊥α,n ⊂α,则m⊥n C. 若m⊥α,m⊥n,则n∥αD. 若m∥α,m⊥n,则n⊥α5.将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为( ) A .2π B .4π C .8π D .16π 6.下列四个命题中错误的...是( ) A .若直线a 、b 互相平行,则直线a 、b 确定一个平面 B .若四点不共面,则这四点中任意三点都不共线 C .若两条直线没有公共点,则这两条直线是异面直线 D .两条异面直线不可能垂直于同一个平面7.设m∈R,过定点A 的动直线x+my=0和过定点B 的动直线mx-y-m+3=0交于点P(x,y),则|PA|∙|PB|的最大值是( )A .3B .10C .10D .58.在平面直角坐标系中,A 、B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x+y-4=0相切,则圆C 面积的最小值为( ) A.π54 B.π43 C. π)526(- D.π45 9. 直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN所成角的余弦值为( ) A.101 B.52 C.1030 D.22 10.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( ) A .62B .6C .42D .4 二、填空题:(共4小题,每小题5分)11.已知直线ax+y-2=0与圆心为C 的圆(x-1)2+(y-a)2=4相交于A,B 两点,且△ABC 为等边三角形,则实数a= .12.三棱锥P-ABC 中,D,E 分别为PB,PC 的中点,记三棱锥D-ABE 的体积为1V , P-ABC 的体积为2V , 则21V V = . 13.圆2220x y x +-=和圆2240x y y ++=的位置关系是_______. 14.如图,在正方体ABCD-A 1B 1C 1D 1中,点O 为线段BD 的中点.设点P 在线段CC 1上,直线OP 与平面A 1BD 所成的角为α,则sin α的取值范围是___ ____.三、解答题:(共6小题) 15.(本小题满分12分)如图四边形ABCD 为梯形,//AD BC ,90ABC ∠=︒,求图中阴影部分绕AB 旋转一周所形成的几何体的表面积和体积。
新人教版(2019A 版)高中数学必修第二册综合测试卷(时间:120分钟 分值:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一个选项是符合题目要求的)1.若复数z =2i3-i ,则z 的共轭复数z =( ) A.-15-35I B.-15+35I C.15+35I D.15-35i 答案:A2.某公司生产三种型号的轿车,其中型号Ⅰ的轿车的月产量为 1 200辆,型号Ⅱ的轿车的月产量为6 000辆,型号Ⅲ的轿车的月产量为2 000辆,现用分层抽样的方法抽取92辆车进行检验,则型号Ⅲ的轿车应抽取( )A.12辆B.36辆C.20辆D.60辆答案:C3.2010-2018年之间,受益于基础设施建设对光纤产品的需求,以及个人计算机及智能手机的下一代规格升级,电动汽车及物联网等新机遇,连接器行业发展较快.2010-2018年全球连接器营收情况如图所示,根据折线图,下列结论正确的个数为 ( )①每年的营收额逐年增长;②营收额增长最快的一年为2013-2014年;③2010-2018年的营收额增长率约为40%;④2014-2018年每年的营收额相对于2010-2014年每年的营收额,变化比较平稳.A.1B.2C.3D.4答案:C4.已知小张每次射击命中十环的概率都为40%,现采用随机模拟的方法估计小张三次射击恰有两次命中十环的概率,先由计算器产生0到9之间取整数值的随机数,指定2,4,6,8表示命中十环,0,1,3,5,7,9表示未命中十环,再以每三个随机数为一组,代表三次射击的结果,经随机模拟产生了如下20组随机数:321 421 292 925 274 632 800 478 598 663 531 297 396 021 506 318 230 113 507 965据此估计,小张三次射击恰有两次命中十环的概率约为( )A.0.25B.0.3C.0.35D.0.4答案:B5.盒子中有若干个大小和质地完全相同的红球和黄球,从中任意取出2个球,都是红球的概率为328,都是黄球的概率为514,则从盒子中任意取出2个球,恰好是同一颜色的概率为( )A.1328B.57C.1528D.37 答案:A6.某校篮球运动员进行投篮练习,若他前一球投进,则后一球投进的概率为34;若他前一球投不进,则后一球投进的概率为14.若他第1球投进的概率为34,则他第3球投进的概率为( ) A.34 B.58 C.116 D.916 答案:D7.已知数据x 1,x 2,x 3的中位数为k ,众数为m ,平均数为n ,方差为p ,下列说法中,错误的是( )A.数据2x 1,2x 2,2x 3的中位数为2kB.数据2x 1,2x 2,2x 3的众数为2mC.数据2x 1,2x 2,2x 3的平均数为2nD.数据2x 1,2x 2,2x 3的方差为2p答案:D8.一个圆柱的轴截面是正方形,如果这个圆柱的侧面积与一个球的表面积相等,那么圆柱的体积与球的体积之比为( )A.1∶3B.3∶1C.2∶3D.3∶2答案:D二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.如图,已知点O 为正六边形ABCDEF 的中心,下列结论中正确的是( )A.OA ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ =0B.(OA ⃗⃗⃗⃗⃗ -AF ⃗⃗⃗⃗⃗ )·(EF ⃗⃗⃗⃗⃗ -DC ⃗⃗⃗⃗⃗ )=0C.(OA ⃗⃗⃗⃗⃗ +AF ⃗⃗⃗⃗⃗ )·BC ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +AF ⃗⃗⃗⃗⃗ ·BC⃗⃗⃗⃗⃗ D.|OF ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ |=|FA ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ -CB⃗⃗⃗⃗⃗ | 答案:BC10.在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下,一定符合该标志的是( )甲地:中位数为2,极差为5;乙地:总体平均数为2,众数为2;丙地:总体平均数为1,总体方差大于0;丁地:总体平均数为2,总体方差为3.A.甲地B.乙地C.丙地D.丁地答案:AD11.如图,在正方体ABCD -A 1B 1C 1D 1中,以下四个选项正确的是( )A.D1C∥平面A1ABB1B.A1D1与平面BCD1相交C.AD⊥平面D1DBD.平面BCD1⊥平面A1ABB1答案:AD12.在△ABC中,三个内角A,B,C所对的边分别为a,b,c.若b=c cos A,A的平分线交BC于点D,AD=1,cos A=18,以下结论正确的是()A.AC=34B.AB=8C.CDBD =1 8D.△ABD的面积为3√74答案:ACD三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.已知a=(1,-1),b=(λ,1),若a与b的夹角为钝角,则实数λ的取值范围是(-∞,-1)∪(-1,1).14.从分别写有1,2,3,4,5的五张质地相同的卡片中,任取两张,这两.张卡片上的数字之差的绝对值等于1的概率为2515.(本题第一空2分,第二空3分)随机抽取100名学生,测得他们的身高(单位:cm),按照身高依次分成六组:[155,160),[160,165), [165,170),[170,175),[175,180),[180,185),并得到样本身高的频率分布直方图如图所示,则频率分布直方图中的x的值为0.06;若将身高区间[170,175),[175,180),[180,185)依次记为A,B,C三组,并用分层抽样的方法从这三组中抽取6人,则从A,B,C三组中依次抽取的人数为3,2,1.16.如图所示,已知六棱锥P-ABCDEF的底面是正六边形, PA⊥平面ABC,PA=2 AB.则下列命题中正确的有②④.(填序号)①PB⊥AD;②平面PAB⊥平面PAE;③BC∥平面PAE;④直线PD 与平面ABC所成的角为45°.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算过程)17.(10分)如图,正方体ABCD-A1B1C1D1的棱长为2,E,F分别为A1B,AC的中点.(1)证明:EF∥平面A1C1D;(2)求三棱锥C-A1C1D的体积.(1)证明:如图,连接BD.因为四边形ABCD为正方形,所以BD交AC于点F,且F为BD的中点.因为E为A1B的中点,所以EF∥A1D.因为EF⊄平面A1C1D,A1D⊂平面A1C1D,所以EF∥平面A1C1D.(2)解:三棱锥C-A1C1D的体积V=V棱锥A1-CC1D =13S△CC1D·A1D1=13×12×2×2×2=43.18.(12分)从含有两件正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出所有可能的结果组成的样本空间.(2)求取出的两件产品中,恰有一件次品的概率.解:(1)每次取出一个,取后不放回地连续取两次,其所有可能的结果有6个,即Ω={(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)},其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.(2)用A 表示事件“取出的两件产品中,恰好有一件次品”,则A ={(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)},所以P (A )=46=23. 19.(12分)某居民小区为了提高小区居民的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站.由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内读书者进行年龄调查, 随机抽取了一天中40名读书者进行调查,将他们的年龄分成6段:[20,30),[30,40),[40,50),[50,60),[60,70),[70,80],得到的频率分布直方图如图所示.(1)估计在这40名读书者中年龄分布在区间[40,70)上的人数;(2)求这40名读书者年龄的平均数和中位数;(3)从年龄在区间[20,40)上的读书者中任选两名,求这两名读书者年龄在区间[30,40)上的人数恰为1的概率.解:(1)由频率分布直方图知,年龄在区间[40,70)上的频率为(0.020+0.030+0.025)×10=0.75.所以40名读书者中年龄分布在区间[40,70)上的人数为40×0.75=30.(2)40名读书者年龄的平均数为25×0.05+35×0.1+45×0.2+55×0.3+ 65×0.25+75×0.1=54.设40名读书者年龄的中位数为x,0.05+0.1+0.2+(x-50)×0.03=0.5,解得x=55,即40名读书者年龄的中位数为55岁.(3)年龄在区间[20,30)上的读书者有2人,分别记为a,b,年龄在区间[30,40)上的读书者有4人,分别记为A,B,C,D.从上述6人中选出2人,有如下样本点:(a,b),(a,A),(a,B),(a,C),(a,D),(b,A),(b,B),(b,C),(b,D),(A,B), (A,C),(A,D),(B,C),(B,D),(C,D),共15个,记选取的两名读书者中恰好有1人年龄在区间[30,40)上为事件A,则事件A包含8个样本点:(a,A),(a,B),(a,C),(a,D),(b,A),(b,B),(b,C), (b,D),故P(A)=8.1520.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,设△ABC的面积为S,已知3c2=16S+3(b2-a2).(1)求tan B 的值;(2)若S =42,a =10,求b 的值.解:(1)因为3c 2=16S +3(b 2-a 2),所以3(c 2+a 2-b 2)=16S ,即3×2ac cos B =16×12ac sin B , 所以3cos B =4sin B ,即tan B =34. (2)由(1)可得sin B =35,cos B =45, 所以S =12ac sin B =12×10c ×35=3c =42, 所以c =14.由余弦定理可得,45=100+196-b 22×10×14,整理可得,b =6√2.21.(12分)已知向量a ,b 满足|a |=|b |=1,|xa +b |=√3|a -xb |(x >0,x ∈R).(1)求a ·b 关于x 的解析式f (x );(2)求向量a 与b 夹角的最大值;(3)若a 与b 平行,且方向相同,试求x 的值. 解:(1)由题意得|xa +b |2=3|a -xb |2,即x 2a 2+2xa ·b +b 2=3a 2-6xa ·b +3x 2b 2. 因为|a |=|b |=1,所以8xa ·b =2x 2+2, 所以a ·b =x 2+14x (x >0),即f (x )=14(x +1x ) (x >0). (2)设向量a 与b 夹角为θ,则cos θ=a ·b |a ||b |=f (x )=14[(√x -√x )2+2], 当√x =√x ,即x =1时,cos θ有最小值12.因为0≤θ≤π,所以θmax =π3. (3)因为a 与b 平行,且方向相同,|a |=|b |=1,所以a =b ,所以a ·b =14(x +1x )=1, 解得x =2±√3.22.(12分)如图,在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为菱形,AA 1⊥平面ABCD ,AC 与BD 交于点O ,∠BAD =60°,AB =2,AA 1=√6.(1)证明:平面A 1BD ⊥平面ACC 1A 1;(2)求二面角A -A 1C -B 的大小.(1)证明:由AA 1⊥平面ABCD ,得AA 1⊥BD ,AA 1⊥AC. 因为四边形ABCD 为菱形,所以AC ⊥BD.因为AC ∩AA 1=A ,所以BD ⊥平面ACC 1A 1.因为BD ⊂平面A 1BD ,所以平面A 1BD ⊥平面ACC 1A 1.(2)解:如图,过点O 作OE ⊥A 1C 于点E ,连接BE ,DE. 由(1)知BD ⊥平面ACC 1A 1,所以BD ⊥A 1C.因为OE ⊥A 1C ,OE ∩BD =O ,所以A 1C ⊥平面BDE ,所以A 1C ⊥BE. 因为OE ⊥A 1C ,BE ⊥A 1C ,所以∠OEB 为二面角A -A 1C -B 的平面角. 因为△ABD 为等边三角形且O 为BD 中点, 所以OB =12AB =1,OA =OC =√32AB =√3. 因为AA 1⊥AC ,所以A 1C =√AA 12+AC 2=3√2. 因为△A 1AC ∽△OEC ,所以OE AA 1=OC A 1C ,所以OE =OC ·AA 1A 1C =√3×√63√2=1. 在△OEB 中,OB ⊥OE ,所以tan ∠OEB =OBOE =1,即∠OEB =45°. 综上,二面角A -A 1C -B 的大小为45°.。
Q PC'B'A'C BA高中数学必修一必修二综合测试题(时间90分钟,满分150分)姓名___________________ 总分:________________ 一、选择题(本大题共10小题,每小题5分,共50分) 1.下面四个命题:①分别在两个平面内的两直线是异面直线;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面; ③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行;④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行. 其中正确的命题是( )A .①②B .②④C .①③D .②③ 2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x 3.圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是( )A .12B .32 C .1 D .34.设0<a <1,函数f (x )=log a (a 2x -2a x -2),则使f (x )<0的x 的取值范围是( )A .(-∞,0)B .(0,+∞)C .(-∞,log a 3)D .(log a 3,+∞)5.设y1=40.9,y2=80.48,y3=(12)-1.5,则( )A .y3>y1>y2B .y2>y1>y3C .y1>y2>y3D .y1>y3>y26.圆x 2+y 2-2x +4y -20=0截直线5x -12y +c =0所得的弦长为8,则c 的值是( ) A .10 B .10或-68 C .5或-34 D .-68 7.已知0,0ab bc <<,则直线ax by c +=通过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限8.正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是AA 1与CC 1的中点,则直线ED 与D 1F 所成角的大小是( )A .15B .13 C .12D 39. 在三棱柱111ABC A B C -中,各棱长相等,侧掕垂直于底面,点D 是侧面11BB C C 的中心,则AD 与平面11BB C C 所成角的大小是 ( )A .30B .45C .60D .9010.如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1 和 CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为( ) A .2V B .3V C .4V D .5V(10题) 二、填空题(本大题共4小题,每小题5分,共20分)11.函数f (x )=⎩⎪⎨⎪⎧log 12x ,x ≥12x ,x <1的值域为________.12.两圆221x y +=和22(4)()25x y a ++-=相切, 则实数a 的值为13.已知集合U ={2,3,6,8},A ={2,3},B ={2,6,8},则(∁U A )∩B =________.14.过点A (4,0)的直线l 与圆(x -2)2+y 2=1有公共点,则直线l 斜率的取值范围为 三、解答题(本大题共6小题,共80分)15.(本小题满分10分)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 与△A 1B 1C 1都为正三角形且AA 1⊥面ABC ,F 、F 1分别是AC ,A 1C 1的中点.求证:(1)平面AB 1F 1∥平面C 1BF ; (2)平面AB 1F 1⊥平面ACC 1A 1.(17题)16.(本小题满分12分)(1)定义在(-1,1)上的奇函数f (x )为减函数,且f (1-a )+f (1-a 2)>0,求实数a 的取值范围.(2)定义在[-2,2]上的偶函数g (x ),当x ≥0时,g (x )为减函数,若g (1-m )<g (m )成立,求m 的取值范围.17.(本小题满分12分)如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值(17题)18.(本小题满分15分)已知圆C1:x2+y2-2x-4y+m=0,(1)求实数m的取值范围;(2)若直线l:x+2y-4=0与圆C相交于M、N两点,且OM⊥ON,求m的值。
第六章综合测试一、单项选择题(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的是( )A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任意一点的连线都是母线2.在正方体1111ABCD A B C D -中,点Q 是棱DD 1上的动点,则过A ,Q ,B 1三点的截面图形不可能的是( ) A .等边三角形 B .矩形 C .等腰梯形 D .正方形3.若圆柱的轴截面是一个正方形,其面积为4S ,则它的一个底面面积是( ) A .4SB .4S πC .S πD .2S π 4.如果一个正四面体(各个面都是正三角形)的体积为39 cm ,则其表面积为( )A .2B .218 cmC .2D .212 cm5.已知平面α⊥平面β,且l αβ=,要得到直线m ⊥平面β,还需要补充的条件是( )A .m α⊂B .m α∥C .m l ⊥D .m α⊂且m l ⊥6.一个四面体共一个顶点的三条棱两两互相垂直,其长分别为13,其四面体的四个顶点在一个球面上,则这个球的表面积为( ) A .16πB .32πC .36πD .64π7.如图,在棱长为4的正方体1111ABCD A B C D -中,P 是11A B 上一点,且11114PB A B =,则多面体11P BCC B -的体积为( )A .83B .163C .4D .58.如图,在边长为1的正方形ABCD 中,点E ,F 分别为边BC ,AD 的中点,将ABF △沿BF 所在的直线进行翻折,将CDE △沿DE 所在的直线进行翻折,在翻折过程中,下列说法错误的是( )A .无论翻折到什么位置,A 、C 两点都不可能重合B .存在某个位置,使得直线AF 与直线CE 所成的角为60︒C .存在某个位置,使得直线AF 与直线CE 所成的角为90︒D .存在某个位置,使得直线AB 与直线CD 所成的角为90︒二、多项选择题(大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知α,β是两个不重合的平面,m 、n 是两条不重合的直线,则下列命题正确的是( ) A .若m n ∥,m α⊥,则n α⊥ B .若m α∥,n αβ=,则m n ∥C .若m α⊥,m β⊥,则αβ∥D .若m α⊥,m n ∥,n β⊥,则αβ∥10.已知m 、n 为两条不重合的直线,α、β为两个不重合的平面,则下列说法正确的是( ) A .若m α∥,n β∥且αβ∥,则m n ∥ B .若m n ∥,m α⊥,n β⊥,则αβ∥ C .若m n ∥,n α⊂,αβ∥,m β⊄,则m β∥ D .若m n ∥,n α⊥,αβ⊥,则m β∥11.如图,在四棱锥P —ABCD 中,底面ABCD 为菱形,60DAB ∠=︒,侧面PAD 为正三角形,且平面PAD⊥平面ABCD ,则下列说法正确的是( ) A .在棱AD 上存在点M ,使AD ⊥平面PMB B .异面直线AD 与PB 所成的角为90︒ C .二面角P —BC —A 的大小为45︒ D .BD ⊥平面PAC12.在正方体1111ABCD A B C D -中,N 为底面ABCD 的中心,P 为线段A 1D 1上的动点(不包括两个端点),M 为线段AP 的中点,则( ) A .CM 与PN 是异面直线 B .CM PN >C .平面PAN ⊥平面BDD 1B 1D .过P 、A 、C 三点的正方体的截面一定是等腰梯形三、填空题(本题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知一圆锥的侧面展开图是半径为2的半圆,则该圆锥的表面积为________,体积为________.14.已知正四棱锥的侧棱长为60︒,则该四棱锥的高为________.15.设α,β,γ是三个不同平面,a ,b 是两条不同直线,有下列三个条件:(1)a γ∥,b β∥;(2)a γ∥,b β⊂;(3)b β∥,a γ⊂,如果命题“a b αβγ=⊂,,且________,则a b ∥”为真命题,则可以在横线处填入的条件是________(把所有正确的序号填上).16.如图,已知六棱锥P —ABCDEF 的底面是正六边形,PA ⊥平面ABC ,2PA AB =,则下列结论中: ①PB AE ⊥;②平面ABC ⊥平面PBC ;③直线BC ∥平面PAE ;④45PDA ∠=︒,其中正确的有________(把所有正确的序号都填上).四、解答题(本题共6小题,共70分,解答时应写出必要的文字说明,证明过程或演算步骤) 17.已知正方体1111ABCD A B C D -. (1)证明:1D A ∥平面1C BD ; (2)求异面直线1D A 与BD 所成的角.18.如图,正方体1111ABCD A B C D -的棱长为a ,连接AC A D A B BD BC C D '''''',,,,,,得到一个三棱锥.求:(1)三棱锥—A BC D ''的表面积与正方体表面积的比值; (2)三棱锥—A BC D ''的体积.19.在如图的几何体中,四边形ABCD 是正方形,MA ⊥平面ABCD ,PD MA ∥,点E ,G ,F 分别为棱MB ,PB ,PC 的中点,且2AD PD MA ==.求证: (1)平面EFG ∥平面PMA ; (2)平面PDC ⊥平面EFG .20.如图平行四边形ABCD 中,BD =,2AB =,4AD =,将BCD △沿BD 折起到EBD △的位置,使平面EBD ⊥平面ABD . (1)求证:AB DE ⊥;(2)求三棱锥E —ABD 的侧面积.21.如图,在正方体1111ABCD A B C D -中,E 是棱1DD 的中点. (1)求直线BE 与平面11ABB A 所成的角的正弦值;(2)在棱C 1D 1上是否存在一点F ,使1B F ∥平面1A BE ?证明你的结论.22.如图,在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,90ACB ∠=︒,1AC =,12AA BC ==,点D 在侧棱1AA 上.(1)若D 为1AA 的中点,求证:1C D ⊥平面BCD ;(2)若1A D =1B C D C --的大小.第六章综合测试答案解析一、 1.【答案】D【解析】A 错误,如图1所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥,B 错误,如图2,若ABC △不是直角三角形或是直角三角形,但旋转轴不是直角边所在直线,所得的几何体都不是圆锥,C 错误,若六棱锥的所有棱长都相等,则底面多边形是正六边形,由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长,D 正确. 2.【答案】D【解析】当点Q 与点D1重合时,截面图形为等边三角形11AB D ,如图(1);当点Q 与点D 重合时,截面图形为矩形11AB C D ,如图(2);当点Q 不与点D 、1D 重合时,令Q 、R 分别为1DD 、11C D 的中点,则截面图形为等腰梯形1AQRB ,如图(3)D 是不可能的. 3.【答案】C【解析】由题意知圆柱的母线长为底面圆的直径2R ,则224R R S ⋅=,得2R S =,所以底面面积为2R S ππ=. 4.【答案】A【解析】设正四面体的棱长为 cm a ,则底面积为22 cm ,易求得高为 cm ,则体积为231934312a ⨯⨯==,解得a =,所以其表面积为)224cm 4⨯=. 5.【答案】D【解析】选项A ,B ,C 的条件都不能得到直线m ⊥平面β,而补充选项D 后,可以得到直线m ⊥平面β,理由如下:若两平面垂直,则一个平面内垂直于交线的直线垂直于另一个平面. 6.【答案】A【解析】将四面体可补形为长方体,此长方体的对角线即为球的直径,而长方体的对角线长为4=,即球的半径为2,故这个球的表面积为4216r ππ=.7.【答案】B【解析】】V 多面体1113P BCC B S -=正方形21111164133BCC B PB ⋅=⨯⨯=. 8.【答案】D【解析】在A 中,点A 与点C 一定不重合,故A 正确;在B 中,存在某个位置,使得直线AF 与直线CE 所成的角为60︒,故B 正确;在C 中,当平面ABF ⊥平面BEDF ,平面DCE ⊥平面BEDF 时,直线AF 与直线CE 垂直,故C 正确; 在D 中,直线AB 与直线CD 不可能垂直,故D 错误. 二、9.【答案】ACD【解析】若m α⊥,则a ∃,b α⊂且a b P ⋂=使得m α⊥,m b ⊥,又m n ∥,则n a ⊥,n b ⊥,由线面垂直的判定定理得n a ⊥,故A 对;若m α∥,n αβ⋂=,如图,设m AB =,平面1111A B C D 为平面α,m α∥,设平面11ADD A 为平面β,11A D n αβ==,则m n ⊥,故B 错;垂直于同一条直线的两个平面平行,故C 对;若m α⊥,m n ∥,则n a ⊥,又n β⊥,则αβ∥,故D 对. 10.【答案】BC【解析】若m α∥,n β∥且αβ∥,则可以m n ∥,m ,n 异面,或m ,n 相交,故A 错误;若m n ∥,m α⊥,则n a ⊥,又n β⊥,故α∥β,B 正确;若m n ∥,n α⊂,则m α∥或m α⊂,又αβ∥,m β⊄,故m β∥,C 正确;若m n ∥,n α⊥,则m α⊥,αβ⊥,则m β∥或m β⊂,D 错误. 11.【答案】ABC【解析】对于A ,取AD 的中点M ,连PM ,BM ,则侧面PAD 为正三角形,PM AD ∴⊥,又底面ABCD 是菱形,60DAB ∠=︒,ABD ∴△是等边三角形,AD BM ∴⊥,又PM BM M ⋂=,PM ,BM ⊂平面PMB ,AD ∴⊥平面PBM ,故A 正确,对于B ,AD ⊥平面PBM ,AD PB ∴⊥,即异面直线AD 与PB 所成的角为90︒,故B 正确,对于C ,平面PBC ⋂平面ABCD BC =,BC AD ∥,BC ∴⊥平面PBM ,BC PB ∴⊥,BC BM ⊥,PBM ∴∠是二面角P —BC —A 的平面角,设1AB =,则BM PM =,在Rt PBM △中,tan 1PMPBM RM∠==,即45PBM ∠=︒,故二面角P —BC —A 的大小为45︒,故C 正确,对于D ,因为BD 与PA 不垂直,所以BD 与平面PAC 不垂直,故D 错误. 12.【答案】BCD 【解析】C 、N 、A 共线,即CN 、PM 交于点A ,共面,因此CM 、PN 共面,A 错误; 记PAC θ∠=,则2222212cos cos 4PN AP AN AP AN AP AC AP AC θθ=+-⋅=+⋅︒-, 2222212cos cos 4CM AC AM AC AM AC AP AP AC θθ=+-⋅=+-⋅,又AP AC <, ()2222304CM PN AC AP -=->,22CM PN >,即 CM PN >,B 正确; 由于正方体中,AN BD ⊥,1BB ⊥平面ABCD ,则1BB AN ⊥,1BB BD B =,可得AN ⊥平面11BB D D ,AN ⊂平面PAN ,从而可得平面PAN ⊥平面11BDD B ,C 正确;取11C D 中点K ,连接KP ,KC ,11A C ,易知11PK AC ∥,又正方体中,11AC AC ∥,PK AC ∴∥,PK 、AC 共面,PKCA 就是过P 、A 、C 三点的正方体的截面,它是等腰梯形,D 正确. 三、13.【答案】3π【解析】设圆锥的底面半径为r ,根据题意,得22r ππ=,解得1r =,根据勾股定理,得圆锥的高为=,所以圆锥的表面积2212132S πππ=⨯⨯+⨯=,体积21133V π=⨯⨯=. 14.【答案】3【解析】如图,过点S 作SO ⊥平面ABCD ,连接OC ,则60SCO ∠=︒,sin 603SO SC ∴=︒=⋅⋅=. 15.【答案】(2)(3)【解析】a γ∥,b β∥,不可以,举出反例如下:使βγ∥,b γ⊂,a β⊂,则此时能有a γ∥,b β∥,但不一定有a b ∥; a γ∥,b β⊂,可以,由a γ∥得a 与γ没有公共点,由b β⊂,a αβ⋂=,b γ⊂知,a ,b 在面β内,且没有公共点,故平行; b β∥,a γ⊂可以,由b β∥,a αβ=知,a ,b 无公共点,再由a γ⊂,b γ⊂,可得两直线平行. 综上可知满足的条件有(2)和(3). 16.【答案】①④【解析】对于①,因为PA ⊥平面ABC ,所以PA AE ⊥,又EA AB ⊥,PA AB A ⋂=,所以EA ⊥平面PAB ,从而可得EA PB ⊥,故①正确;对于②,由于PA ⊥平面ABC ,所以平面ABC 与平面PBC 不可能垂直,故②不正确;对于③,由于在正六边形中BC AD ∥,所以BC 与EA 必有公共点,从而BC 与平面PAE 有公共点,所以直线BC 与平面PAE 不平行,故③不正确;对于④,由条件得PAD △为直角三角形,且PA AD ⊥,又2PA AB AD ==,所以45PDA ∠=︒,故④正确, 综上①④正确. 四、17.【答案】(1)证明:在正方体1111ABCD A B C D -中,11AB D C ∥,11AB D C =, ∴四边形11ABC D 是平行四边形,11AD BC ∴∥,1AD ⊄平面1C BD ,1BC ⊂平面1C BD ,1D A ∴∥平面1C BD ,(2)由(1)知,11AD BC ∥,∴异面直线1D A 与BD 所成的角即为1C BD ∠,易知1C BD △为等边三角形,160C BD ∴∠=︒,即异面直线1D A 与BD 所成的角为60︒, 18.【答案】(1)1111ABCD A B C D -是正方体,A B AC A D BC BD C D a ∴'=''='='=='=,∴三棱锥—A BC D ''的表面积为21422⨯⨯=,而正方体的表面积为26a ,故三棱锥A BC D '-' (2)三棱锥A ABD C BCD D A D C B A B C '-'--'''-''',,,是完全一样的,故 4A BC A ABD V D V V '''-=-正方体三枚维三衫维,332114323a a a a =-⨯⨯⨯=.19.【答案】(1)点E 、G 、F 分别为棱MB 、PB 、PC 的中点,EG PM GF BC ∴∥,∥,又PM ⊂平面PMA ,EG ⊄平面PMA ,EG ∴∥平面PMA , 四边形ABCD 是正方形,BC AD ∴∥,GF AD ∴∥,AD ⊂平面PMA ,GF ⊄平面PMA ,GF ∴∥平面PMA ,又EG GF G =,∴平面EFG ∥平面PMA ,(2)由已知MA ⊥平面ABCD ,PD MA ∥,PD ∴⊥平面ABCD , 又BC ⊂平面ABCD ,PD BC ∴⊥, 四边形ABCD 为正方形,BC DC ∴⊥, 又PDDC D =,BC ∴⊥平面PDC ,在PBC △中,G ,F 分别为PB ,PC 的中点,GF BC ∴∥,GF ∴⊥平面PDC ,又GF ⊂平面EFG ,∴平面PDC ⊥平面EFG .20.【答案】(1)证明:2AB =,BD =,4AD =,222AB BD AD ∴=+,AB BD ∴⊥,平面EBD ⊥平面ABD ,且平面EBD ⋂平面ABD BD =,AB ∴⊥平面EBD ,DE ⊂平面EBD ,AB DE ∴⊥,(2)由(1)知AB BD ⊥,CD AB ∥,CD BD ∴⊥,从而折叠后DE BD ⊥, 在Rt DBE △中,2DB =2DE DC AB ===,12DBE S DB DE ∴=⋅=△ 又AB ⊥平面EBD ,BE ⊂平面EBD ,AB BE ∴⊥, 4BE BC AD ===,412·ABE S AB BE ∴==△, DE BD ⊥,平面EBD ⊥平面ABD ,ED ∴⊥平面ABD , 又AD ⊂平面ABD ,ED AD ∴⊥,142ADE S AD DE ∴=⋅=△,综上,三棱锥E —ABD 的侧面积8S =+21.【答案】(1)如图(1),取1AA 的中点M ,连接EM ,BM , E 是1DD 的中点,四边形11ADD A 为正方形,EM AD ∴∥,在正方体1111-ABCD A B C D 中,AD ⊥平面11ABB A ,EM ∴⊥平面11ABB A ,从而EBM ∠为直线BE 与平面11ABB A 所成的角,设正方体1111-ABCD A B C D 的棱长为2,则2EM AD ==,3BE =, 在Rt BEM △中,2sin 3EM EBM BE ∠==, 即直线BE 与平面11ABB A 所成的角的正弦值为23.(2)在棱11C D 上存在点F ,使1B F ∥平面1A BE , 证明如下:如图(2),分别取11C D 和CD 的中点F 和G ,连接EG ,BG ,1CD ,FG ,1B F1111A D B C BC ∥∥,且11 A D BC =, ∴四边形11A BCD 为平行四边形,11D C A B ∴∥, 又E ,G 分别为D 1D ,CD 的中点,1EG D C ∴∥, 1EG A B ∴∥,1A ∴,B ,G ,E 四点共面,BG ∴⊂平面1A BE , 在正方体1AC 中,F 和G 分别为11C D 和CD 的中点, GF ∴綊1C C 綊1B B ,∴四边形1B BGF 为平行四边形, 1B F BG ∴∥,又1B F ⊄平面1A BE ,BG ⊂平面1A BE ,1B F ∴∥平面1A BE ,22.【答案】(1)证明:由已知,得1AA BC ⊥,AC BC ⊥,则BC ⊥平面11AAC C ,又1C D ⊂平面11AAC C ,则1BC C D ⊥,①因为D 为1AA 的中点,所以1AD AC ==,又AD AC ⊥,则CAD △为等腰直角三角形,所以45ADC ∠=︒,同理1145A DC ∠=︒,所以190CDC ∠=︒,即1CD C D ⊥,② 结合①②得,1C D ⊥平面BCD ,(2)作1CE C D ⊥,垂足为E ,连接BE ,如图, 因为BC ⊥平面11AAC C ,所以1BC C D ⊥,所以1C D ⊥平面BCE , 则1C D BE ⊥,所以BEC ∠为二面角1B C D C --的平面角,因为1111A D A C ==,所以1C D =在1CC D △中,12CC =,1CC 边上的高为1,则其面积为1,所以由112=得CE =,在Rt BCE △中,tan BC BEC CE ∠==,则 60BEC ∠=︒, 所以二面角1B C D C --的大小为60︒.。
高中数学必修二训练集锦目录:数学2(必修)数学2(必修)第一章:空间几何体[ 基础训练A组] 数学2(必修)第一章:空间几何体[ 综合训练B 组] 数学2(必修)第一章:空间几何体[ 提高训练C 组] 数学2(必修)第二章:点直线平面[ 基础训练A组] 数学2(必修)第二章:点直线平面[ 综合训练B 组] 数学2(必修)第二章:点直线平面[ 提高训练C 组] 数学2(必修)第三章:直线和方程[ 基础训练A组] 数学2(必修)第三章:直线和方程[ 综合训练B 组] 数学2(必修)第三章:直线和方程[ 提高训练C 组] 数学2(必修)第四章:圆和方程[ 基础训练A组] 数学2(必修)第四章:圆和方程[ 综合训练 B 组] 数学 2(必修)第四章:圆和方程 [ 提高训练 C 组]33 3 ( 数 学 2 必 修 ) 第 一 章 空 间 几 何 体[ 基础训练 A 组] 一、选择题1 . 有 一 个 几 何 体 的 三 视 图 如 下 图 所 示 , 这 个 几 何 体 应 是 一 个 ()A . 棱 台B . 棱 锥C . 棱 柱 D. 都 不 对主 视 图左 视 图俯 视 图2 . 棱 长 都 是 1 的 三 棱 锥 的 表 面 积 为 ()A .B .2 C .3 D.43 . 长 方 体 的 一 个 顶 点 上 三 条 棱 长 分 别 是 3,4 ,5 , 且 它 的 8 个 顶 点 都 在同 一 球 面 上 , 则 这 个 球 的 表 面 积 是 ( )A . 2 5B . 5 0C . 1 2 5D . 都 不 对4 . 正 方 体 的 内 切 球 和 外 接 球 的 半 径 之 比 为 ()A .: 1 B . : 2C . 2 :D . 35 . 在 △ A B C 中 , AB 2 , B C 1 . 5 , AB C1 2 0 ,若 使 绕 直 线 B C 旋 转 一 周 ,则 所 形 成 的 几 何 体 的 体 积 是 ( )9 7 5 3 A .B .C .D.22226 . 底 面 是 菱 形 的 棱 柱 其 侧 棱 垂 直 于 底 面 , 且 侧 棱 长 为 5 , 它 的 对 角 线 的 长分 别 是 9 和 1 5 , 则 这 个 棱 柱 的 侧 面 积 是 ( ) A . 1 3 0B . 1 4 0C . 1 5 0D . 1 6 0二、填空题1 . 一 个 棱 柱 至 少 有 _____ 个 面 , 面 数 最 少 的 一 个 棱 锥 有 ________个 顶 点 ,顶 点 最 少 的 一 个 棱 台 有________条 侧 棱 。
北师大版高中数学必修二综合试卷(附答案)
一、单选题
1.直线与圆相交于A、B两点且弦AB的长为,则a的值为()
A.-1B.0C.D.1
2.甲、乙两个几何体的三视图如图所示(单位相同),记甲、乙两个几何体的体积分别为,,则()
A.B.
C.D.
3.已知F为双曲线E:的一个焦点,设直线y=1与双曲线E和两条渐近线的交点从左至右依次为A,B,C,D,若|AD|=3|BC|,则F到渐近线的距离为
A.B.C.D.不能确定
4.用一根长为18cm的铁丝围成正三角形框架,其顶点为,将半径为2cm的球放置在这个框架上(如图).若M是球上任意一点,则四面体体积的最大值为( )
A.B.C.D.
5.若某空间几何体的三视图如图所示,根据图中数据,可得该几何体的表面积是()
A.B.C.D.
6.过点且与直线垂直的直线方程是()
A.B.C.D.
7.一个平面图形用斜二测画法作的直观图是一个边长为的正方形,则原图形的周长是()
A.B.C.D.
8.直线过点(-1,2)且与以点 (-3,-2)、 (4,0)为端点的线段恒相交,则的斜率取值范围是()
A.[-,5]
B.[-,0)∪(0,2]。
高中数学:选择性必修二综合测评(满分:150分;时间:120分钟)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知等差数列{a n}的公差d≠0,且a3+a6+a9=18,若a n=6,则n为()A.12B.8C.6D.42.已知函数f(x)=aln x+2,f'(e)=2,则a的值为()A.-1B.1C.2eD.e23.在等比数列{a n}中,a2+a3=1,a4+a5=2,则a6+a7=()A.2B.2√2C.4D.4√24.我国古代数学名著《九章算术》中有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织出的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上述已知条件,该女子第3天所织布的尺数为()A.1031B.2031C.54D.525.在等差数列{a n}中,首项a1>0,公差d≠0,前n项和为S n(n∈N*),且满足S3=S15,则S n 的最大项为()A.S7B.S8C.S9D.S106.已知函数f(x)=e-x(cos x+sin x),记f'(x)是f(x)的导函数,将满足f'(x)=0的所有正数x从小到大排成数列{x n},n∈N*,则f(x n)=()A.(-1)n e-(n+1)πB.(-1)n+1e-nπC.(-1)n e-nπD.(-1)n+1e-(n+1)π7.设奇函数f(x)在R 上存在导函数f'(x),且在(0,+∞)上f'(x)<x 2,若f(1-m)-f(m)≥13[(1-m)3-m 3],则实数m 的取值范围为( )A.[-12,12]B.(-∞,-12]∪[12,+∞)C.(-∞,-12]D.[12,+∞)8.已知定义在R 上的函数y=f(x)满足:函数y=f(x-1)的图象关于直线x=1对称,且当x ∈(-∞,0)时,有f(x)+xf'(x)<0(f'(x)是函数f(x)的导函数)成立.若a=(sin 12)·f (sin 12),b=(ln 2)·f(ln 2),c=(log 1214)·f (log 1214),则a,b,c 的大小关系是(深度解析)A.a>b>cB.b>a>cC.c>a>bD.a>c>b二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.设等差数列{a n }的首项为a 1,公差为d,其前n 项和为S n ,已知S 16>0,S 17<0,则下列结论正确的是( ) A.a 1>0,d<0 B.a 8+a 9>0C.S 8与S 9均为S n 的最大值D.a 9<010.已知函数f(x)=e x -ln x-2,则下列说法正确的是( ) A. f(x)有且仅有一个极值点 B. f(x)有零点C.若f(x)的极小值点为x 0,则0< f(x 0)<12D.若f(x)的极小值点为x 0,则12< f(x 0)<111.已知数列{a n}为等差数列,a1=1,且a2,a4,a8是一个等比数列中的相邻三项,记b n=a n q a n(q≠0,1),则{b n}的前n项和S n可以是()A.nB.nqC.q+nq n+1-nq n-q n(1-q)2D.q+nq n+2-nq n+1-q n+1 (1-q)212.已知f(x)=e x·x3,则下列结论正确的是()A.f(x)在R上单调递增B.f(log52)<f(e-12)<f(lnπ)C.方程f(x)=-1有实数根D.存在实数k,使得方程f(x)=kx有4个实数根三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上)13.在等差数列{a n}中,已知a3=4,a6=10,则a10-a7=.14.已知数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n∈N*),则a6=.15.已知函数f(x)=xg(x),曲线y=f(x)在点(1,f(1))处的切线方程是x-y-1=0,则曲线y=g(x)在点(1,g(1))处的切线方程是.16.已知函数f(x)=(4-x2)(x2+ax+b)的图象关于直线x=1对称,则a+b=,f(x)的最大值为.(第一空2分,第二空3分)四、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)在等差数列{a n}中,a2=3,a5=6.(1)求数列{a n}的通项公式;(2)设b n=1,求数列{b n}的前n项和S n.a n a n+118.(本小题满分12分)已知函数f(x)=e x(x-1)-1e a x2,a<0.2(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)的极小值;(3)求函数f(x)的零点个数.}的前n项19.(本小题满分12分)已知数列{a n}是首项为正数的等差数列,数列{1a n a n+1.和为n2n+1(1)求数列{a n}的通项公式;(2)设b n=(a n+1)·2a n,求数列{b n}的前n项和T n.20.(本小题满分12分)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d万元,并将剩余资金全部投入下一年生产.设第n年年底企业上缴资金后的剩余资金为a n 万元.(1)用d表示a1,a2,并写出a n+1与a n的关系式;(2)若公司希望经过m(m≥3)年使企业的剩余资金为4000万元,试确定企业每年上缴资金d的值(用m表示).21.(本小题满分12分)如图,有一块半径为20米,圆心角∠AOB=2π3的扇形展示台,该展示台分为四个区域:三角形OCD,弓形CMD,扇形AOC 和扇形BOD(其中∠AOC=∠BOD).某次菊花展依次在这四个区域摆放:泥金香、紫龙卧雪、朱砂红霜、朱砂红霜.预计这三种菊花展示带来的日效益分别是:泥金香50元/米2,紫龙卧雪30元/米2,朱砂红霜40元/米2.(1)设∠COD=θ,试建立日效益总量y 关于θ的函数关系式; (2)试探求θ为何值时,日效益总量达到最大值.22.(本小题满分12分)已知函数f(x)=ln(2x+a)(x>0,a>0),曲线y=f(x)在点(1,f(1))处的切线在y 轴上的截距为ln 3-23.(1)求a 的值;(2)讨论函数g(x)=f(x)-2x(x>0)和h(x)=f(x)-2x 2x+1(x>0)的单调性;(3)设a 1=25,a n+1=f(a n ),求证:5−2n+12n<1a n-2<0(n ≥2).答案全解全析一、单项选择题1.C 由a 3+a 6+a 9=18,得3a 6=18,∴a 6=6,又a n =6,∴a n =a 6,又d ≠0,∴{a n }为单调数列,∴n=6.故选C. 2.C 由f(x)=aln x+2得, f'(x)=ax ,∴f'(e)=ae=2,解得a=2e.故选C.3.C 设等比数列{a n }的公比为q,则a 4+a 5a 2+a 3=a 2q 2+a 3q 2a 2+a 3=q 2=2, ∴a 6+a 7=a 4q 2+a 5q 2=(a 4+a 5)q 2=2×2=4. 故选C.4.B 设该女子每天分别织布的尺数构成数列{a n },则数列{a n }为等比数列,设其首项为a 1,公比为q,前n 项和为S n .则q=2,S 5=5, ∴5=a 1(1-25)1−2,解得a 1=531,∴a 3=531×22=2031.故选B.5.C 由S 3=S 15得,a 4+a 5+…+a 15=0, ∴6(a 9+a 10)=0,即a 9+a 10=0. 又a 1>0,∴a 9>0,a 10<0, ∴S n 的最大项为S 9.故选C.6.C f'(x)=-e -x (cos x+sin x)+e -x (-sin x+cos x)=-2e -x sin x.令f'(x)=0,得-2e -x sin x=0,解得x=kπ,k ∈Z,从而x n =nπ,n ∈N *, f(x n )=(-1)n e -nπ.因为f(x n+1)f(x n )=-e -π,所以数列{f(x n )}是公比为-e -π的等比数列,其首项f(x 1)=(-1)1e -π=-e -π.其通项公式为f(x n )=(-1)n e -nπ,故选C.7.D 由f(1-m)-f(m)≥13[(1-m)3-m 3]得, f(1-m)-13(1-m)3≥f(m)-13m 3,构造函数g(x)=f(x)-13x 3,则g'(x)=f'(x)-x 2<0.故g(x)在(0,+∞)上单调递减,由函数f(x)为奇函数可得g(x)为奇函数,故g(x)在R 上单调递减, 因此原不等式可化为1-m ≤m,解得m ≥12,故选D.8.A 由函数y=f(x-1)的图象关于直线x=1对称知,f(x)是偶函数,设g(x)=x ·f(x),则g(x)是奇函数,且当x<0时,g'(x)=f(x)+x ·f'(x)<0,即g(x)是减函数,∴当x>0时,g(x)也是减函数.又0<sin 12<12<ln 2<lo g 1214=2,∴g (sin 12)>g(ln 2)>g (log 1214).即(sin 12)f (sin 12)>(ln 2)f(ln 2)>(log 1214)f (log 1214). ∴a>b>c. 故选A.解题模板 构造函数,利用单调性解决比较大小的问题中,掌握一些基本的大小关系可帮助解题,如本题中,当0<x<π2时,sin x<x,ln 2>ln √e =12等.二、多项选择题 9.ABD ∵S 16=16(a 1+a 16)2>0,∴a 8+a 9=a 1+a 16>0,∴B 正确. 又S 17=17(a 1+a 17)2=17a 9<0,∴a 9<0,∴a 8>0,∴d=a 9-a 8<0,∴a 1>0,∴A 、D 正确.易知S 8是S n 的最大值,S 9不是S n 的最大值,∴C 错误.故选ABD.10.AC 由题意得, f(x)的定义域为(0,+∞),且f'(x)=e x -1x,设h(x)=f'(x),则h'(x)=e x +1x2>0,∴h(x)在(0,+∞)上单调递增, 又h (12)=e 12-2=√e -2<0,h(1)=e 1-1>0,∴h(x)存在唯一零点,设为x 0, 当0<x<x 0时, f'(x)<0, f(x)单调递减, 当x>x 0时, f'(x)>0, f(x)单调递增, ∴f(x)有唯一极小值点x 0,∴A 正确. 令f'(x 0)=e x 0-1x 0=0,得e x 0=1x 0,∴x 0=ln 1x 0=-ln x 0.∴f(x 0)=e x 0-ln x 0-2=1x 0+x 0-2≥2√1x 0·x 0-2=0(当且仅当x 0=1时等号成立),又12<x 0<1,∴f(x 0)>0,即[f(x)]min >0, ∴f(x)无零点,∴B 错误. 由f(x 0)=1x 0+x 0-2,12<x 0<1,可设g(x)=1x+x-2,则g'(x)=-1x2+1.当12<x<1时,g'(x)<0,∴g(x)在(12,1)上单调递减.∴g(1)<g(x)<g (12),即0<f(x 0)<12, ∴C 正确,D 错误.故选AC.11.BD 设等差数列{a n }的公差为d,由题意得a 42=a 2a 8,即(1+3d)2=(1+d)(1+7d),∴d 2-d=0,解得d=0或d=1. 当d=0时,a n =a 1=1, ∴b n =a n q a n =q,∴{b n }的前n 项和为nq,B 正确. 当d=1时,a n =n, ∴b n =n ·q n (q ≠0,1). ∴S n =1×q+2×q 2+…+nq n ,∴qS n =1×q 2+…+(n-1)q n +n ·q n+1, ∴(1-q)S n =q+q 2+…+q n-nq n+1=q(1-q n)1−q-nqn+1=q -qn+1+nq n+2-nq n+11−q.又q ≠1,∴S n =q+nq n+2-nq n+1-q n+1(1-q)2,D 正确.故选BD.12.BCD f(x)=e x ·x 3, ∴f'(x)=e x (x 3+3x 2). 令f'(x)=0,得x=0或x=-3. 当x<-3时, f'(x)<0, f(x)单调递减, 当x>-3时, f'(x)≥0, f(x)单调递增,A 错误. 又0<log 52<12<e -12<1<ln π,∴f(log 52)< f(e -12)< f(ln π),B 正确. ∵f(0)=0, f(-3)=e -3·(-3)3=-(3e)3<-1,∴f(x)=-1有实数根,C 正确. 设f(x)=kx,显然x=0是方程的根, 当x ≠0时,k=f(x)x=e x ·x 2,设g(x)=e x ·x 2,则g'(x)=x(x+2)e x ,令g'(x)=0,得x=0或x=-2.当x 发生变化时,g'(x),g(x)的变化情况如下表:x (-∞,-2) -2 (-2,0) 0 (0,+∞) g'(x) + 0 - 0 + g(x)↗4e 2↘↗画出y=g(x)的大致图象,如图,∴当0<k<4e2时,g(x)=k 有3个实数根,∴D 正确.故选BCD.三、填空题 13.答案 6解析 设等差数列{a n }的公差为d.则3d=a 6-a 3=6,解得d=2. 所以a 10-a 7=3d=6. 14.答案 768解析 由a n+1=3S n ,得S n+1-S n =3S n ,即S n+1=4S n ,又S 1=a 1=1,所以数列{S n }是首项为1,公比为4的等比数列,所以S n =4n -1,所以a 6=S 6-S 5=45-44=3×44=768. 15.答案 x-y-1=0解析 ∵f(x)=xg(x),∴f'(x)=g(x)+xg'(x).∵曲线y=f(x)在(1, f(1))处的切线方程是x-y-1=0, ∴{1−f(1)-1=0,f'(1)=1,∴{f(1)=0,f'(1)=1.∴{f(1)=1×g(1)=0,f'(1)=g(1)+1×g'(1)=1,解得{g(1)=0,g'(1)=1.则曲线y=g(x)在(1,g(1))处的切线方程为y-0=1×(x-1),即x-y-1=0, 即切线方程为x-y-1=0. 16.答案 -4;16解析 由4-x 2=0可得x=2或x=-2,即2,-2是函数f(x)的零点,∵f(x)=(4-x 2)(x 2+ax+b)的图象关于直线x=1对称,且(2,0),(-2,0)关于x=1对称的点分别为(0,0),(4,0),∴0,4也是函数f(x)的零点, ∴0,4是x 2+ax+b=0的根,∴b=0,a=-4,∴a+b=-4, ∴f(x)=(4-x 2)(x 2-4x),∴f'(x)=-4(x-1)(x 2-2x-4), 令f'(x)=0,得x=1或x=1-√5或x=1+√5.当x>1+√5或1-√5<x<1, f'(x)<0, f(x)单调递减, 当1<x<1+√5或x<1-√5时, f'(x)>0, f(x)单调递增.又当x →∞时, f(x)<0, f(1+√5)=f(1-√5)=16,∴f(x)的最大值为16. 四、解答题17.解析 (1)设等差数列{a n }的首项为a 1,公差为d. ∵a 2=3,a 5=6,∴{a 1+d =3,a 1+4d =6,解得{a 1=2,d =1,(2分) ∴a n =a 1+(n-1)d=n+1.(4分) (2)由(1)知a n =n+1,∴b n =1a n a n+1=1(n+1)(n+2)=1n+1-1n+2,(6分)∴S n =b 1+b 2+…+b n =12-13+13-14+…+1n+1-1n+2(8分)=12-1n+2=n2(n+2).(10分)18.解析 (1)由已知得, f(x)的定义域为R, f'(x)=e x (x-1)+e x -e a x=x(e x -e a ), f'(0)=0. 又f(0)=-1,∴切点坐标为(0,-1).∴曲线y=f(x)在点(0,-1)处的切线方程为y=-1.(4分) (2)由(1)知f'(x)=x(e x -e a ). 令f'(x)=0,得x=0或x=a(a<0).当x 发生变化时, f'(x), f(x)的变化情况如下表:x (-∞,a) a (a,0) 0 (0,+∞) f'(x) + 0 - 0 + f(x)↗极大值↘极小值↗∴f(x)在(-∞,a),(0,+∞)上单调递增,在(a,0)上单调递减.∴f(x)在x=0处取得极小值,且极小值为f(0)=-1.(8分)(3)由(2)知f(x)的极大值为f(a)=e a (a-1)-12e a a 2=(a -1-12a 2)e a <0(a<0),f(0)=-1<0, f(2)=e 2-2e a . ∵a<0,∴0<e a <1,∴f(2)>0. ∴函数f(x)的零点个数为1.(12分)19.解析 (1)设等差数列{a n }的首项为a 1,公差为d, 令n=1,得1a 1a 2=13,所以a 1a 2=3.①(1分) 令n=2,得1a 1a 2+1a 2a 3=25,所以a 2a 3=15.②(3分)由①②得a 1=1,d=2,所以a n =2n-1.(5分) (2)由(1)知b n =2n ·22n-1=n ·4n , 所以T n =1·41+2·42+…+n ·4n ,所以4T n =1·42+…+(n-1)·4n +n ·4n+1,(7分) 两式相减,得-3T n =41+42+…+4n -n ·4n+1(9分) =4(1−4n )1−4-n ·4n+1=1−3n 3·4n+1-43,(11分)所以T n =3n -19·4n+1+49=4+(3n -1)·4n+19.(12分)20.解析 (1)由题意得a 1=2 000(1+50%)-d=3 000-d,a 2=a 1(1+50%)-d=32a 1-d=4 500-52d,(2分)a n+1=a n (1+50%)-d=32a n -d.(5分)(2)由(1)得a n =32a n-1-d=32·(32a n -2-d)-d=(32)2·a n-2-32d-d=…=(32)n -1a 1-d1+32+(32)2+…+(32)n -2,(7分)整理得a n =(32)n -1(3 000-d)-2d ·[(32)n -1-1]=(32)n -1(3 000-3d)+2d.(9分)由题意知a m =4 000,所以(32)m -1(3 000-3d)+2d=4 000,解得d=[(32)m -2]×1 000(32)m -1=1 000(3m -2m+1)3m -2m.(11分)故该企业每年上缴资金d 的值为1 000(3m -2m+1)3m -2m万元时,经过m(m ≥3)年企业的剩余资金为4 000万元.(12分) 21.解析 (1)依题意得,∠AOC=2π3-θ2=π3-θ2,(2分)则y=12×(π3-θ2)×202×40×2+12×202×sin θ×50+12×θ×202-12×202×sin θ×30 =16 000×(π3-θ2)+10 000sin θ+6 000θ-6 000sin θ =16 000π3+4 000sin θ-2 000θ,0<θ<2π3.(6分)(2)由(1)得,y'=4 000cos θ-2 000, 令y'=0,得cos θ=12,又0<θ<2π3,所以θ=π3,(8分)当0<θ<π3时,y'>0,当π3<θ<2π3时,y'<0,(10分)所以θ=π3是函数的极大值点,且唯一;所以当θ=π3时,日效益总量达到最大值.(12分)22.解析 (1)由f(x)=ln(2x+a), 得f'(x)=22x+a,因此f'(1)=22+a.(1分)又因为f(1)=ln(2+a),所以曲线y=f(x)在点(1, f(1)处的切线方程为y-ln(2+a)=22+a(x-1),即y=22+ax+ln(2+a)-22+a.(2分)由题意得,ln(2+a)-22+a=ln 3-23,易得a=1,符合上式.(3分) 令φ(a)=ln(2+a)-22+a(a>0),则φ'(a)=12+a +2(2+a)2>0,所以φ(a)为单调递增函数,故a=1是唯一解.(4分) (2)由(1)可知,g(x)=ln(2x+1)-2x(x>0),h(x)=ln(2x+1)-2x 2x+1(x>0),则g'(x)=22x+1-2=-4x2x+1<0,所以g(x)=f(x)-2x(x>0)为单调递减函数.(6分) 因为h'(x)=22x+1-2(2x+1)2=4x(2x+1)2>0,所以h(x)=f(x)-2x 2x+1(x>0)为单调递增函数.(8分)(3)证明:由a 1=25,a n+1=f(a n )=ln(2a n +1),易得a n >0.所以5−2n+12n<1a n-2等价于a n <2n5.(9分)由(2)可知,g(x)=f(x)-2x=ln(2x+1)-2x 在(0,+∞)上为单调递减函数. 因此,当x>0时,g(x)<g(0)=0,即f(x)<2x. 令x=a n-1(n ≥2),得f(a n-1)<2a n-1, 即a n <2a n-1.因此,当n ≥2时,a n <2a n-1<22a n-2<…<2n-1·a 1=2n5.所以5−2n+12n<1a n-2成立.(10分)下面证明:1a n-2<0.由(2)可知,h(x)=f(x)-2x2x+1=ln(2x+1)-2x2x+1在(0,+∞)上为单调递增函数,因此,当x>0时,h(x)>h(0)=0, 即f(x)>2x 2x+1>0.因此1f(x)<12x+1,即1f(x)-2<12(1x-2). 令x=a n-1(n ≥2), 得1f(a n -1)-2<12(1an -1-2),即1a n-2<12(1an -1-2).当n=2时,1a n-2=1a 2-2=1f(a 1)-2=1f(25)-2=1ln1.8-2.因为ln 1.8>ln √3>ln √e =12,所以1ln1.8-2<0,所以1a 2-2<0.(11分)所以,当n ≥3时,1a n-2<12(1an -1-2)<122(1an -2-2)<…<12n -2(1a 2-2)<0.所以,当n ≥2时,1a n-2<0成立. 综上所述,当n ≥2时,5−2n+12n<1a n-2<0成立.(12分)。
综合检测试卷(一)(时间:120分钟 满分:150分)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.等比数列{a n }中,a 5,a 7是函数f (x )=x 2-4x +3的两个零点,则a 3·a 9等于( ) A .-3 B .3 C .-4 D .4 答案 B解析 ∵a 5,a 7是函数f (x )=x 2-4x +3的两个零点,∴a 5,a 7是方程x 2-4x +3=0的两个根, ∴a 5·a 7=3,由等比数列的性质可得a 3·a 9=a 5·a 7=3. 2.设函数f (x )=ax 3+b ,若f ′(-1)=3,则a 的值为( ) A .-1 B.12 C .1 D.13答案 C解析 ∵f ′(x )=3ax 2 , ∴f ′(-1)=3a =3, ∴a =1.3.S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12为( )A.310B.13C.18D.19 答案 A解析 设S 3=a ,S 6=3a ,根据S 3,S 6-S 3,S 9-S 6,S 12-S 9是一个首项为a ,公差为a 的等差数列, 各项分别为a ,2a ,3a ,4a , 故S 6S 12=3a a +2a +3a +4a =310. 4.函数f (x )=e x -x (e 为自然对数的底数)在区间[-1,1]上的最大值是( ) A .1+1e B .1 C .e +1 D .e -1答案 D解析 f ′(x )=e x -1,令f ′(x )=0,得x =0.又f (0)=e 0-0=1,f (1)=e -1>1,f (-1)=1e +1>1,且e -1-⎝⎛⎭⎫1+1e =e -1e -2=e 2-2e -1e>0, 所以f (x )max =f (1)=e -1.5.函数y =1ln x的大致图象可能是( )答案 D解析 当x =e 时,y =1,即函数过点(e,1),排除A ; ∵y =1ln x ,∴y ′=-1x (ln x )2,x >0且x ≠1,当x >1时,函数单调递减;当0<x <1时,函数单调递减,排除B ,C.6.设等比数列{a n }的前n 项和为S n ,且满足a 1+a 4=94,S 6=9S 3.若b n =log 2a n ,则数列{b n }的前10项和是( )A .-35B .-25C .25D .35 答案 C解析设等比数列{a n}的公比为q .由题意知q ≠1,则⎩⎪⎨⎪⎧a 1(1+q 3)=94,a 11-q (1-q 6)=9a11-q (1-q 3),解得⎩⎪⎨⎪⎧a 1=14,q =2,所以a n =14×2n -1=2n -3,所以b n =n -3,所以数列{b n }的前10项和T 10=10(b 1+b 10)2=5×(-2+7)=25. 7.中国明代商人程大位对文学和数学颇感兴趣,他于60岁时完成杰作《直指算法统宗》.这是一本风行东亚的数学名著,该书第五卷有问题云:“今有白米一百八十石,令三人从上及和减率分之,只云甲多丙米三十六石,问:各该若干?”翻译成现代文为:今有白米一百八十石,甲、乙、丙三个人来分,他们分得的米数构成等差数列,只知道甲比丙多分三十六石,那么三人各分得多少石米?请你计算甲应该分得( ) A .78石 B .76石 C .75石 D .74石答案 A解析 今有白米一百八十石,甲、乙、丙三个人来分,设他们分得的米数构成等差数列{a n },只知道甲比丙多分三十六石,因此公差d =a 3-a 13-1=-362=-18,则前3项和S 3=3a 1+3×22×(-18)=180,解得a 1=78.所以甲应该分得78石.8.已知f (x )为定义在R 上的可导函数,f ′(x )为其导函数,且f (x )<f ′(x )恒成立,其中e 是自然对数的底数,则( ) A .f (2 020)<e f (2 021) B .e f (2 020)<f (2 021) C .e f (2 020)=f (2 021) D .e f (2 020)>f (2 021)答案 B解析 令F (x )=f (x )e x ,则F ′(x )=f ′(x )-f (x )e x ,由于f (x )<f ′(x ),所以F ′(x )>0,故函数F (x )在R 上单调递增,所以F (2 021)>F (2 020), 故f (2 021)e 2 021>f (2 020)e2 020, 即e f (2 020)<f (2 021).二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分) 9.如图是导数y =f ′(x )的图象,下列说法正确的是( )A .(-1,3)为函数y =f (x )的单调递增区间B .(3,5)为函数y =f (x )的单调递减区间C .函数y =f (x )在x =0处取得极大值D .函数y =f (x )在x =5处取得极小值 答案 ABD解析 由题图,可知当x <-1或3<x <5时,f ′(x )<0;当x >5或-1<x <3时,f ′(x )>0,所以函数y =f (x )的单调递减区间为(-∞,-1),(3,5),单调递增区间为(-1,3),(5,+∞),所以函数y =f (x )在x =-1,x =5处取得极小值,在x =3处取得极大值,故选项C 说法错误,A ,B ,D 正确.10.等差数列{a n }是递增数列,满足a 7=3a 5,前n 项和为S n ,下列选项正确的是( ) A .d >0B .a 1<0C .当n =5时,S n 最小D .S n >0时,n 的最小值为8答案 ABD解析 由题意,设等差数列{a n }的公差为d ,因为a 7=3a 5,可得a 1+6d =3(a 1+4d ),解得a 1=-3d ,又由等差数列{a n }是递增数列,可知d >0,则a 1<0,故A ,B 正确; 因为S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n =d 2n 2-7d 2n =d 2⎝⎛⎭⎫n -722-49d8, 由n ∈N *可知,当n =3或4时,S n 最小,故C 错误;令S n =d 2n 2-7d2n >0,解得n <0或n >7,即S n >0时,n 的最小值为8,故D 正确.11.设等差数列{a n }的前n 项和为S n ,且满足S 15>0,S 16<0,则( ) A .a 8>0 B .a 9<0C.S 1a 1,S 2a 2,…,S 15a 15中最大的项为S 9a 9 D.S 1a 1,S 2a 2,…,S 15a 15中最大的项为S 8a 8 答案 ABD解析 由S 15=15(a 1+a 15)2=15a 8>0,得a 8>0,A 正确;由S 16=16(a 1+a 16)2=16(a 9+a 8)2<0,得a 9+a 8<0,所以a 9<0,且d <0,B 正确;因为d <0,所以数列{a n }为递减数列,所以a 1,…,a 8为正,a 9,…,a n 为负,且S 1,…,S 15为正,S 16,…,S n 为负,则S 1a 1,…,S 8a 8为正,S 9a 9,…,S 15a 15为负,C 错误;当n ≤8时,S n 单调递增,a n 单调递减,所以S n a n 单调递增,所以S 1a 1,S 2a 2,…,S 15a 15中最大的项为S 8a 8,D 正确. 12.若函数f (x )=e x -1与g (x )=ax 的图象恰有一个公共点,则实数a 的可能取值为( ) A .2 B .0 C .1 D .-1答案 BCD解析 f (x )=e x -1与g (x )=ax 恒过(0,0),如图,当a ≤0时,两函数图象恰有一个公共点,当a >0时,函数f (x )=e x -1与g (x )=ax 的图象恰有一个公共点, 则g (x )=ax 为f (x )=e x -1的切线,且切点为(0,0), 由f ′(x )=e x ,所以a =f ′(0)=e 0=1, 综上所述,a 的可能取值为0,-1或1.三、填空题(本题共4小题,每小题5分,共20分)13.若函数f (x )=-x 3+ax 2-4在x =2处取得极值,则a =________. 答案 3解析 由f (x )=-x 3+ax 2-4, 可得f ′(x )=-3x 2+2ax ,因为x =2是函数f (x )的极值点,可得f ′(2)=0, 所以-3×4+2a ×2=0,解得a =3.14.若数列{a n }的前n 项和S n =3n -1,则它的通项公式a n =________. 答案 2×3n -1解析 当n ≥2时,a n =S n -S n -1=3n -1-(3n -1-1)=2×3n -1, 当n =1时,a 1=S 1=2,也满足式子a n =2×3n -1, ∴数列{a n }的通项公式为a n =2×3n -1.15.在数列{a n }中,已知a 1=2,a n a n -1=2a n -1-1(n ≥2,n ∈N *),记数列{a n }的前n 项之积为T n ,若T n =2 021,则n 的值为________. 答案 2 020 解析 由a n a n -1=2a n -1-1(n ≥2,n ∈N *)及a 1=2,得a 2=32,a 3=43,a 4=54,…,a n =n +1n.数列{a n }的前n 项之积为 T n =21×32×43×…×n +1n=n +1.∴当T n =2 021时,n 的值为2 020.16.若函数f (x )=ax 3-32x 2+1存在唯一的零点x 0,且x 0>0,则实数a 的取值范围是________.答案 ⎝⎛⎭⎫-∞,-22解析 当a =0时,f (x )=-32x 2+1有两个零点,不符合题意;当a ≠0时,f ′(x )=3ax 2-3x =3x (ax -1), 令f ′(x )=0,解得x 1=0,x 2=1a.①若a >0,则1a >0,令f ′(x )>0,得x <0或x >1a ;令f ′(x )<0,得0<x <1a,则f (x )在(-∞,0),⎝⎛⎭⎫1a ,+∞上单调递增,在⎝⎛⎭⎫0,1a 上单调递减;又f (-1)=-a -12<0,f (0)=1,则此时f (x )在(-∞,0)上存在零点,不符合题意.②若a <0,则1a <0,令f ′(x )>0,得1a <x <0;令f ′(x )<0,得x <1a 或x >0,则f (x )在⎝⎛⎭⎫1a ,0上单调递增,在⎝⎛⎭⎫-∞,1a ,(0,+∞)上单调递减. 要使存在唯一的零点x 0且x 0>0,则满足f ⎝⎛⎭⎫1a =1-12a 2>0,解得a <-22, 综上,实数a 的取值范围是⎝⎛⎭⎫-∞,-22. 四、解答题(本题共6小题,共70分)17.(10分)已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=3,a n b n +b n =nb n +1. (1)求{a n }的通项公式; (2)求{b n }的前n 项和.解 (1)由已知b 1=1,b 2=3,a 1b 1+b 1=b 2,得a 1=2, ∴数列{a n }是以2为首项,3为公差的等差数列, ∴a n =2+3(n -1)=3n -1(n ∈N *). (2)由(1)知,(3n -1)b n +b n =nb n +1, 即b n +1=3b n ,∴数列{b n }是以1为首项,3为公比的等比数列,记{b n }的前n 项和为S n , 则S n =1-3n 1-3=3n -12(n ∈N *).18.(12分)已知函数f (x )=12x 2+a ln x .(1)若a =-1,求函数f (x )的极值,并指出是极大值还是极小值; (2)若a =1,求函数f (x )在[1,e]上的最大值和最小值. 解 (1)函数f (x )的定义域为(0,+∞), 当a =-1时,f ′(x )=x -1x =(x +1)(x -1)x ,令f ′(x )=0,得x =1或x =-1(舍去), 当x ∈(0,1)时,f ′(x )<0, 函数f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0, 函数f (x )单调递增,所以f (x )在x =1处取得极小值,极小值为12,无极大值.(2)当a =1时,易知函数f (x )在[1,e]上单调递增, 所以f (x )min =f (1)=12,f (x )max =f (e)=12e 2+1.19.(12分)在等差数列{a n }中,a 2=3,a 5=9,在等比数列{b n }中,b 1=a 2,b 2=a 5. (1)求数列{a n },{b n }的通项公式; (2)若c n =a n b n ,求数列{c n }的前n 项和T n .解 (1)在等差数列{a n }中,设首项为a 1,公差为d . 由a 2=3,a 5=9,得⎩⎪⎨⎪⎧a 2=a 1+d =3,a 5=a 1+4d =9,解得⎩⎪⎨⎪⎧a 1=1,d =2.所以a n =2n -1. 又设{b n }的公比为q ,由b 1=a 2=3,b 2=a 5=9,得q =3, 所以b n =3n .(2)c n =a n b n =(2n -1)·3n ,T n =3+3×32+5×33+…+(2n -1)·3n ,①3T n =32+3×33+5×34+…+(2n -3)×3n +(2n -1)·3n +1,② 由①-②得-2T n =3+2(32+33+34+…+3n )-(2n -1)·3n +1 =3+2×9(1-3n -1)1-3-(2n -1)·3n +1=-6+2(1-n )·3n +1, 所以T n =3+(n -1)·3n +1.20.(12分)正项数列{a n }的前n 项和S n 满足S 2n -(n 2+n -1)S n -(n 2+n )=0.(1)求数列{a n }的通项公式a n ;(2)令b n =n +1(n +2)2a 2n,数列{b n }的前n 项和为T n ,证明:对于任意的n ∈N *,都有T n <564. (1)解 由S 2n -(n 2+n -1)S n -(n 2+n )=0,得[S n -(n 2+n )](S n +1)=0.由于数列{a n }是正项数列,所以S n >0,所以S n =n 2+n . 则a 1=S 1=2,当n ≥2时,a n =S n -S n -1 =n 2+n -(n -1)2-(n -1)=2n , 又a 1=2=2×1满足上式.综上,数列{a n }的通项公式为a n =2n (n ∈N *).(2)证明 因为a n =2n ,所以b n =n +1(n +2)2a 2n=n +14n 2(n +2)2=116⎣⎢⎡⎦⎥⎤1n 2-1(n +2)2.T n =116⎣⎡⎦⎤1-132+122-142+132-152+…+1(n -1)2-1(n +1)2+1n 2-1(n +2)2=116⎣⎢⎡⎦⎥⎤1+122-1(n +1)2-1(n +2)2<116⎝⎛⎭⎫1+122=564. 所以对于任意的n ∈N *,都有T n <564.21.(12分)某商场销售某件商品的经验表明,该商品每日的销量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求实数a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大,并求出最大值. 解 (1)∵当x =5时,y =11, ∴由函数式y =ax -3+10(x -6)2, 得a2+10=11, ∴a =2.(2)由(1)知该商品每日的销售量y =2x -3+10(x -6)2,∴商场每日销售该商品所获得的利润为f (x )=(x -3)⎣⎢⎡⎦⎥⎤2x -3+10(x -6)2=2+10(x -3)(x -6)2,3<x <6, f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)(x -6), 令f ′(x )=0,得x =4,当3<x <4时,f ′(x )>0,函数f (x )在(3,4)上单调递增; 当4<x <6时,f ′(x )<0,函数f (x )在(4,6)上单调递减,∴当x =4时,函数f (x )取得最大值f (4)=42,∴当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大,最大值为42. 22.(12分)已知函数f (x )=3(x -1)-2x ln x . (1)求f (x )的单调递增区间;(2)当x ≥1时,f (x )≤a ln x 恒成立,求实数a 的取值范围. 解 (1)因为函数f (x )=3(x -1)-2x ln x , 所以f ′(x )=1-2ln x , 令f ′(x )>0, 解得0<x <12e ,所以f (x )的单调递增区间为120,e ⎛⎫ ⎪⎝⎭.(2)因为当x ≥1时,f (x )≤a ln x 恒成立,所以当x ≥1时,3(x -1)-2x ln x -a ln x ≤0恒成立, 令g (x )=3(x -1)-2x ln x -a ln x ,则g (1)=0, 且g ′(x )=x -a -2x ln xx ,令h (x )=x -a -2x ln x ,则h ′(x )=-1-2ln x ,h (1)=1-a , 因为当x ≥1 时,h ′(x )≤0恒成立, 所以h (x )在[1,+∞)上单调递减.当a ≥1时,h (x )≤h (1)≤0,g (x )在[1,+∞)上单调递减, 故g (x )≤g (1)=0, 符合要求;当a ∈(-e,1)时,h (1)>0,h (e)=-e -a <0,h (x )单调递减, 故存在x 0∈(1,e)使得h (x 0)=0,则当x ∈(1,x 0)时,h (x )>0,g (x )单调递增,g (x )>g (1)=0,不符合要求;当a ∈(-∞,-e]时,12e a h -⎛⎫ ⎪⎝⎭=12e 1a a -⎛⎫- ⎪⎝⎭<0,h (x )单调递减,故存在x0∈121,ea-⎛⎫⎪⎝⎭使得h(x0)=0,则当x∈(1,x0) 时,h(x)>0,g(x)单调递增,g(x)>g(1)=0,不符合要求.综上a≥1.。
高中数学必修2测试题附答案数学必修2一、选择题1、下列命题为真命题的是()A.平行于同一平面的两条直线平行;解析:平行于同一平面的两条直线一定平行,为真命题,选A。
2、下列命题中错误的是:()A.如果α⊥β,那么α内一定存在直线平行于平面β;解析:如果直线α垂直于平面β,则α内不存在直线平行于平面β,选A。
3、右图的正方体ABCD-A’B’C’D’中,异面直线AA’与BC所成的角是()解析:异面直线AA’与BC所成的角为直角,选D。
4、右图的正方体ABCD-A’B’C’D’中,AB二面角D’-AB-D的大小是()解析:AB二面角D’-AB-D为60度,选C。
5、直线5x-2y-10=0在x轴上的截距为a,在y轴上的截距为b,则()解析:将y=0代入5x-2y-10=0,得到x=2,即直线在x轴上的截距为2;将x=0代入5x-2y-10=0,得到y=-5,即直线在y轴上的截距为-5,选B。
6、直线2x-y=7与直线3x+2y-7=0的交点是()解析:将2x-y=7和3x+2y-7=0联立,解得交点为(3,-1),选A。
7、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是()解析:3x-4y+6=0的斜率为3/4,与其垂直的直线斜率为-4/3,过点P(4,-1),代入点斜式方程y+1=-4/3(x-4),化简得到4x+3y-13=0,选A。
8、正方体的全面积为a,它的顶点都在球面上,则这个球的表面积是:()解析:正方体的全面积为6a,每个面积为a,每个面的对角线长为正方体的对角线长,即球的直径。
因此球的直径为正方体的对角线长,即a的开根号乘以根号3.球的表面积为4πr^2,即4π(0.5a√3)^2=3πa^2,选C。
9、圆x^2+y^2-4x-2y-5=0的圆心坐标是:()解析:将x^2-4x和y^2-2y分别配方得到(x-2)^2-4+(y-1)^2-1=0,即(x-2)^2+(y-1)^2=5,圆心坐标为(2,1),选B。
正视图
侧视图
俯视图
2
1
1
高中数学必修2综合测试题
文科数学
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.若直线1=x 的倾斜角为α,则=α( ).
A .0 B.3
π C .2π
D .π
2.已知直线1l 经过两点)2,1(--、)4,1(-,直线2l 经过两点)1,2(、)6,(x ,且21//l l ,则=x ( ). A .2 B .-2 C .4 D .1
3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ).
A .π25
B .π50
C .π125
D .π200 4.若方程02
2
=++++k y x y x 表示一个圆,则k 的取值范围是( )
A.21>
k B.21≤k C. 2
1
0<<k D . 21<k 5.设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( )
A.若//l α,//l β,则//αβ
B.若l α⊥,l β⊥,则//αβ
C.若βα//,l l ⊥,则βα//
D.若αβα//,l ⊥
,则β⊥l
6.如图6,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是( ). A .BD ∥平面CB 1D 1
B .A
C 1⊥BD
C .AC 1⊥平面CB 1
D 1
D .异面直线AD 与CB 1角为60°
7.某三棱锥的三视图如图7所示,则该三棱锥的体积是 ( ) A.
16 B. 13 C.2
3
D.1 8.直线20x y +-=与圆()()2
2
121x y -+-=相交于,A B 两点,则弦长AB =( )
A .
22 B .3
2
C 3
D .2 9.点P (4,-2)与圆2
2
4x y +=上任一点连线的中点轨迹方程是 ( ) A.2
2
(2)(1)1x y -++= B.2
2
(2)(1)4x y -++= C.2
2
(4)(2)4x y ++-= D.2
2
(2)(1)1x y ++-=
(第6题)
(第7题)
10.设实数,x y 满足22
(2)3x y -+=,那么
y
x
的最大值是( ) A .
1
2
B .3
C .3
D .3
11.已知直线)(2R a a ay x ∈+=+与圆07222
2
=---+y x y x 交于M ,N 两点,则线段MN 的长的最小值为( )
A .
B .
C .2
D .
12.已知点),(y x P 在直线032=-+y x 上移动,当
y
x 42+取得最小值时,过点),(y x P 引圆
22111
()()242
x y -++=的切线,则此切线长为( )
A .
12 B .3
2
C 6
D 3
第Ⅱ卷
二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)
13.直线过点)4,3(-,且在两坐标轴上的截距相等的直线一般式方程: ; 14.圆03422
2
=-+++y x y x 上到直线01=++y x 的距离为2的点共有 个;
15.曲线4)2(412+-=-+=x k y x y 与直线有两个交点,则实数k 的取值范围是 ; 16.已知在△ABC 中,顶点)5,4(A ,点B 在直线022:=+-y x l 上,点C 在x 轴上,则△ABC 的周长的最小值 .
三、解答题(解答应写出文字说明,证明过程或演算步骤)
17.(本小题满分10分)
已知三角形ABC 的顶点坐标为A (-1,5)、B (-2,-1)、C (4,3), (1)求AB 边所在的直线方程; (2)求AB 边的高所在直线方程.
如图,在直三棱柱111ABC A B C -中,1111A B AC =,D E ,
分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点.
求证:(1)平面ADE ⊥平面11BCC B ;
(2)直线1//A F 平面ADE .
19.(本小题满分12分)
如图,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠ADC =45°,AD =AC =1,O 为AC 的中点,PO ⊥平面ABCD ,PD =2,M 为PD 的中点.
(1).证明:AD ⊥平面PAC ;
(2).求直线AM 与平面ABCD 所成角的正切值.
20.(本小题满分12分)
如图,直四棱锥1111D C B A ABCD -中,AB ∥CD ,AB AD ⊥,2=AB ,2=AD ,31=AA ,E 为
CD 上一点,3,1==EC DE (1)证明:⊥BE 平面C C BB 11 (2)求点1B 到平面11C EA 的距离
如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD . (1)证明:平面AEC ⊥平面BED ;
(2)若∠ABC =120°,AE ⊥EC ,三棱锥E ACD 的体积为6
3
,求该三棱锥的侧面积.
22.(本小题满分12分)
已知过点)1,0(A 且斜率为k 的直线l 与圆C :()()1322
2
=-+-y x 交于M ,N 两点. (1)求k 的取值范围;
(2)若OM →·ON →=12,其中O 为坐标原点,求|MN |.
16.(1)∵111ABC A B C -是直三棱柱,∴1CC ⊥平面ABC 。
又∵AD ⊂平面ABC ,∴1CC AD ⊥。
又∵1AD DE CC DE ⊥⊂,,平面111
BCC B CC DE E =,,∴AD ⊥平面11BCC B 。
又∵AD ⊂平面ADE ,∴平面ADE ⊥平面11BCC B 。
(2)∵1111A B AC =,F 为11B C 的中点,∴111A F B C ⊥。
又∵1CC ⊥平面111A B C ,且1A F ⊂平面111A B C ,∴11CC A F ⊥。
又∵111 CC B C ⊂,平面11BCC B ,1
111CC B C C =,∴1A F ⊥平面111A B C 。
由(1)知,AD ⊥平面11BCC B ,∴1A F ∥AD 。
又∵AD ⊂平面1, ADE A F ∉平面ADE ,∴直线1//A F 平面ADE 略
17.(1)如图,连结DD 1.
在三棱柱ABC-A 1B 1C 1中,
因为D,D 1分别是BC 与B 1C 1的中点, 所以B 1D 1∥BD ,且B 1D 1=BD, 所以四边形B 1BDD 1为平行四边形, 所以BB 1∥DD 1,且BB 1=DD 1. 又因为AA 1∥BB 1,AA 1=BB 1, 所以AA 1∥DD 1,AA 1=DD 1,
所以四边形AA 1D 1D 为平行四边形,所以A 1D 1∥AD. 又A 1D 1⊄平面AB 1D,AD ⊂平面AB 1D, 故A 1D 1∥平面AB 1D.
(2)方法一:在△ABC 中,因为AB=AC ,D 为BC 的中点,所以AD ⊥BC. 因为平面ABC ⊥平面B 1C 1CB ,交线为BC ,AD ⊂平面ABC , 所以AD ⊥平面B 1C 1CB ,即AD 是三棱锥A-B 1BC 的高. 在△ABC 中,由AB=AC=BC=4得AD=23. 在△B 1BC 中,B 1B=BC=4,∠B 1BC=60°, 所以△B 1BC 的面积12
B BC
3S
443=
⨯=. 所以三棱锥B 1-ABC 的体积,即三棱锥A-B 1BC 的体积,
1B BC
11
V S
AD 432383
3
=⨯=⨯⨯=.
略
18.(1)连接BD ,MO ,在平行四边形ABCD 中,因为O 为AC 的中点,所以O 为BD 的中点, 又M 为PD 的中点,所以PB ∥MO . 因为PB ⊄平面ACM ,MO ⊂平面ACM , 所以PB ∥平面ACM .
(2)因为∠ADC =45°,且AD =AC =1,所以∠DAC =90°,即AD ⊥AC ,又PO ⊥平面ABCD ,AD ⊂平面ABCD ,所以PO ⊥AD ,而AC ∩PO =O ,所以AD ⊥平面PAC .
(3)取DO 中点N ,连接MN 、AN ,因为M 为PD 的中点,所以MN ∥PO ,且MN =1
2PO =1.
由PO ⊥平面ABCD ,得MN ⊥平面ABCD , 所以∠MAN 是直线AM 与平面ABCD 所成的角. 在Rt △DAO 中,AD =1,AO =1
2,
所以DO =
52,从而AN =12DO =54
,
在Rt △ANM 中,tan ∠MAN =
MN AN =15
4
=455, 即直线AM 与平面ABCD 所成角的正切值为45
5。