人教版高中数学必修二测试卷
- 格式:doc
- 大小:293.50 KB
- 文档页数:7
第五章综合测试一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图是容量为100的样本数据质量的频率分布直方图,已知样本质量均在[5,20]内,其分组为[5,10),[10,15),[15,20],则样本质量落在[15,20]内的频数为()A.10B.20C.30D.402.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.83.把红、蓝、黑、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是()A.对立事件B.互斥但不对立事件C.不可能事件D.以上都不对4.根据某跑步团体每月跑步的平均里程(单位:公里)的数据绘制了如图所示的折线图.根据折线图,下列结论正确的是()A.月跑步平均里程的中位数为6月份对应的里程数B.月跑步平均里程逐月增加C.月跑步平均里程高峰期大致在8、9月D.1月至5月的月跑步平均里程相对于6月至11月,波动性更小,变化比较平稳5.在掷一个骰子的试验中,事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一U发生的概率为()次试验中,事件A BA .13B .12C .23D .566.某示范农场的鱼塘放养鱼苗8万条,根据这几年的经验知道,鱼苗的成活率为95%,一段时间后准备打捞出售,第一网捞出40条,称得平均每条鱼2.5 kg ,第二网捞出25条,称得平均每条鱼2.2 kg ,第三网捞出35条,称得平均每条鱼2.8 kg ,估计这时鱼塘中鱼的总质量为( )A .192 280 kgB .202 280 kgC .182 280 kgD .172 280 kg7.为比较甲、乙两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成如图所示的茎叶图,有以下结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数;②甲最近五场比赛得分平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定;④从最近五场比赛的得分看,甲比乙更稳定.其中所有正确结论的编号为()A .①③B .①④C .②③D .②④8.已知某地区中小学生人数和近视情况分别如图①和图②所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A .100,10B .100,20C .200,10D .200,209.甲、乙、丙三人参加一次考试,他们合格的概率分别为23,34,25,那么三人中恰有两人合格的概率是( )A .25B .715C .1130D .1610.如图所示,小王与小张二人参加某射击比赛的预赛的五次测试成绩的折线图,设小王与小张成绩的样本平均数分别为A X 和B X ,方差分别为2A s 和2B s ,则()A .AB X X <,22A B s s >B .A B X X <,22A Bs s <C .A B X X >,22A B s s >D .A B X X >,22A Bs s <11.袋子中有四个小球,分别写有“美”“丽”“中”“国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到时停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“中”“国”“美”“丽”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:232321230023123021132220001231131133231031320122130233由此可以估计,恰好第三次停止的概率为( )A .19B .318C .29D .51812.有能力互异的3人应聘同一公司,他们按照报名顺序依次接受面试,经理决定“不录用第一个接受面试的人,如果第二个接受面试的人比第一个人能力强,就录用第二个人,否则就录用第三个人”,记该公司录用到能力最强的人的概率为p ,录用到能力中等的人的概率为q ,则(),p q =()A .11,66æöç÷èøB .11,26æöç÷èøC .11,24æöç÷èøD .11,23æöç÷èø二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.某单位青年、中年、老年职员的人数之比为11: 8: 6,从中抽取200名职员作为样本,则应抽取青年职员的人数为__________.14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为__________.15.某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x (吨),一位居民的月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.若该市政府希望使85%的居民每月的用水量不超过标准x (吨),估计x 的值为__________.16.袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为1白1黑的概率等于__________.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.[10分]为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如图所示.(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为1x ,2x ,估计12x x -的值.18.[12分]为了调查某市市民对出行的满意程度,研究人员随机抽取了1 000名市民进行调查,并将满意程度以分数的形式统计成如图所示的频率分布直方图,其中4a b =.(1)求a,b的值;(2)求被调查的市民的满意程度的平均数、众数、中位数;(3)若按照分层抽样从[50,60),[60,70)中随机抽取8人,应如何抽取?19.[12分]某地区有小学21所,中学14所,大学7所。
第一章 空间几何体一、选择题1.有一个几何体的三视图如下图所示,这个几何体可能是一个( ).主视图 左视图 俯视图 (第1题) A .棱台 B .棱锥 C .棱柱 D .正八面体2.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ).A .2+2B .221+C .22+2 D .2+13.棱长都是1的三棱锥的表面积为( ).A .3B .23C .33D .434.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ).A .25πB .50πC .125πD .都不对 5.正方体的棱长和外接球的半径之比为( ). A .3∶1 B .3∶2 C .2∶3 D .3∶36.在△ABC 中,AB =2,BC =1.5,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是( ).A .29πB .27πC .25πD .23π7.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).A .130B .140C .150D .1608.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,EF ∥AB ,EF =23,且EF 与平面ABCD 的距离为2,则该多面体的体积为( ).A .29 B .5 C .6 D .2159.下列关于用斜二测画法画直观图的说法中,错误..的是( ). A .用斜二测画法画出的直观图是在平行投影下画出的空间图形B .几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C .水平放置的矩形的直观图是平行四边形D .水平放置的圆的直观图是椭圆10.如图是一个物体的三视图,则此物体的直观图是( ).(第8题)(第10题)二、填空题11.一个棱柱至少有______个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱.12.若三个球的表面积之比是1∶2∶3,则它们的体积之比是_____________.13.正方体ABCD-A1B1C1D1 中,O是上底面ABCD的中心,若正方体的棱长为a,则三棱锥O-AB1D1的体积为_____________.14.如图,E,F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是___________.(第14题)15.已知一个长方体共一顶点的三个面的面积分别是2、3、6,则这个长方体的对角线长是___________,它的体积为___________.16.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.三、解答题17.有一个正四棱台形状的油槽,可以装油190 L,假如它的两底面边长分别等于60 cm 和40 cm,求它的深度.18 *.已知半球内有一个内接正方体,求这个半球的体积与正方体的体积之比.[提示:过正方体的对角面作截面]19.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=22,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.(第19题)20.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m,高4 m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?第一章 空间几何体参考答案A 组一、选择题 1.A解析:从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断可能是棱台.2.A解析:原图形为一直角梯形,其面积S =21(1+2+1)×2=2+2.3.A解析:因为四个面是全等的正三角形,则S 表面=4×43=3. 4.B解析:长方体的对角线是球的直径, l =2225+4+3=52,2R =52,R =225,S =4πR 2=50π. 5.C解析:正方体的对角线是外接球的直径. 6.D解析:V =V 大-V 小=31πr 2(1+1.5-1)=23π.7.D解析:设底面边长是a ,底面的两条对角线分别为l 1,l 2,而21l =152-52,22l =92-52,而21l +22l =4a 2,即152-52+92-52=4a 2,a =8,S 侧面=4×8×5=160. 8.D解析:过点E ,F 作底面的垂面,得两个体积相等的四棱锥和一个三棱柱,V =2×31×43×3×2+21×3×2×23=215.9.B解析:斜二测画法的规则中,已知图形中平行于 x 轴的线段,在直观图中保持原长度不变;平行于 y 轴的线段,长度为原来的一半.平行于 z 轴的线段的平行性和长度都不变.10.D解析:从三视图看底面为圆,且为组合体,所以选D. 二、填空题11.参考答案:5,4,3.解析:符合条件的几何体分别是:三棱柱,三棱锥,三棱台.12.参考答案:1∶22∶33.r 1∶r 2∶r 3=1∶2∶3,31r ∶32r ∶33r =13∶(2)3∶(3)3=1∶22∶33.13.参考答案:361a .解析:画出正方体,平面AB 1D 1与对角线A 1C 的交点是对角线的三等分点, 三棱锥O -AB 1D 1的高h =33a ,V =31Sh =31×43×2a 2×33a =61a 3. 另法:三棱锥O -AB 1D 1也可以看成三棱锥A -OB 1D 1,它的高为AO ,等腰三角形OB 1D 1为底面.14.参考答案:平行四边形或线段.15.参考答案:6,6.解析:设ab =2,bc =3,ac =6,则V = abc =6,c =3,a =2,b =1, l =1+2+3=6. 16.参考答案:12.解析:V =Sh =πr 2h =34πR 3,R =32764×=12. 三、解答题 17.参考答案:V =31(S +S S ′+S )h ,h =S S S S V ′+′+3=6001+4002+60030001903×=75.18.参考答案:如图是过正方体对角面作的截面.设半球的半径为R ,正方体的棱长为a ,则CC'=a ,OC =22a ,OC'=R .(第18题)在Rt △C'CO 中,由勾股定理,得CC' 2+OC 2=OC' 2,即 a 2+(22a )2=R 2. ∴R =26a ,∴V 半球=26πa 3,V 正方体=a 3. ∴V 半球 ∶V 正方体=6π∶2. 19.参考答案:S 表面=S 下底面+S 台侧面+S 锥侧面=π×52+π×(2+5)×5+π×2×22 =(60+42)π. V =V 台-V 锥 =31π(21r +r 1r 2+22r )h -31πr 2h 1 =3148π.20.解:(1) 参考答案:如果按方案一,仓库的底面直径变成16 m ,则仓库的体积V 1=31Sh =31×π×(216)2×4=3256π(m 3).如果按方案二,仓库的高变成8 m ,则仓库的体积COAV 2=31Sh =31×π×(212)2×8=3288π(m 3).(2) 参考答案:如果按方案一,仓库的底面直径变成16 m ,半径为8 m . 棱锥的母线长为l =224+8=45, 仓库的表面积S 1=π×8×45=325π(m 2). 如果按方案二,仓库的高变成8 m .棱锥的母线长为l =226+8=10,仓库的表面积S 2=π×6×10=60π(m 2).(3) 参考答案:∵V 2>V 1,S 2<S 1,∴方案二比方案一更加经济些.。
人教版高中数学必修第二册第九章统计单元测试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.从某地区中小学生中抽取部分学生,进行肺活量调查.经了解,该地区小学、初中、高中三个学段学生的肺活量有较大差异,而同一学段男女生的肺活量差异不大.在下面的抽样方法中,最合理的抽样方法是()A.抽签法B.按性别分层随机抽样C.按学段分层随机抽样D.随机数法2.从某小学随机抽取100名学生,将他们的身高(单位:厘米)分布情况汇总如下表:身高[100,110)[110,120)[120,130)[130,140)[140,150]频数535302010由此表估计这100名学生身高的中位数为(结果保留4位有效数字)()A.119.3B.119.7C.123.3D.126.73.高二(1)班某宿舍有7人,他们的身高(单位:cm)分别为170,168,172,172,175,176,180,则这7个数据的第60百分位数为()A.168B.175C.172D.1764.在抽查产品尺寸的过程中,将其尺寸分成若干组,[a,b]是其中的一组.已知该组的频率为m,该组上的频率分布直方图的高为h,则|a-b|等于()A.mhB.C.D.m+h5.2020年2月8日,在韩国首尔举行的四大洲花样滑冰锦标赛双人自由滑比赛中,中国组合隋文静、韩聪以总分217.51分拿下四大洲赛冠军,这也是他们第六次获得四大洲冠军.中国另一对组合彭程、金杨以213.29分摘得银牌.花样滑冰锦标赛有9位评委进行评分,首先这9位评委给出某对选手的原始分数,评定该对选手的成绩时从9个原始成绩中去掉一个最高分、一个最低分,得到7个有效评分,7个有效评分与9个原始评分相比,不变的数字特征是()A.中位数B.平均数C.方差D.极差6.为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到如图C4-1所示的频率分布直方图,由于不慎将部分数据丢失,但知道后5组频数之和为62,设视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为()图C4-1A.64B.54C.48D.277.某商场一年中各月份的收入、支出情况的统计如图C4-2所示,则下列说法中正确的是()图C4-2A.支出最高值与支出最低值的比是8∶1B.4至6月份收入的平均数为50万元C.利润最高的月份是2月份D.2至3月份的收入的变化率与11至12月份的收入的变化率相同8.为了研究一种新药的疗效,选100名患者随机分成两组,每组50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成图C4-3,其中“*”表示服药者,“+”表示未服药者.则下列说法中,错误的是()图C4-3A.服药组的指标x的平均数和方差比未服药组的都小B.未服药组的指标y的平均数和方差比服药组的都大C.以统计的频率作为概率,估计患者服药一段时间后指标x低于100的概率为0.94D.这种疾病的患者的生理指标y基本都大于1.5二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,至少有两项是符合题目要求的)9.“悦跑圈”是一款基于社交型的跑步应用,用户通过该平台可查看自己某时间段的运动情况.某人根据2019年1月至2019年11月期间每月跑步的里程(单位:十公里)的数据绘制了如图C4-4所示的折线图,根据该折线图,下列结论正确的是()图C4-4A.月跑步里程逐月增加B.月跑步里程的最大值出现在9月C.月跑步里程的中位数为8月份对应的里程D.1月至5月的月跑步里程相对于6月至11月波动性更小,变化比较平稳10.某学校为了调查学生在一周生活方面的支出(单位:元)情况,抽取了一个容量为n的样本,将样本数据按[20,30),[30,40),[40,50),[50,60]分组后所得频率分布直方图如图C4-5所示,其中支出在[50,60]内的学生有60人,则下列说法正确的是()图C4-5A.样本中支出在[50,60]内的频率为0.03B.样本中支出不少于40元的人数有132C.n的值为200D.若该校有2000名学生,则一定有600人支出在[50,60]内11.统计某校n名学生某次数学同步练习的成绩(单位:分,满分150分),根据成绩依次分成六组[90,100),[100,110),[110,120),[120,130),[130,140),[140,150],得到频率分布直方图如图C4-6所示,若不低于140分的人数为110,则下列说法正确的是()图C4-6A.m=0.031B.n=800C.100分以下的人数为60D.成绩在区间[120,140)内的人数超过50%12.某市12月17日至21日期间空气质量呈现重度及以上污染水平,经市政府批准,该市启动了空气重污染红色预警,期间实行机动车“单双号”限行等措施.某社会调查中心联合问卷网,对2400人进行问卷调查,并根据调查结果得到如图C4-7所示的扇形图,则下列结论正确的是()图C4-7A.“不支持”部分所占的比例是10%B.“一般”部分对应的人数是800C.扇形图中如果圆的半径为2,则“非常支持”部分对应扇形的面积是65πD.“支持”部分对应的人数是1080请将选择题答案填入下表:题号12345678总分答案题号9101112答案第Ⅱ卷(非选择题共90分)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.一组数据按从小到大的顺序排列为10,12,13,x,17,19,21,24,其中位数为16,则x=.14.某校为了了解学生收看“空中课堂”的方式,对该校500名学生进行了调查,并把结果绘制成如图C4-8所示的扇形图,那么该校通过手机收看“空中课堂”的学生人数是.图C4-815.国家禁毒办于2019年11月5日至12月15日在全国青少年毒品预防教育数字化网络平台上开展2019年全国青少年禁毒知识答题活动,活动期间进入答题专区,点击“开始答题”按钮后,系统自动生成20道题.已知某校高二年级有甲、乙、丙、丁、戊五位同学在这次活动中答对的题数分别是17,20,16,18,19,则这五位同学答对题数的方差是.16.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图C4-9所示).由图中数据可知a=.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用比例分配的分层随机抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为.图C4-9四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)将一组数据按从小到大的顺序排列,得到-1,0,4,x,7,14,已知这组数据的中位数为5,求这组数据的平均数与方差.18.(12分)某车站在春运期间为了了解旅客的购票情况,随机调查了100名旅客从开始在售票窗口排队到购到车票所用的时间t(以下简称为购票用时,单位为min).下面是对所得数据进行统计分析后得到的频率分布表和频率分布直方图.频率分组频数[5,10)100.10[10,15)10②[15,20)①0.50[20,25]300.30合计1001.00解答下列问题:(1)在表中填写出缺失的数据并补全频率分布直方图(如图C4-10所示);(2)估计旅客购票用时的平均数.图C4-1019.(12分)某班主任利用周末时间对该班2019年最后一次月考的语文作文分数进行了统计,发现分数都位于20~55之间,现将分数情况按[20,25),[25,30),[30,35),[35,40),[40,45),[45,50),[50,55]分成七组后,作出频率分布直方图如图C4-11所示,已知m=2n.(1)求频率分布直方图中m,n的值;(2)求该班这次月考语文作文分数的平均数和中位数.(每组数据用该组区间的中点值作为代表)图C4-1120.(12分)已知甲、乙两人在相同条件下各射靶10次,每次射击的命中环数如图C4-12所示.(1)求甲、乙两人射击命中环数的平均数和方差;(2)请根据甲、乙两人射击命中环数的平均数和方差,分析谁的射击水平高.图C4-1221.(12分)某地区100位居民的人均月用水量(单位:t)的分组及各组的频数分别为[0,0.5],4;(0.5,1],8;(1,1.5],15;(1.5,2],22;(2,2.5],25;(2.5,3],14;(3,3.5],6;(3.5,4],4;( 4,4.5],2.(1)列出样本的频率分布表.(2)画出频率分布直方图,并根据直方图估计这组数据的平均数、中位数、众数.(3)当地政府制定了人均月用水量不超过3t的标准,若超过3t则加倍收费,当地政府说,85%以上的居民不超过这个标准,这个解释对吗?为什么?22.(12分)我国是世界上严重缺水的国家之一,某市为了制定合理的节水方案,对家庭用水情况进行了调查,通过抽样,获得了某年100户家庭的月均用水量(单位:t),将数据按照[0,2),[2,4),[4,6),[6,8),[8,10]分成5组,制成了如图C4-13所示的频率分布直方图.(1)假设同组中的每个数据都用该组区间的中点值代替,求全市家庭月均用水量平均数的估计值(精确到0.01);(2)求全市家庭月均用水量的25%分位数的估计值(精确到0.01).图C4-13参考答案与解析1.C[解析]由题意得,最合理的抽样方法是按学段分层随机抽样,故选C.2.C[解析]设中位数为t,则有5100+35100+30100× -12010=0.5,解得t≈123.3.故选C.3.B[解析]将这7人的身高从小到大排序,可得168,170,172,172,175,176,180.∵7×60%=4.2,∴第5个数据为所求的第60百分位数,即这7个数据的第60百分位数为175.故选B.,所以h= | - |,则|a-b|= ,故选C.4.C[解析]在频率分布直方图中小长方形的高等于频率组距5.A[解析]根据题意可知,不变的数字特征是中位数.故选A.6.B[解析]前两组的频数为100×(0.05+0.11)=16.因为后五组的频数之和为62,所以前三组的频数之和为38,所以第三组的频数为38-16=22.又最大频率为0.32,故第四组的频数为0.32×100=32.所以a=22+32=54.故选B.7.D[解析]由图可知,支出最高值为60万元,支出最低值为10万元,其比是6∶1,故A错误;4至6月份的平均收入为13×(50+30+40)=40(万元),故B错误;利润最高的月份为3月份和10月份,故C 错误;由图可知2至3月份的收入的变化率与11至12月份的收入的变化率相同,故D正确.故选D.8.B[解析]服药组的指标x的取值相对集中,方差较小,且服药组的指标x的平均数小于未服药组的指标x的平均数,故选项A中说法正确;未服药组的指标y的取值相对集中,方差较小,故选项B 中说法错误;服药组的指标x值有3个大于100,所以估计患者服药一段时间后指标x低于100的概率为0.94,故选项C中说法正确;未服药组的指标y值只有1个数据比1.5小,则这种疾病的患者的生理指标y基本都大于1.5,故选项D中说法正确.故选B.9.BCD[解析]2月跑步里程比1月的小,故A错误;月跑步里程9月最大,故B正确;月跑步里程从小到大对应的月份依次为2月、7月、3月、4月、1月、8月、5月、6月、11月、10月、9月,故月跑步里程的中位数为8月份对应的里程,故C正确;1月至5月的月跑步里程相对于6月至11月,波动性更小,变化比较平稳,故D正确.故选BCD.10.BC[解析]由频率分布直方图得,样本中支出在[50,60]内的频率为1-(0.01+0.024+0.036)×10=0.3,故A错误;样本中支出不少于40元的人数为0.0360.3×60+60=132,故B正确;n=600.3=200,故C正确;在D中,若该校有2000名学生,则大约有600人支出在[50,60]内,故D错误.故选BC.11.AC[解析]由图可知10×(m+0.020+0.016+0.016+0.011+0.006)=1,解得m=0.031,故A正确;因为不低于140分的频率为0.011×10=0.11,所以n=1100.11=1000,故B错误;因为100分以下的频率为0.006×10=0.06,所以100分以下的人数为1000×0.06=60,故C正确;对选项D,成绩在区间[120,140)内的频率为0.031×10+0.016×10=0.47<0.5,人数不超过50%,故D错误.故选AC.12.ACD[解析]“不支持”部分所占的比例是1-45%-30%-15%=10%,A正确;“一般”部分对应的人数是2400×15%=360,B不正确;“非常支持”部分对应扇形的面积是π×22×30%=65π,C正确;“支持”部分对应的人数为2400×45%=1080,D正确.故选ACD.13.15[解析]由中位数的定义知 +172=16,∴x=15.14.25[解析]∵该校通过手机收看“空中课堂”的学生人数所占的百分比为1-(25%+70%)=5%,∴该校通过手机收看“空中课堂”的学生人数是500×5%=25.15.2[解析]这五位同学答对题数的平均数 =17+20+16+18+195=18,则方差s2=15×[(17-18)2+(20-18)2+(16-18)2+(18-18)2+(19-18)2]=2.16.0.0303[解析]因为10×(0.035+0.020+0.010+0.005+a)=1,所以a=0.030.身高在[120,130),[130,140),[140,150]三组内的学生人数为100×(0.030+0.020+0.010)×10=60,其中身高在[140,150]内的学生中人数为100×0.010×10=10,所以从身高在[140,150]内的学生中选取的人数应为1060×18=3.17.解:因为数据-1,0,4,x,7,14的中位数为5,所以4+ 2=5,解得x=6.设这组数据的平均数为 ,方差为s2,则 =16×(-1+0+4+6+7+14)=5,s2=16×[(-1-5)2+(0-5)2+(4-5)2+(6-5)2+(7-5)2+(14-5)2]=743.18.解:(1)表中缺失的数据分别为①50,②0.10.补全后的频率分布直方图如图所示.(2)估计旅客购票用时的平均数为7.5×0.10+12.5×0.10+17.5×0.50+22.5×0.30=17.5(min).19.解:(1)由频率分布直方图,得=2 ,(0.01+0.03+0.06+ +0.03+ +0.01)×5=1,解得 =0.04, =0.02.(2)该班这次月考语文作文分数的平均数为22.5×0.05+27.5×0.15+32.5×0.3+37.5×0.2+42.5×0.15+47.5×0.1+52.5×0.05=36.25.因为(0.01+0.03+0.06)×5=0.5,所以该班这次月考语文作文分数的中位数为35.20.解:(1)由折线图可知甲射击10次命中的环数分别为9,5,7,8,7,6,8,6,7,7.乙射击10次命中的环数分别为2,4,6,8,7,7,8,9,9,10.则x 甲=110×(9+5+7+8+7+6+8+6+7+7)=7(环).x 乙=110×(2+4+6+8+7+7+8+9+9+10)=7(环),甲2=110×[(9-7)2+(5-7)2+(7-7)2×4+(6-7)2×2+(8-7)2×2]=1.2,乙2=110×[(2-7)2+(4-7)2+(6-7)2+(7-7)2×2+(8-7)2×2+(9-7)2×2+(10-7)2]=5.4.(2)因为x 甲=x 乙, 甲2< 乙2,所以甲的射击稳定性比乙好,故甲的射击水平高.21.解:(1)作出频数分布表,如下.分组频数频率[0,0.5]40.04(0.5,1]80.08(1,1.5]150.15(1.5,2]220.22(2,2.5]250.25(2.5,3]140.14(3,3.5]60.06(3.5,4]40.04(4,4.5]20.02合计1001.00(2)由频率分布表画出频率分布直方图,如图所示.由频率分布直方图得这组数据的平均数=0.25×0.04+0.75×0.08+1.25×0.15+1.75×0.22+2.25×0.25+2.75×0.14+3.25×0.06+3.75×0.04+4.25×0.02=2.02.∵人均月用水量在[0,2]内的频率为0.04+0.08+0.15+0.22=0.49,在(2,2.5]内的频率为0.25,∴中位数为2+0.5−0.490.25×0.5=2.02.众数为2+2.52=2.25.(3)月用水量在3t以上的居民的比例为6%+4%+2%=12%,即大约有12%的居民月用水量在3t以上,88%的居民月用水量不超过3t,因此政府的解释是正确的.22.解:(1)因为0.06×2×1+0.11×2×3+0.18×2×5+0.09×2×7+0.06×2×9=4.92.因此全市家庭月均用水量平均数的估计值为4.92t.(2)频率分布直方图中,用水量低于2t的频率为0.06×2=0.12.用水量低于4t的频率为0.06×2+0.11×2=0.34.故全市家庭月均用水量的25%分位数的估计值为2+0.25−0.120.11≈3.18(t).。
最新人教版高中数学必修2课时同步测题(全册共236页附解析)目录1.1 空间几何体的结构1.1.1 棱柱、棱锥、棱台的结构特征1.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征1.2 空间几何体的三视图和直观图1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图1.2.3 空间几何体的直观图1.3 空间几何体的表面积与体积1.3.1 柱体、锥体、台体的表面积与体积1.3.2 球的体积和表面积章末复习课第一单元评估验收卷(一)第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.1.1 平面第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.1.2 空间中直线与直线之间的位置关系2.1.3 空间中直线与平面之间的位置关系2.1.4 平面与平面之间的位置关系2.2 直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定2.2.2 平面与平面平行的判定2.2.3 直线与平面平行的性质2.2.4 平面与平面平行的性质2.3 直线、平面垂直的判定及其性质2.3.1 直线与平面垂直的判定2.3.2 平面与平面垂直的判定2.3.3 直线与平面垂直的性质2.3.4 平面与平面垂直的性质章末复习课第二单元评估验收卷(二)第三章直线与方程3.1 直线的倾斜角与斜率3.1.1 倾斜角与斜率3.1.2 两条直线平行与垂直的判定3.2 直线的方程3.2.1 直线的点斜式方程3.2.2 直线的两点式方程第一章空间几何体1.1 空间几何体的结构1.1.1 棱柱、棱锥、棱台的结构特征A级基础巩固一、选择题1.下列几何体中棱柱有()A.5个B.4个C.3个D.2个解析:由棱柱的定义及几何特征,①③为棱柱.答案:D2.对有两个面互相平行,其余各面都是梯形的多面体,以下说法正确的是()A.棱柱B.棱锥C.棱台D.一定不是棱柱、棱锥解析:根据棱柱、棱锥、棱台的特征,一定不是棱柱、棱锥.答案:D3.下列图形经过折叠可以围成一个棱柱的是()解析:A、B、C、中底面多边形的边数与侧面数不相等.答案:D4.由5个面围成的多面体,其中上、下两个面是相似三角形,其余三个面都是梯形,并且这些梯形的腰延长后能相交于一点,则该多面体是()A.三棱柱B.三棱台C.三棱锥D.四棱锥解析:根据棱台的定义可判断知道多面体为三棱台.答案:B5.某同学制作了一个对面图案均相同的正方形礼品盒,如图所示,则这个正方体礼品盒的表面展开图应该为(对面是相同的图案)()解析:其展开图是沿盒子的棱剪开,无论从哪个棱剪开,剪开的相邻面在展开在图中可以不相邻,但未剪开的相邻面在展开图中一定相邻,又相同的图案是盒子相对的面,展开后绝不能相邻.答案:A二、填空题6.如图所示,正方形ABCD中,E,F分别为CD,BC的中点,沿AE,AF,EF将其折成一个多面体,则此多面体是________.解析:折叠后,各面均为三角形,且点B、C、D重合为一点,因此该多面体为三棱锥(四面体).答案:三棱锥(四面体)7.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________cm.解析:由题设,该棱柱为五棱柱,共5条侧棱.所以每条侧棱的长为605=12(cm).答案:128.①有两个面互相平行,其余各面都是平行四边形的几何体的侧棱一定不相交于一点,故一定不是棱台;②两个互相平行的面是平行四边形,其余各面是四边形的几何体不一定是棱台;③两个互相平行的面是正方形,其余各面是四边形的几何体一定是棱台.其中正确说法的个数为________.解析:①正确,因为具有这些特征的几何体的侧棱一定不相交于一点,故一定不是棱台;②正确;③不正确,当两个平行的正方形完全相等时,一定不是棱台.答案:29.根据如图所示的几何体的表面展开图,画出立体图形.解:图①是以ABCD为底面,P为顶点的四棱锥.图②是以ABCD和A1B1C1D1为底面的棱柱.其图形如图所示.B级能力提升1.如图所示,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定解析:如图所示,倾斜小角度后,因为平面AA1D1D∥平面BB1C1C,所以有水的部分始终有两个平面平行,而其余各面都易证是平行四边形(水面与两平行平面的交线)因此呈棱柱形状.答案:A2.一个正方体的六个面上分别标有字母A,B,C,D,E,F,下图是此正方体的两种不同放置,则与D面相对的面上的字母是________.解析:由图知,标字母C的平面与标有A、B、D、E的面相邻,则与D面相对的面为E面,或B面,若B面与D面相对,则A面与B面相对,这时图②不可能,故只能与D面相对的面上字母为B.答案:B3.如图所示,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,求沿正方体表面从点A到点M的最短路程.解:若以BC为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm,3 cm,故两点之间的距离是13 cm.若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为1,4,故两点之间的距离是17 cm.故沿正方体表面从点A到点M的最短路程是13 cm.第一章空间几何体1.1 空间几何体的结构1.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征A级基础巩固一、选择题1.下列几何体中是旋转体的是()①圆柱②六棱锥③正方体④球体⑤四面体A.①和⑤B.①C.③和④D.①和④解析:圆柱、球体是旋转体,其余均为多面体.答案:D2.如图所示的简单组合体的结构特征是()A.由两个四棱锥组合成的B.由一个三棱锥和一个四棱锥组合成的C.由一个四棱锥和一个四棱柱组合成的D.由一个四棱锥和一个四棱台组合成的解析:这个8面体是由两个四棱锥组合而成.答案:A3.下图是由哪个平面图形旋转得到的()解析:图中几何体由圆锥、圆台组合而成,可由A中图形绕图中虚线旋转360°得到.答案:A4.如图所示的几何体是从一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的.现用一个平面去截这个几何体,若这个平面平行于底面,那么截面图形为()解析:截面图形应为图C所示的圆环面.答案:C5.用一张长为8、宽为4的矩形硬纸卷成圆柱的侧面,则相应圆柱的底面半径是()A.2 B.2πC.2π或4πD.π2或π4解析:如图所示,设底面半径为r,若矩形的长8恰好为卷成圆柱底面的周长,则2πr=8,所以r=4π;同理,若矩形的宽4恰好为卷成圆柱的底面周长,则2πr=4,所以r=2π.所以选C.答案:C二、填空题6.等腰三角形绕底边上的高所在的直线旋转180°,所得几何体是________.解析:结合旋转体及圆锥的特征知,所得几何体为圆锥.答案:圆锥7.给出下列说法:①圆柱的母线与它的轴可以不平行;②圆锥的顶点、圆锥底面圆周上任意一点及底面圆的圆心三点的连线,都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是____________(填序号).解析:由旋转体的形成与几何特征可知①③错误,②④正确.答案:②④8.如图是一个几何体的表面展成的平面图形,则这个几何体是__________.答案:圆柱三、解答题9.如图所示的物体是运动器材——空竹,你能描述它的几何特征吗?解:此几何体是由两个大圆柱、两个小圆柱和两个小圆台组合而成的.10.如图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的半径分别2 cm和5 cm,圆台的母线长是12 cm,求圆锥SO的母线长.解:如图,过圆台的轴作截面,截面为等腰梯形ABCD,由已知可得上底半径O1A=2 cm,下底半径OB=5 cm,且腰长AB=12 cm.设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO,可得l-12 l=25,所以l=20 cm.故截得此圆台的圆锥的母线长为20 cm.B级能力提升1.如图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为()A.一个球体B.一个球体中间挖出一个圆柱C.一个圆柱D.一个球体中间挖去一个长方体解析:外面的圆旋转形成一个球,里面的长方形旋转形成一个圆柱.所有形成的几何为一个球体挖出一个圆柱.答案:B2.一个半径为5 cm的球,被一平面所截,球心到截面圆心的距离为4 cm,则截面圆面积为__________cm2.解析:如图所示,过球心O作轴截面,设截面圆的圆心为O1,其半径为r.由球的性质,OO1⊥CD.在Rt△OO1C中,R=OC=5,OO1=4,则O1C=3,所以截面圆的面积S=π·r2=π·O1C2=9π.答案:9π3.如图,底面半径为1,高为2的圆柱,在A点有一只蚂蚁,现在这只蚂蚁要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?解:把圆柱的侧面沿AB剪开,然后展开成为平面图形——矩形,如图所示,连接AB′,即为蚂蚁爬行的最短距离.因为AB=A′B′=2,AA′为底面圆的周长,且AA′=2π×1=2π.所以AB′=A′B′2+AA′2=4+(2π)2=21+π2,所以蚂蚁爬行的最短距离为21+π2.第一章空间几何体1.2 空间几何体的三视图和直观图1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图A级基础巩固一、选择题1.以下关于投影的叙述不正确的是()A.手影就是一种投影B.中心投影的投影线相交于点光源C.斜投影的投影线不平行D.正投影的投影线和投影面垂直解析:平行投影的投影线互相平行,分为正投影和斜投影两种,故C错.2.如图所示,水平放置的圆柱形物体的三视图是()答案:A3.如图,在直角三角形ABC,∠ACB=90°,△ABC绕边AB 所在直线旋转一周形成的几何体的正视图为()解析:由题意,该几何体是两个同底的圆锥组成的简单组合体,且上部分圆锥比底部圆锥高,所以正视图应为选项B.答案:B4.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是()A.球B.三棱锥C.正方体D.圆柱解析:球的三视图都是圆;三棱锥的三视图都是全等的三角形;正方体的三视图都是正方形;圆柱的底面放置在水平面上,则其俯视图是圆,正视图是矩形,故几何体不可能是圆柱.5.一个四棱锥S-ABCD,底面是正方形,各侧棱长相等,如图所示,其正视图是一等腰三角形,其腰长与图中等长的线段是()A.AB B.SBC.BC D.SE解析:正视图的投影面应是过点E与底面ABCD垂直的平面,所以侧棱SB在投影面上的投影为线段SE.答案:D二、填空题6.下列几何体各自的三视图中,有且仅有两个视图相同的是________(填序号).①正方体②圆锥③三棱台④正四棱锥解析:在各自的三视图中,①正方体的三个视图都相同;②圆锥有两个视图相同;③三棱台的三个视图都不同;④正四棱锥有两个视图相同.所以满足仅有两个视图相同的是②④.答案:②④7.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为:①长方形;②正方形;③圆.其中满足条件的序号是________.答案:②③8.下图中的三视图表示的几何体是________.解析:根据三视图的生成可知,该几何体为三棱柱.答案:三棱柱三、解答题9.根据三视图(如图所示)想象物体原形,指出其结构特征,并画出物体的实物草图.解:由俯视图知,该几何体的底面是一直角梯形;由正视图知,该几何体是一四棱锥,且有一侧棱与底面垂直.所以该几何体如图所示.10.画出图中3个图形的指定视图.解:如图所示.B级能力提升1.如图所示为一个简单几何体的三视图,则其对应的实物图是()答案:A2.已知正三棱锥V-ABC的正视图、俯视图如图所示,它的侧棱VA=2,底面的边AC=3,则由该三棱锥得到的侧视图的面积为________.解析:正三棱锥V-ABC的侧视图不是一个等腰三角形,而是一个以一条侧棱、该侧棱所对面的斜高和底面正三角形的一条高构成的三角形,如侧视图所示(其中VF是斜高),由所给数据知原几何体的高为3,且CF=3 2.故侧视图的面积为S=12×32×3=334.答案:33 43.如图所示的是某两个几何体的三视图,试判断这两个几何体的形状.解:①由俯视图知该几何体为多面体,结合正视图和侧视图知,几何体应为正六棱锥.②由几何体的三视图知该几何体的底面是圆,相交的一部分是一个与底面同圆心的圆,正视图和侧视图是由两个全等的等腰梯形组成的.故该几何体是两个圆台的组合体.第一章空间几何体1.2 空间几何体的三视图和直观图1.2.3 空间几何体的直观图A级基础巩固一、选择题1.关于斜二测画法所得直观图,以下说法正确的是()A.等腰三角形的直观图仍是等腰三角形B.正方形的直观图为平行四边形C.梯形的直观图不是梯形D.正三角形的直观图一定为等腰三角形解析:由直观图的性质知B正确.答案:B2.利用斜二测画法画边长为3 cm的正方形的直观图,正确的是图中的()解析:正方形的直观图应是平行四边形,且相邻两边的边长之比为2∶1.答案:C3.如图,用斜二测画法画一个水平放置的平面图形为一个正方形,则原来图形的形状是()解析:直观图中正方形的对角线为2,故在平面图形中平行四边形的高为22,只有A项满足条件,故A正确.答案:A4.已知两个圆锥,底面重合在一起,其中一个圆锥顶点到底面的距离为2 cm,另一个圆锥顶点到底面的距离为3 cm,则其直观图中这两个顶点之间的距离为()A.2 cm B.3 cm C.2.5 cm D.5 cm解析:因为这两个顶点连线与圆锥底面垂直,现在距离为5 cm,而在直观图中根据平行于z轴的线段长度不变,仍为5 cm.答案:D5.若一个三角形采用斜二测画法,得到的直观图的面积是原三角形面积的()A.24B.2倍 C.22 D.2倍解析:底不变,只研究高的情况即可,此结论应识记.答案:A二、填空题6.如图所示,△A′B′C′是△ABC的水平放置的直观图,A′B′∥y轴,则△ABC是________三角形.解析:由于A′B′∥y轴,所以在原图中AB∥y轴,故△ABC为直角三角形.答案:直角7.已知△ABC的直观图如图所示,则△ABC的面积为________.解析:△ABC中,∠A=90°,AB=3,AC=6,所以S=12×3×6=9.答案:98.如图所示,水平放置的△ABC的斜二测直观图是图中的△A′B′C′,已知A′C′=6,B′C′=4,则AB边的实际长度是_______.解析:在原图中AC=6,BC=4×2=8,∠AOB=90°,所以AB=62+82=10.答案:10三、解答题9.如图所示,已知水平放置的平面图形的直观图是一等腰直角三角形ABC,且AB=BC=1,试画出它的原图形.解:(1)在如图所示的图形中画相应的x轴、y轴,使∠xOy=90°(O与A′重合);(2)在x轴上取C′,使A′C′=AC,在y轴上取B′,使A′B′=2AB;(3)连接B′C′,则△A′B′C′就是原图形.10.画出底面是正方形、侧棱均相等的四棱锥的直观图(棱锥的高不做具体要求).解:画法:(1)画轴.画Ox轴、Oy轴、Oz轴,∠xOy=45°(135°),∠xOz=90°,如图.(2)画底面.以O为中心在xOy平面内,画出底面正方形的直观图ABCD.(3)画顶点.在Oz轴上截取OP,使OP的长度是四棱锥的高.(4)成图.顺次连接PA、PB、PC、PD,并擦去辅助线,得四棱锥的直观图.B级能力提升1.水平放置的△ABC有一边在水平线上,它的斜二测直观图是正△A′B′C′,则△ABC为()A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能解析:如下图所示,斜二测直观图还原为平面图形,故△ABC 是钝角三角形.答案:C2.如图,Rt△O′A′B′是一平面图形的直观图,直角边O′B′=1,则这个平面图形的面积是________.解析:因为O′B=1,所以O′A′=2,所以在Rt△OAB中,∠AOB=90°,OB=1,OA=2 2.所以S△AOB=12×1×22= 2.答案:23.如图是一个空间几何体的三视图,试用斜二测画法画出它的直观图.解:根据三视图可以想象出这个几何体是六棱台.(1)画轴.如图①,画x轴、y轴、z轴,使∠xOy=45°,∠xOz =90°.(2)画两底面,由三视图知该几何体为六棱台,用斜二测画法画出底面正六边形ABCDEF,在z轴上截取OO′,使OO′等于三视图中的相应高度,过O′作Ox的平行线O′x′,Oy的平行线O′y′,利用O′x与O′y′画出底面正六边形A′B′C′D′E′F′.(3)成图.连接A′A,B′B,C′C,D′D,E′E,F′F,整理得到三视图表示的几何体的直观图,如图②.第一章空间几何体1.3 空间几何体的表面积与体积1.3.1 柱体、锥体、台体的表面积与体积A级基础巩固一、选择题1.轴截面是正三角形的圆锥称作等边圆锥,则等边圆锥的侧面积是底面积的( )A .4倍B .3倍 C.2倍D .2倍解析:设轴截面正三角形的边长为2a ,所以S 底=πa 2,S 侧=πa ·2a =2πa 2,因此S 侧=2S 底. 答案:D2.如图所示,ABC A ′B ′C ′是体积为1的棱柱,则四棱锥C -AA ′B ′B 的体积是( )A.13B.12C.23D.34解析:因为V C A ′B ′C ′=13V 柱=13,所以V C AA ′B ′B =1-13=23.答案:C3.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积为( )A .3πB .33πC .6πD .9π解析:由于圆锥的轴截面是等边三角形,所以2r =l , 又S 轴=12×l 2×sin 60°=34l 2=3,所以l =2,r =1.所以S圆锥表=πr2+πrl=π+2π=3π.故选A.答案:A4.(2015·课标全国Ⅰ卷)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依恒内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图所示,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放米约有()A.14斛B.22斛C.36斛D.66斛解析:由l=14×2πr=8得圆锥底面的半径r=16π≈163,所以米堆的体积V=14×13πr2h=14×2569×5=3209(立方尺),所以堆放的米有3209÷1.62≈22(斛).答案:B5.已知正方体的8个顶点中,有4个为侧面是等边三角形的一三棱锥的顶点,则这个三棱锥与正方体的表面积之比为()A.1∶ 2 B.1∶ 3C.2∶ 2 D.3∶ 6解析:棱锥B′ ACD′为适合条件的棱锥,四个面为全等的等边三角形,设正方体的边长为1,则B′C=2,S△B′AC=3 2.三棱锥的表面积S 锥=4×32=23,又正方体的表面积S 正=6. 因此S 锥∶S 正=23∶6=1∶ 3. 答案:B 二、填空题6.若一个圆台的正视图如图所示,则其侧面积为________.解析:由正视图可知,该圆台的上、下底面圆的半径分别为1,2,其高为2,所以其母线长l =⎝ ⎛⎭⎪⎫4-222+22=5, 所以S 侧=π(1+2)×5=35π. 答案:35π7.下图是一个空间几何体的三视图,这个几何体的体积是________.解析:由图可知几何体是一个圆柱内挖去一个圆锥所得的几何体,V =V 圆柱-V 圆锥=π×22×3-13π×22×3=8π.答案:8π8.(2015·福建卷)某几何体的三视图如图所示,则该几何体的表面积等于________.解析:由三视图知,该几何体是直四棱柱,底面是直角梯形,且底面梯形的周长为4+ 2.则S侧=8+22,S底=2×(1+2)2×1=3.故S表=S侧+S底=11+2 2.答案:11+22三、解答题9.已知圆柱的侧面展开图是长、宽分别为2π和4π的矩形,求这个圆柱的体积.解:设圆柱的底面半径为R,高为h,当圆柱的底面周长为2π时,h=4π,由2πR=2π,得R=1,所以V圆柱=πR2h=4π2.当圆柱的底面周长为4π时,h=2π,由2πR=4π,得R=2,所以V圆柱=πR2h=4π·2π=8π2.所以圆柱的体积为4π2或8π2.10.一个正三棱柱的三视图如图所示(单位:cm),求这个正三棱柱的表面积与体积.解:由三视图知直观图如图所示,则高AA′=2 cm,底面高B′D′=23cm ,所以底面边长A ′B ′=23×23=4(cm).一个底面的面积为12×23×4=43(cm 2).所以表面积S =2×43+4×2×3=24+83(cm 2), V =43×2=83(cm 3).所以表面积为(24+83)cm 2,体积为83(cm 3).B 级 能力提升1.某几何体的三视图如图所示,俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是( )A.203π B.103π C .6πD.163π 解析:该几何体的上方是以2为底面圆的半径,高为2的圆锥的一半,下方是以2为底面圆的半径,高为1的圆柱的一半,其体积为V =π×22×12+12×13π×22×2=2π+43π=103π.答案:B2.(2015·江苏卷)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为__________.解析:底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱的总体积为13π×52×4+π×22×8=196π3.设新的圆锥和圆柱的底面半径为r ,则13π·r 2×4+π·r 2×8=28π3r 2=196π3,解得r =7.答案:73.某几何体的三视图如图所示(单位:cm),求该几何体的体积.解:由三视图知,该几何体是一个四棱柱与一个四棱锥的组合体. V 四棱柱=23=8,V 四棱锥=13×22×2=83.故几何体的体积V =V 四棱柱+V 四棱锥=8+83 =323(cm 3).第一章 空间几何体 1.3 空间几体的表面积与体积 1.3.2 球的体积和表面积A 级 基础巩固一、选择题1.若一个球的体积扩大到原来的27倍,则它的表面积扩大到原来的( )A .3倍B .3 3 倍C .9倍D .9 3 倍解析:由V ′=27 V ,得R ′=3R ,R ′R=3则球的表面积比S ′∶S =⎝ ⎛⎭⎪⎫R ′R 2=9. 答案:C2.把3个半径为R 的铁球熔成一个底面半径为R 的圆柱,则圆柱的高为( )A .RB .2RC .3RD .4R 解析:设圆柱的高为h ,则πR 2h =3×43πR 3,所以h =4R . 答案:D3.如图所示,是某几何体的三视图,则该几何体的体积为( )A .9π+42B .36π+18 C.92π+12 D.92π+18解析:由三视图可知该几何体是一个长方体和球构成的组合体,其体积V=43π⎝⎛⎭⎪⎫323+3×3×2=92π+18.答案:D4.设长方体的长、宽、高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2解析:设该球的半径为R,所以(2R)2=(2a)2+a2+a2=6a2,即4R2=6a2.所以球的表面积为S=4πR2=6πa2.答案:B5.下图是一个几何体的三视图,根据图中数据,可得几何体的表面积是()A.4π+24 B.4π+32C.22πD.12π解析:由三视图可知,该几何体上部分为半径为1的球,下部分为底边长为2,高为3的正四棱柱,几何体的表面积为4π+32.答案:B二、填空题6.将一钢球放入底面半径为3 cm 的圆柱形玻璃容器中,水面升高4 cm ,则钢球的半径是________.解析:圆柱形玻璃容器中水面升高4cm ,则钢球的体积为V =π×32×4=36π,即有43πR 3=36π,所以R =3.答案:3 cm7.两个球的表面积之差为48π,它们的大圆周长之和为12π,则这两个球的半径之差为________.解析:由题意设两球半径分别为R 、r (R >r ),则:⎩⎪⎨⎪⎧4πR 2-4πr 2=48π2πR +2πr =12π即⎩⎪⎨⎪⎧R 2-r 2=12R +r =6.,所以R -r =2. 答案:28.已知某几何体的三视图如图所示,则该几何体的体积为________.解析:由三视图可知几何体为组合体,上方是半径为1的球,下方是长方体,其底面是边长为2的正方形,侧棱长为4,故其体积V =43×π×13+2×2×4=16+4π3. 答案:16+4π3三、解答题9.某组合体的直观图如图所示,它的中间为圆柱形,左右两端均为半球形,若图中r =1,l =3,试求该组合体的表面积和体积.解:组合体的表面积S =4πr 2+2πrl =4π×12+2π×1×3=10π. 因为圆柱的体积V 圆柱=πr 2l =π×12×3=3π,又两个半球的体积2V 半球=43πr 3=43π, 因此组合体的体积V =3π+43π=133π. 10.如图,一个圆柱形的玻璃瓶的内半径为3 cm ,瓶里所装的水深为8 cm ,将一个钢球完全浸入水中,瓶中水的高度上升到8.5 cm ,求钢球的半径.解:设球的半径为R ,由题意可得43πR 3=π×32×0.5, 解得:R =1.5 (cm),所以所求球的半径为1.5 cm.B 级 能力提升1.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )A.8π3B.82π3 C .82π D.32π3解析:截面面积为π,则该小圆的半径为1,设球的半径为R ,则R 2=12+12=2,所以R =2,V =43πR 3=82π3.答案:B2.边长为42的正方形ABCD 的四个顶点在半径为5的球O 的表面上,则四棱锥O -ABCD 的体积是________.解析:因为正方形ABCD 外接圆的半径r =(42)2+(42)22=4.又因为球的半径为5, 所以球心O 到平面ABCD 的距离d =R 2-r 2=3,所以V O ABCD =13×(42)3×3=32. 答案:323.体积相等的正方体、球、等边圆柱(轴截面为正方形的圆柱)的表面积分别是S 1,S 2,S 3,试比较它们的大小.解:设正方体的棱长为a ,球的半径为R ,等边圆柱的底面半径为r ,则S 1=6a 2,S 2=4πR 2,S 3=6πr 2.由题意知,43πR 3=a 3=πr 2·2r , 所以R =334πa ,r =312πa , 所以S 2=4π⎝⎛⎭⎪⎪⎫334πa 2=4π·3916π2a 2=336πa 2, S 3=6π⎝⎛⎭⎪⎪⎫312πa 2=6π·314π2a 2=354πa 2, 所以S 2<S 3.又6a 2>3312πa 2=354πa 2,即S 1>S 3. 所以S 1,S 2,S 3的大小关系是S 2<S 3<S 1.章末复习课[整合·网络构建][警示·易错提醒]1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱(母线)延长后必交于一点.2.空间几何体不同放置时其三视图不一定相同.3.对于简单组合体,若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,易忽视虚线的画法.4.求组合体的表面积时:组合体的衔接部分的面积问题易出错.5.由三视图计算几何体的表面积与体积时,由于几何体的还原不准确及几何体的结构特征认识不准易导致失误.6.易混侧面积与表面积的概念.专题1空间几何体的三视图与直观图三视图是立体几何中的基本内容,能根据三视图识别其所表示的立体模型,并能根据三视图与直观图所提供的数据解决问题.主要考查形式:(1)由三视图中的部分视图确定其他视图;(2)由三视图还原几何体;(3)三视图中的相关量的计算.其中(3)是本章的难点,也是重点之一,解这类题的关键是准确地将三视图中的数据转化为几何体中的数据.[例1](1)若一个正三棱柱的三视图如图所示,则这个正三棱柱的高和底面边长分别为()A.2,23B.22,2C.4,2D.2,4(2)(2016·全国Ⅲ卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36 5 B.54+18 5 C.90 D.81解析:(1)由三视图的画法规则知,正视图与俯视图长度一致,正视图与侧视图高度一致,俯视图与侧视图宽度一致.所以侧视图中2为正三棱柱的高,23为底面等边三角形的高,所以底面等边三角形边长为4.(2)由三视图可知,该几何体的底面是边长为3的正方形,高为6,侧棱长为35,则该几何体的表面积S=2×32+2×3×35+2×3×6=54+18 5.故选B.答案:(1)D(2)B。
(人教版)高中数学必修二(全册)同步练习+单元检测卷汇总课后提升作业一棱柱、棱锥、棱台的结构特征(45分钟70分)一、选择题(每小题5分,共40分)1.下列说法中正确的是( )A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱的长就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形【解析】选A.棱柱的两底面互相平行,故A正确;棱柱的侧面也可能有平行的面(如正方体),故B错;立在一起的一摞书可以看成一个四棱柱,当把这摞书推倾斜时,它的侧棱就不是棱柱的高,故C错;由棱柱的定义知,棱柱的侧面一定是平行四边形,但它的底面可以是平行四边形,也可以是其他多边形,故D错.2.四棱柱有几条侧棱,几个顶点( )A.四条侧棱、四个顶点B.八条侧棱、四个顶点C.四条侧棱、八个顶点D.六条侧棱、八个顶点【解析】选C.结合正方体可知,四棱柱有四条侧棱,八个顶点.3.下列说法错误的是( )A.多面体至少有四个面B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形【解析】选D.三棱柱的侧面是平行四边形,故D错误.4.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )A.棱柱B.棱台C.由一个棱柱与一个棱锥构成D.不能确定【解析】选 A.根据棱柱的结构特征,当倾斜后水槽中的水形成了以左右(或前后)两个侧面为底面的四棱柱.5.(2016·郑州高一检测)如图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是( )A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【解题指南】让其中一个正方形不动,其余各面沿这个正方形的各边折起,进行想象后判断.【解析】选B.在图(2)(3)中,⑤不动,把图形折起,则②⑤为对面,①④为对面,③⑥为对面,故图(2)(3)完全一样,而(1)(4)则不同. 【补偿训练】下列图形经过折叠可以围成一个棱柱的是( )【解析】选D.A,B,C中底面多边形的边数与侧面数不相等.6.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是( )A.1∶2B.1∶4C.2∶1D.4∶1【解析】选 B.由棱台的概念知,上、下两底面是相似的多边形,故它们的面积之比等于对应边长之比的平方,故为1∶4.7.(2016·温州高一检测)在五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱的对角线的条数共有( )A.20条B.15条C.12条D.10条【解析】选 D.因为棱柱的侧棱都是平行的,所以过任意不相邻的两条侧棱的截面为一个平行四边形,共可得5个截面,每个平行四边形可得到五棱柱的两条对角线,故共有10条对角线.8.(2015·广东高考)若空间中n个不同的点两两距离都相等,则正整数n的取值( )A.大于5B.等于5C.至多等于4D.至多等于3【解析】选 C.正四面体的四个顶点是两两距离相等的,即空间中n 个不同的点两两距离都相等,则正整数n的取值至多等于4.二、填空题(每小题5分,共10分)9.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.【解析】如图:①正确,如图四边形A1D1CB为矩形;②错误,任意选择4个顶点,若组成一个平面图形,则必为矩形或正方形,如四边形ABCD为正方形,四边形A1BCD1为矩形;③正确,如四面体A1ABD;④正确,如四面体A1C1BD;⑤正确,如四面体B1ABD;则正确的说法是①③④⑤.答案:①③④⑤10.(2016·天津高一检测)一个棱柱有10个顶点,所有的侧棱长的和为60cm,则每条侧棱长为________cm.【解析】因为n棱柱有2n个顶点,又此棱柱有10个顶点,所以它是五棱柱,又棱柱的侧棱都相等,五条棱长的和为60cm,可知每条侧棱长为12cm.答案:12三、解答题(每小题10分,共20分)11.根据下面对几何体结构特征的描述,说出几何体的名称.(1)由8个面围成,其中2个面是互相平行且全等的六边形,其他各面都是平行四边形.(2)由5个面围成,其中一个是正方形,其他各面都是有1个公共顶点的三角形.【解析】(1)根据棱柱的结构特征可知,该几何体为六棱柱.(2)根据棱锥的结构特征可知,该几何体为四棱锥.12.已知三棱柱ABC-A′B′C′,底面是边长为1的正三角形,侧面为全等的矩形且高为8,求一点自A点出发沿着三棱柱的侧面绕行一周后到达A′点的最短路线长.【解析】将三棱柱侧面沿侧棱AA′剪开,展成平面图形如图,则AA″即为所求的最短路线.在Rt△AA1A″中,AA1=3,A1A″=8,所以AA″==.【延伸探究】本题条件不变,求一点自A点出发沿着三棱柱的侧面绕行两周后到达A′点的最短路线长.【解析】将两个相同的题目中的三棱柱的侧面都沿AA′剪开,然后展开并拼接成如图所示,则AA″即为所求的最短路线.在Rt△AA1A″中,AA1=6,A1A″=8,所以AA″===10.【能力挑战题】如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点?(3)每个面的三角形面积为多少?【解析】(1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF为等腰三角形,△PEF为等腰直角三角形,△DPE和△DPF均为直角三角形.(3)S△PEF=a2,S△DPF=S△DPE=×2a×a=a2,S△DEF=S正方形ABCD-S△PEF-S△DPF-S△DPE=(2a)2-a2-a2-a2=a2.关闭Word文档返回原板块温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
一、选择题1.在复平面内与复数21i z i =+所对应的点关于虚轴对称的点为A ,则A 对应的复数为( )A .1i --B .1i -C .1i +D .1i -+ 2.已知复数1z ,2z 满足()1117i z i +=-+,21z =,则21z z -的最大值为( ) A .3B .4C .5D .6 3.当z =时,100501z z ++=( ) A .1 B .-1 C .i D .i -4.若复数(1)(1)z m m m i =-+-是纯虚数,其中m 是实数,则1z =( ) A .iB .i -C .2iD .2i - 5.设i 是虚数单位,则2320192342020i i i i +++⋅⋅⋅+的值为( ) A .10101010i -- B .10111010i -- C .10111012i -- D .10111010i - 6.已知i 是虚数单位,复数z 满足()341z i i +=+,则z 的共轭复数在复平面内表示的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.已知下列三个命题:①若复数z 1,z 2的模相等,则z 1,z 2是共轭复数;②z 1,z 2都是复数,若z 1+z 2是虚数,则z 1不是z 2的共轭复数;③复数z 是实数的充要条件是z z =.则其中正确命题的个数为( )A .0个B .1个C .2个D .3个8.下列命题中,正确的命题是( )A .若1212,0z z C z z ∈->、,则12z z >B .若z R ∈,则2||z z z ⋅=不成立C .1212,,0z z C z z ∈⋅=,则10z =或20z =D .221212,0z z C z z ∈+=、,则10z =且20z =9.复数252i +i z =的共轭复数z 在复平面上对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限10.已知复数 1cos isin z αα=+ 和复数2cos isin z ββ=+,则复数12z z ⋅的实部是( ) A .()sin αβ- B .()sin αβ+ C .()cos αβ-D .()cos αβ+ 11.已知复数z 满足()12i z i -=+,则z 的共轭复数在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 12.已知复数1z i =+,z 为z 的共轭复数,则1z z+=( )A .32i +B .132i +C .332i +D .12i + 二、填空题13.若i 为虚数单位,则计232020232020i i i i ++++=___________.14.已知复数z 满足1z =,则2z i -(其中i 是虚数单位)的最小值为____________. 15.已知虚数(),2z x yi x yi =+-+(x ,y R ∈)的模为4,则23z i +-的取值范围为________.16.复数2018|(3)|z i i i =-+(i 为虚数单位),则||z =________.17.计算121009100(23)(13)(123)i z i i -+=+=-++_______. 18.已知复数1z =,i 为虚数单位,则34z i -+的最小值为_________.19.若复数z 满足12i z i ⋅=+,其中i 是虚数单位,则z 的虚部为________.20.若复数z 满足12i z i ⋅=+,其中i 是虚数单位,则z 的实部为________.三、解答题21.(1)计算:()()432-21+3i i (i 为虚数单位);(2)已知z 是一个复数,求解关于z 的方程,313z z i z i ⋅-⋅=+(i 为虚数单位). 22.设虚数z 满足2510z z +=+.(1)求z 的值;(2)若()12i z -在复平面上对应的点在第一、第三象限的角平分线上,求复数z . 23.已知复数12z i =-+,1255z z i =-+(其中为虚数单位)(1)求复数2z ;(2)若复数()()()2323231z z m m m i ⎡⎤=---+-⎣⎦所对应的点在第四象限,求实数m 的取值范围.24.已知复数1z 满足:111z i z =++.(1)求1z ;(2)若复数()()22111z a a z a R =-+-∈,且2z 是纯虚数,求a 的值. 25.在复平面内复数1z 、2z 所对应的点为1Z 、2Z ,O 为坐标原点,i 是虚数单位. (1)112z i =+,234z i =-,计算12z z ⋅与12OZ OZ ⋅;(2)设1z a bi =+,2z c di =+(,,,a b c d ∈R ),求证:1212OZ OZ z z ⋅≤⋅,并指出向量1OZ 、2OZ 满足什么条件时该不等式取等号.26.已知关于x 的方程x 2+kx+k 2﹣2k=0有一个模为1的虚根,求实数k 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据复数的运算法则求出1z i =+,即可得到其对应点关于虚轴对称点的坐标,写出复数.【详解】 由题()()()2122211112i i i i z i i i i -+====+++-,在复平面对应的点为(1,1), 关于虚轴对称点为(-1,1),所以其对应的复数为1i -+.故选:D【点睛】此题考查复数的几何意义,关键在于根据复数的乘法除法运算准确求解,熟练掌握复数的几何意义.2.D解析:D【分析】先求得1z ,设出2z ,然后根据几何意义求得21z z -的最大值.【详解】 由()()()()11711768341112i i i i z i i i i -+--++====+++-,令2z x yi =+,x ,y R ∈,由222||11z x y =⇒+=,()()2134z z x y i -=-+-= 2z 对应点在单位圆上,所以21z z -表示的是单位圆上的点和点()3,4的距离, ()3,4到圆心()0,05=,单位圆的半径为1,所以21max 516z z -=+=.故选:D【点睛】 本小题主要考查复数除法运算,考查复数模的最值的计算.3.D解析:D【分析】根据100501z z ++的结构特点,先由z =,得到()2212-==-i z i ,再代入100501z z ++求解.【详解】 因为z = 所以()221,2-==-i z i 所以()()()2550250100,1=-=-=-=-=-z i i z i i , 所100501++=-z z i ,故选:D【点睛】本题主要考查了复数的基本运算,还考查了周期性的应用,运算求解的能力,属于基础题. 4.A解析:A【解析】因为复数()()11z m m m i =-+-是纯虚数,所以()1010m m m ⎧-=⎨-≠⎩,则m =0,所以z i =-,则11i z i==-. 5.B解析:B【分析】利用错位相减法、等比数列的求和公式及复数的周期性进行计算可得答案.【详解】解:设2320192342020S i i i i =+++⋅⋅⋅+,可得:24201920320023420192020iS i i i i i =++++⋅⋅⋅++,则24201923020(1)22020i S i i i i ii -=++++⋅⋅⋅+-, 2019242019202023020(1)(1)202020201i i i S i i i i i i i i i i--=+++++⋅⋅⋅+-+-=-, 可得:2(1)(1)(1)20202020202112i i i i i S i i i i ++-=+-=+-=-+-, 可得:2021(2021)(1)1011101012i i i S i i -+-++===---, 故选:B.【点睛】本题主要考查等比数列的求和公式,错位相减法、及复数的乘除法运算,属于中档题.6.A解析:A【分析】利用复数的运算法则、共轭复数的定义、几何意义即可得出.【详解】复数z 满足()341z i i +=+,∴()()()()3434134z i i i i +-=+-,∴257z i =-,∴712525z i =-. ∴712525z i =+. 则复平面内表示z 的共轭复数的点71,2525⎛⎫ ⎪⎝⎭在第一象限. 故选:A .【点睛】此题考查复数的运算和几何意义,涉及共轭复数概念辨析,关键在于熟练掌握运算法则,根据几何意义确定点的位置.7.C解析:C【分析】运用复数的模、共轭复数、虚数等知识对命题进行判断.【详解】对于①中复数1z 和2z 的模相等,例如1=1+z i ,2z ,则1z 和2z 是共轭复数是错误的;对于②1z 和2z 都是复数,若12+z z 是虚数,则其实部互为相反数,则1z 不是2z 的共轭复数,所以②是正确的;对于③复数z 是实数,令z a =,则z a =所以z z =,反之当z z =时,亦有复数z 是实数,故复数z 是实数的充要条件是z z =是正确的.综上正确命题的个数是2个.故选C【点睛】本题考查了复数的基本概念,判断命题是否正确需要熟练掌握基础知识,并能运用举例的方法进行判断,本题较为基础.8.C解析:C【分析】A .根据复数虚部相同,实部不同时,举例可判断结论是否正确;B .根据实数的共轭复数还是其本身判断2||z z z ⋅=是否成立;C .根据复数乘法的运算法则可知是否正确;D .考虑特殊情况:12,1z i z ==,由此判断是否正确.【详解】A .当122,1i z z i =+=+时,1210z z -=>,此时12,z z 无法比较大小,故错误;B .当0z =时,0z z ==,所以20z z z ⋅==,所以此时2||z zz ⋅=成立,故错误;C .根据复数乘法的运算法则可知:10z =或20z =,故正确;D .当12,1z i z ==时,2212110z z +=-+=,此时10z ≠且20z ≠,故错误. 故选:C.【点睛】本题考查复数的概念以及复数的运算性质的综合,难度一般.(1)注意实数集是复数集的子集,因此实数是复数;(2)若z C ∈,则有2z z z ⋅=. 9.C解析:C【解析】【分析】根据复数的运算求得2i z =-+,得到z 2i =--,再根据复数的表示,即可求解,得到答案.【详解】由题意,根据复数的运算可得复数252i +i 2i z ==-+, 则z 2i =--,所以z 对应点(2,1)--在第三象限,故选C .【点睛】本题主要考查了复数的运算,以及复数的表示,其中解答中熟记复数的运算法则,以及复数的表示是解答的关键,着重考查了推理与运算能力,属于基础题.10.D解析:D【解析】分析:利用复数乘法运算法则化简复数,结合两角和的正弦公式、两角和的余弦公式求解即可.详解:()()12cos cos cos cos z z isin isin ααββαβ⋅=++=()()2cos cos cos i sin isin i sin sin isin αβαβαβαβαβ+++=+++,∴实部为()cos αβ+,故选D.点睛:本题主要考查的是复数的乘法,属于中档题.解题时一定要注意21i =-和()()()()a bi c di ac bd ad bc i ++=-++运算的准确性,否则很容易出现错误. 11.D解析:D【解析】()12i z i -=+,()()()()1i 1i 2+i 1i z ∴-+=+,13213i,i,22z z =+=+13i,22z z =-的共轭复数在复平面内对应点坐标为13,22⎛⎫-⎪⎝⎭,z 的共轭复数在复平面内对应的点在第四象限,故选D. 12.B解析:B【分析】由复数1z i =+,得到1z i =-,进而得到121z i z i++=-,根据复数的除法运算法则,即可求解.【详解】 由题意,复数1z i =+,可得1z i =-,则()()()()2112131112i i z i i z i i i +++++===--+. 故选:B.【点睛】本题主要考查了复数的除法运算,以及共轭复数的概念及应用,其中解答中熟练应用复数的除法运算的法则,以及熟记复数的共轭复数的概念是解答的关键,着重考查运算与求解能力.二、填空题13.【分析】设两边乘以相减结合等比数列的求和公式和复数的乘除运算法则计算可得所求和【详解】设上面两式相减可得则故答案为:【点睛】本题考查数列的求和方法:错位相减法以及复数的运算考查等比数列的求和公式以及 解析:10101010i -【分析】设232020232020S i i i i =+++⋯+,两边乘以i ,相减,结合等比数列的求和公式和复数的乘除运算法则,计算可得所求和.【详解】设232020232020S i i i i =+++⋯+,2342021232020iS i i i i =+++⋯+,上面两式相减可得,2320202021(1)2020i S i i i i i -=+++⋯+-20202021(1)(11)20202020202011i i i i i i i i--=-=-=---, 则(1)202020201010101012i i i S i i +=-=-=--. 故答案为:10101010i -.【点睛】本题考查数列的求和方法:错位相减法,以及复数的运算,考查等比数列的求和公式,以及化简运算能力,属于中档题.14.1【分析】复数满足为虚数单位)设利用复数模的计算公式与三角函数求值即可得出【详解】解:复数满足为虚数单位)设则当且仅当时取等号故答案为:1【点睛】本题考查了复数的运算法则模的计算公式及其三角函数求值 解析:1【分析】复数z 满足||1(z i =为虚数单位),设cos sin z i θθ=+,[0θ∈,2)π.利用复数模的计算公式与三角函数求值即可得出.【详解】 解:复数z 满足||1(z i =为虚数单位),设cos sin z i θθ=+,[0θ∈,2)π.则|2||cos (sin 2)|1z i i θθ-=+-,当且仅当sin 1θ=时取等号.故答案为:1.【点睛】本题考查了复数的运算法则、模的计算公式及其三角函数求值,考查了推理能力与计算能力,属于中档题. 15.【分析】由模长公式易得设()表示的几何意义为点到点的距离结合图形求出距离的范围即可得解【详解】因为虚数()的模为4所以有故点的轨迹是以圆心半径为的圆设()表示的几何意义为点到点的距离由图可知点到点的 解析:[]1,9【分析】由模长公式易得()22216x y -+=,设z x yi =+(x ,y R ∈),23z i +-表示的几何意义为点(,)x y 到点(2,3)B -的距离,结合图形求出距离的范围即可得解.【详解】因为虚数()2x yi -+(x ,y R ∈)的模为4,所以有()22216x y -+=, 故点(,)x y 的轨迹是以圆心(2,0)A ,半径为4r =的圆,设z x yi =+(x ,y R ∈),23z i +-表示的几何意义为点(,)x y 到点(2,3)B -的距离, 由图可知,点(,)x y 到点(2,3)B -的距离的最大值为AB r +,最小值为AB r -,又因为5AB ==, 所以点(,)x y 到点(2,3)B -的距离的最大值为9,最小值为1,则23z i +-的取值范围为[]1,9.故答案为[]1,9.【点睛】本题考查复数的模和复数的几何意义,解题关键是根据复数的模长公式,得到x和y关系式,根据条件作出图形利用数形结合求解,考查逻辑思维能力和运算求解能力,考查数形结合思想,属于常考题.16.1【分析】由复数模的求法及虚数单位的性质化简求值【详解】解:由题得故答案为:1【点睛】本题考查复数模的求法考查虚数单位的性质是基础题解析:1【分析】由复数模的求法及虚数单位i的性质化简求值.【详解】解:由题得222|13|1(3)1211z i i=+=+=-=,||1z∴=.故答案为:1.【点睛】本题考查复数模的求法考查虚数单位i的性质,是基础题.17.-511【分析】利用复数的运算公式化简求值【详解】原式故答案为:【点睛】思路点睛:本题考查复数的次幂的运算注意以及等公式化简求值解析:-511【分析】利用复数的运算公式,化简求值.【详解】原式1212100369100100999(23)121511()13[(23)]132()()iii ii i-=+=+=-+=---⨯-⨯-+-+.故答案为:511-【点睛】思路点睛:本题考查复数的n次幂的运算,注意313122⎛⎫-+=⎪⎪⎝⎭,()212i i+=,以及()()612211i i ⎡⎤+=+⎣⎦,等公式化简求值. 18.4【分析】利用复数的几何意义转化求解即可【详解】解:复数z 满足为虚数单位复数z 表示:复平面上的点到(00)的距离为1的圆的几何意义是圆上的点与的距离所以其最小值为:故答案为:4【点睛】本题考查复数的解析:4【分析】利用复数的几何意义,转化求解即可.【详解】解:复数z 满足1z =,i 为虚数单位, 复数z 表示:复平面上的点到(0,0)的距离为1的圆. 34z i -+的几何意义是圆上的点与()34-,的距离,14-= .故答案为:4.【点睛】本题考查复数的几何意义,复数的模的求法,考查转化思想以及计算能力,属于中档题. 19.-1【分析】利用复数的运算法则求出根据虚部的概念即可得出【详解】∴的虚部为故答案为【点睛】本题考查了复数的运算法则复数的分类考查了推理能力与计算能力属于基础题解析:-1【分析】利用复数的运算法则求出z ,根据虚部的概念即可得出.【详解】()()212122i i i z i i i+-+===--, ∴z 的虚部为1-,故答案为1-.【点睛】 本题考查了复数的运算法则、复数的分类,考查了推理能力与计算能力,属于基础题. 20.2【解析】分析:先根据复数的除法运算进行化简再根据复数实部概念求结果详解:因为则则的实部为点睛:本题重点考查复数相关基本概念如复数的实部为虚部为模为对应点为共轭复数为解析:2【解析】分析:先根据复数的除法运算进行化简,再根据复数实部概念求结果.详解:因为12i z i ⋅=+,则12i 2i iz +==-,则z 的实部为2. 点睛:本题重点考查复数相关基本概念,如复数+i(,)a b a b ∈R 的实部为a 、虚部为b 、、对应点为(,)a b 、共轭复数为i a b -.三、解答题21.(1)8;(2)13z i =-+或1z =-【分析】(1)()()()()()()4222232-22-22-28i i i i -=即可化简得值;(2)设,,z a bi a b R =+∈,建立等式()()()313a bi a bi i a bi i +---=+,列方程组求解.【详解】(1)()()()()()()4222232-22-22-26488i i i -===-; (2)设,,z a bi a b R =+∈,313z z i z i ⋅-⋅=+,即()()()313a bi a bi i a bi i +---=+, 223313a b b ai i +--=+,所以2231,33a b b a +-=-=,解得13a b =-⎧⎨=⎩或10a b =-⎧⎨=⎩, 所以13z i =-+或1z =-.故答案为:13z i =-+或1z =-【点睛】此题考查复数的运算,关键在于根据题意利用复数的运算法则,准确计算求解. 22.(1)5;(2或. 【分析】(1)设z x yi =+(x 、y R ∈,i 为虚数单位),根据条件2510z z +=+得出x 、y 所满足的关系式,从而可得出z 的值;(2)将复数()12i z -表示为一般形式,然后由题意得出实部与虚部相等,并结合2225x y +=,求出x 、y 的值,即可得出复数z .【详解】(1)设z x yi =+(x 、y R ∈,i 为虚数单位),则()25252z x yi +=++,()1010z x yi +=++,由2510z z +=+=2225x y +=, 因此,5z ==; (2)()()()()()121222i z i x yi x y y x i -=-+=++-,由于复数()12i z -在复平面上对应的点在第一、第三象限的角平分线上,则22x y y x +=-,所以22325y x x y =-⎧⎨+=⎩,解得1023102x y ⎧=⎪⎪⎨⎪=-⎪⎩或1023102x y ⎧=-⎪⎪⎨⎪=⎪⎩. 因此,10310i 22z =-或1031022i -+. 【点睛】 本题考查复数模的计算,同时也考查了复数的几何意义,解题时要结合已知条件将复数表示为一般形式,考查运算求解能力,属于中等题.23.(1)23z i =-;(2)11m -<<【解析】试题分析:(1)根据复数的四则运算即可求得;(2)将23Z i =-代入得()()23123Z m m m i =--+--,由复数的概念和几何意义得()210230m m m ⎧-->⎨--<⎩,解得11m -<<.试题(1)1255z z i =-+,21555532i i z i z i-+-+===--+ (2)()()()2323231z z m m m i ⎡⎤=---+-⎣⎦()()2231i m m m i ⎡⎤=--+-⎣⎦ ()()2123m m m i =--+--由于3z 所对应的点在第四象限,,所以实数m 的取值范围是24.(1)1z i =-;(2)1a =-.【分析】(1)设1,(,)z a bi a b R =+∈,将已知条件化简后可得1z ;(2)将2z 化简整理,令实部为0,可得a 的值.【详解】(1)设1,(,)z a bi a b R =+∈,221(1)(1)a b i a bi a b i +=+++=+++,22100,,11b a b a b a +=⎧=⎧∴∴⎨⎨=-+=+⎩⎪⎩ ∴1z i =-.(2)由(1)得221(1)(),z a a i a =---∈R由2z 是纯虚数得:21010a a ⎧-=⎨-≠⎩, 1a ∴=-.【点睛】本题主要考查复数的有关概念及四则运算等基本知识.考查概念识记、运算化简能力,属于基础题.25.(1)12112z z i ⋅=+,125OZ OZ ⋅=-;(2)证明详见解析,当ab cd =时.【分析】(1)根据复数的乘法运算法则进行运算即可求出12z z ⋅,可知()11,2OZ =,()23,4OZ =-,然后进行数量积的坐标运算即可;(2)根据复数的乘法运算法则进行运算即可求出12z z ⋅,以及复数的几何意义表示出1OZ 、2OZ 计算其数量积,利用作差法比较221212,||z z OZ OZ ⋅⋅的大小,并得出何时取等号.【详解】解:(1)()()121234112z z i i i ⋅=+⋅-=+()11,2OZ =,()23,4OZ =-所以125OZ OZ ⋅=-证明(2)1z a bi =+,2z c di =+()()12ac bd ad z i z bc =-++∴⋅()()22212z z ac bd ad bc ∴⋅=-++ ()1,OZ a b =,()2,OZ c d =12OZ OZ ac bd ∴⋅=+,()2212OZ OZ ac bd ⋅=+()()()222221212||z z OZ OZ ac bd ad bc ac bd ∴-⋅-⋅=-+++()()2240ad bc ac bd ad cb =--=+⋅≥所以1212OZ OZ z z ⋅≤⋅,当且仅当ad cb =时取“=”,此时12OZ OZ .【点睛】本题考查了复数的乘法运算法则,向量坐标的数量积运算,复数的模长的计算公式,考查了计算能力,属于基础题.26.1【解析】分析:设两根为1z 、2z ,则21=z z , 21==1z z ,得12=1z z ⋅,利用韦达定理列方程可求得k 的值,结合判别式小于零即可得结果.详解:由题意,得()222423800k k k k k k ∆=--=-+<⇒<或83k >, 设两根为1z 、2z ,则21=z z , 21==1z z ,得12=1z z ⋅,212=2z z k k ⋅- 221k k ⇒-= 1211k k ⇒==.所以1k =点睛:本题考查复数代数形式乘除运算,韦达定理的使用,实系数方程有虚数根的条件,共轭复数的性质、共轭复数的模,意在考查基础知识的掌握与综合应用,属于中档题.。
第六章综合测试一、单项选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在ABC △中,内角,A B C ,的对边分别为,,a b c ,若a =,2A B =,则cos B 等于( )2.已知两个单位向量a 和b 的夹角为60°,则向量-a b 在向量a 上的投影向量为()A.12a B.aC.12-aD.-a3.已知点(2,1),(4,2)A B -,点P 在x 轴上,当PA PB u u r u u rg 取最小值时,P 点的坐标是( )A.(2,0)B.(4,0)C.10,03æöç÷èøD.(3,0)4.已知,,A B C 为圆O 上的三点,若有OA OC OB +=u u r u u u r u u u r ,圆O 的半径为2,则OB CB =u u u r u u rg ( )A.1-B.2-C.1D.25.已知点(4,3)A 和点(1,2)B ,点O 为坐标原点,则||()OA tOB t +ÎR u u r u u u r的最小值为( )A.B.5C.36.已知锐角三角形的三边长分别为1,3,a ,那么a 的取值范围为( )A.(8,10)B.C.D.7.已知圆的半径为4,,,a b c 为该圆的内接三角形的三边,若abc =,则三角形的面积为( )A.B.8.已知向量,a b 满足(2)(54)0+×-=a b a b ,且1==a b ,则a 与b 的夹角q 为( )A.34p B.4pC.3pD.23p 9.已知sin 1sin cos 2a a a =+,且向量(tan ,1)AB a =u u u r ,(tan ,2)BC a =u u u r ,则AC u u u r 等于( )A.(2,3)-B.(1,2)C.(4,3)D.(2,3)10.在ABC △中,E F ,分别为,AB AC 的中点,P 为EF 上的任意一点,实数,x y 满足PA xPB yPC ++=0u u r u u r u u u r,设,,,ABC PBC PCA PAB △△△△的面积分别为123,,,S S S S ,记(1,2,3)ii S i Sl ==,则23l l ×取到最大值时,2x y +的值为( )A.1-B.1C.32-D.32二、多项选择题(本大题共2小题,每小题5分,共10分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分)11.已知ABC △中,角,,A B C 的对边分别为,,a b c ,且满足,3B a c p=+=,则ac=( )A.2B.3C.12D.1312.点P 是ABC △所在平面内一点,满足20PB PC PB PC PA --+-=u u r u u u r u u r u u u r u u r,则ABC △的形状不可能是( )A.钝角三角形B.直角三角形C.等腰三角形D.等边三角形三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上)13.已知,12e e 是平面内的单位向量,且12×=12e e .若向量b 满足1×=×=12b e b e ,则=b ________.14.已知向量,a b 满足5,1==a b ,且4-≤a b ,则×a b 的最小值为________.15.如图,在直角梯形ABCD 中,AB DC ∥,AD DC ^,2DC A A B D ==,E 为AD 的中点,若CA CE DB l m =+u u r u u u r u u u r,则l =________,m =________.(本题第一空2分,第二空3分)16.如图所示,某海岛上一观察哨A 上午11时测得一轮船在海岛北偏东60°的C 处,12时20分测得轮船在海岛北偏西60°的B 处,12时40分轮船到达位于海岛正西方且距海岛5km 的E 港口,如果轮船始终匀速直线前进,则船速的大小为________.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)如图所示,以向量,OA OB ==u u r u u u r a b 为邻边作OADB Y ,11,33BM BC CN CD ==u u u r u u u r u u u r u u u r,用,a b 表现,,OM ON MN u u u r u u u r u u u r.18.(本小题满分12分)已知ABC △的内角,,A B C 所对的边分别为,,a b c ,且2a =,3cos 5B =.(1)若4b =,求sin A 的值;(2)若4ABC SD =,求,b c 的值.19.(本小题满分12分)在ABC △中,角,,A B C 所对的边分别为,,a b c ,已知sin cos 1sin 2C C C +=-,(1)求sin C 的值;(2)若ABC △的外接圆面积为(4p +,试求AC BC u u u r u u u rg 的取值范围.20.(本小题满分12分)某观测站在城A 南偏西20°方向的C 处,由城A 出发的一条公路,走向是南偏东40°,距C 处31千米的B 处有一人正沿公路向城A 走去,走了20千米后到达D 处,此时,C D 间的距离为21千米,问这人还要走多少千米可到达城A ?21.(本小题满分12分)已知正方形ABCD ,E F 、分别是CD AD 、的中点,BE CF 、交于点P ,连接AP .用向量法证明:(1)BE CF ^;(2)AP AB =.22.(本小题满分12分)已知向量(sin ,cos )x x =a ,sin ,sin 6x x p æöæö=-ç÷ç÷èøèøb ,函数()2f x =×a b ,()4g x f x pæö=ç÷èø.(1)求()f x 在,2p p éùêúëû上的最值,并求出相应的x 的值;(2)计算(1)(2)(3)(2014)g g g g ++++L 的值;(3)已知t ÎR ,讨论()g x 在[,2]t t +上零点的个数.第六章综合测试答案解析一、1.【答案】B【解析】由正弦定理得sin sin a Ab B=,a \=可化为sin sin A B =又sin 22sin cos 2,sin sin B B B A B B B =\==,cos B \=.2.【答案】A【解析】由已知可得111122×=´´=a b ,211()122-×=-×=-=a b a a a b ,则向量-a b 在向量a 上的投影向量为()12-××=a b a a a a .3.【答案】D【解析】Q 点P 在x 轴上,\设P 上的坐标是(,0),(2,1),(4,2)x PA x PB x \=--=-u u r u u r,22(2)(4)266(3)3PA PB x x x x x \×=---=-+=--u u r u u r ,\当3x =时,PA PB ×u u r u u r 取最小值.P \点的坐标是(3,0).4.【答案】D【解析】OA OC OB +=u u r u u u r u u u rQ ,OA OC =u u r u u u r ,\四边形OABC 是菱形,且120AOC Ð=°,又圆O 的半径为2,22cos602OB CB \×=´´°=u u u r u u r.5.【答案】D【解析】点(4,3),(1,2)A B ,O 为坐标原点,则(4,32)OA tOB t t +=++u u r u u u r,22222()(4)(32)520255(2)55OA tOB t t t t t \+=+++=++=++u u r u u u r ≥,\当2t =-时,等号成立,此时OA tOB +u u r u u u r取得最小值6.【答案】B【解析】设1,3,a 所对的角分别为,,C B A ÐÐÐ,由余弦定理的推论知2222222213cos 0,21313cos 0,2131cos 0,23a A a B a a C a ì+-=ï´´ïï+-=í´´ïï+-=ï´´î>即()()222100,280,680,a a a a a ì-ïï-íï+ïî>>>解得a ,故选B .7.【答案】C【解析】设圆的半径为R ,内接三角形的三边,,a b c 所对的角分别为,,A B C .28sin sin sin a b cR A B C====Q,sin 8cC \=,1sin 216ABC abc S ab C D \====.8.【答案】C【解析】22(2)(54)5680+×-=+×=-Q a b a b a a b b ,又11,63,cos 2q ==\×=\=a b a b ,又[0,],3pq p q Î\=,故选C .9.【答案】D【解析】sin 1sin cos 2a a a =+Q ,cos sin a a \=,tan 1a \=,(2tan ,3)(2,3)AC AB BC a \=+==u u u r u u u r u u u r .故选D .10.【答案】D【解析】由题意可得,EF 是ABC △的中位线,P \到BC 的距离等于ABC △的边BC 上的高的一半,可得12323121,2S S S S l l ++===.由此可得223231216l l l l +æö×=ç÷èø≤,当且仅当23S S =,即P 为EF 的中点时,等号成立.0PE PF \+=u u r u u u r .由向量加法的四边形法则可得,2PA PB PE +=u u r u u r u u r ,2PA PC PF +=u u r u u u r u u u r ,两式相加,得20PA PB PC ++=u u r u u r u u u r.0PA xPB yPC ++=u u r u u r u u u r Q ,\根据平面向量基本定理,得12x y ==,从而得到322x y +=.二、11.【答案】AC 【解析】3B p=Q,a c +=,2222()23a c a c ac b \+=++=,①由余弦定理可得,2222cos3a c acb p+-=,②联立①②,可得222520a ac c -+=,即22520a a c c æöæö-+=ç÷ç÷èøèø,解得2a c =或12a c =.故选AC .12.【答案】ACD【解析】P Q 是ABC △所在平面内一点,且|||2|0PB PC PB PC PA --+-=u u r u u u r u u r u u u r u u r,|||()()|0CB PB PA PC PA \--+-=u u r u u r u u r u u u r u u r,即||||CB AC AB =+u u r u u u r u u u r ,||||AB AC AC AB \-=+u u u r u u u r u u u r u u u r ,两边平方并化简得0MC AB ×=u u u r u u u r ,AC AB \^u u u r u u u r,90A °\Ð=,则ABC △一定是直角三角形.故选ACD .三、13.【解析】解析令1e 与2e 的夹角为q .1cos cos 2q q \×=×==1212e e e e ,又0q °°≤≤180,60q \=°.()0×-=Q 12b e e ,\b 与,12e e 的夹角均为30°,从而1||cos30°=b .14.【答案】52【解析】|4|-==a b ,52×≥a b ,即×a b 的最小值为52.15.【答案】65 25【解析】以D 为原点,DC 边所在直线为x 轴,DA 边所在直线为y 轴建立平面直角坐标系.不妨设1AB =,则(0,0),(2,0),(0,2),(1,2),(0,1)D C A B E .(2,2),(2,1),(1,2)CA CE DB =-=-=u u r u u u r u u u r,,(2,2)(2,1)(1,2)CA CE DB l m l m =+\-=-+u u r u u u r u u u rQ ,22,22,l m l m -+=-ì\í+=î解得6,52.5l m ì=ïïíï=ïî16.km /h【解析】轮船从C 到B 用时80分钟,从B 到E 用时20分钟,而船始终匀速前进,由此可见,4BC EB =.设EB x =,则4BC x =,由已知得30BAE Ð=°,150EAC Ð=°.在AEC △中,由正弦定理的sin sin EC AEEAC C=Ð,sin 5sin1501sin 52AE EAC C EC x x°Ð\===g .在ABC △中,由正弦定理得sin120sin BC ABC=°,sin sin120BC C AB \===°g 在ABE △中,由余弦定理得22216312cos30252533BE AB AE AB AE °=+-=+-=g g,故BE =.\船速的大小为/h)BEt==.四、17.【答案】解:BA OA OB =-=-u u r u u r u u u rQ a b ,11153666OM OB BM OB BC OB BA \=+=+=+=+u u u r u u u r u u u r u u u r u u u r u u u r u u r a b .又OD =+u u u r a b ,222333ON OC CN OD \=+==+u u u r u u u r u u u r u u u r a b ,221511336626MN ON OM \=-=+--=-u u u r u u u r u u u r a b a b a b .18.【答案】解:3cos 05B =Q ,且0B p <<,4sin 5B \==.由正弦定理得sin sin a bA B=,42sin 25sin 45a BA b´\===.(2)1sin 42ABC S ac B D ==Q ,142425c \´´´=,5c \=.由余弦定理得2222232cos 25225175b a c ac B =+-=+-´´´=,b \=.19.【答案】(1)解:ABC △中,由sin cos 1sin 2C C C +=-,得22sin cos 2sin sin 2222C C C C=-,sin 02C Q >,1cos sin 222C C \-=-,两边平方得11sin 4C -=,解得3sin 4C =.(2)设ABC △的外接圆的半径为R ,由(1)知sin cos 22C C >,24C p\>,2C p\>,cos C \==.易得2sin c R C =,22294sin (44c R C \==,由余弦定理得,2229(42214c a b ab ab ææ=+=+-+ççççèè≥g g ,902ab \<≤,cos AC BC ab C éö\=Î÷ê÷ëøu u u r u u u r g g ,即AC BC u u u r u u u r g的取值范围是éö÷ê÷ëø.20.【答案】解:如图所示,设ACD a Ð=,CDB b Ð=.在CBD △中,由余弦定理的推论得2222222021311cos 2220217BD CD CB BD CD b +-+-===-´´g,sin b \==()11sin sin 60sin cos60sin 60cos 27a b b b °°°æö\=-=-=--=ç÷èøg在CBD △中,由正弦定理得21sin 60sin AD a=°,21sin 15sin 60AD a \==°(千米).\这人还要再走15千米可到达城A .21.【答案】证明:如图,建立平面直角坐标系xOy ,其中A 为原点,不妨设2AB =,则(0,0),(2,0),(2,2),(1,2),(0,1)A B C E F .(1)(1,2)(2,0)(1,2)BE OE OB =-=-=-u u r u u u r u u u r Q ,(0,1)(2,2)(2,1)CF OF OC =-=-=--u u u r u u u r u u u r ,(1)(2)2(1)0BE CF \×=-´-+´-=u u r u u u r ,BE CF \^u u r u u u r ,即BE CF ^.(2)设(,)P x y ,则(,1)FP x y =-u u r ,(2,)BP x y =-u u r ,由(1)知(2,1)CF =--u u u r ,(1,2)BE =-u u r ,FP CF u u r u u u r Q ∥,2(1)x y \-=--,即24y x =-+.同理,由BP BE u u r u u r ∥,即24y x =-+.22,24,x y y x =-ì\í=-+î解得6,58,5x y ì=ïïíï=ïî即68,55P æöç÷èø.222268455AP AB æöæö\=+==ç÷ç÷èøèøu u u r u u u r ,||||AP AB \=u u u r u u u r ,即AP AB =.22.【答案】(1)解:21()22sin sin(2sin cos sin 262f x x x x x x x p ö=×=-+=+=÷øab 1sin 22sin 223x x x p æö-+=-+ç÷èø,2x p p éùÎêúëûQ,252333x p p p \-≤,1sin 23x p æö\--ç÷èø≤,\当3232x p p -=,即1112x p =时,()f x 取得最小值1,当2233x p p -=,即2x p =时,()f x .(2)由(1)得()sin 23f x x p æö=-+ç÷èø()sin 423g x f x x p p p æöæö\==-ç÷ç÷èøèø4T \=(1)(2)(3)(4)(5)(6)(7)(8)(2009)(2010)(2011)(2012)g g g g g g g g g g g g \+++=+++==+++L .又(1)(2)(3)(4)g g g g +++=,(1)(2)(3)(2014)503(1)(2)g g g g g g \++++=´++=L=.(3)()g x 在[,2]t t +上零点的个数等价于sin 23x y p p æö-çè=÷ø与y =.在同一平面直角坐标系内作出这两个函数的图象(图略).当4443k t k +<<,k ÎZ 时,由图象可知,sin 23x y p p æö-çè=÷ø与y =()g x 无零点;当44243k t k ++≤<或10444,3k t k k ++ÎZ <≤时,sin 23x y p p æö-çè=÷ø与y =1个交点,即()g x 有1个零点;当10244,3k t k k ++ÎZ ≤≤时,sin 23x y p p æö-çè=÷ø与y =2个交点,即()g x 有2个零点.。
(人教版)高中数学必修二(全册)单元测试卷汇总、阶段通关训练(一)(60分钟 100分)一、选择题(每小题5分,共3。
分)1・已知某几何体的三视图如图所示,那么这个几何体是□ □便視囲A. 长方体 C.匹棱锥【解析】选A.该几何体是长方体,如图所示» 入城商中目字必零二01 :酚俭1王训停 爺人椒版為中教学宕偌2!; &馈通关训号 信,奴薮版快9E 必偌二好:阶段遑关训澤 司:人馭艇苣中数猝偌二桂測:跻蜀■美训遂 琼人板版毫中gtl 修二窗I ;樓埃蜃量怦估 S 人会版毎中數⑴ C 2) Word 版言眾忻 Word 版合解忻 W 。
招版含解忻 (AS ) Word 板合樹ff (B 卷)WordB.圆性 D.四棱台正視图悟视图2.以钝角三角形旳较小边所在的直线为轴,其他两边旋转一周所得到的几何体是()A .两个圆锥拼桜而成的组合体B.一个圖台C.一个圆锥D . 一个圆锥挖去一个同底的小圆维【解析】选D.如图以AB为轴所得的几何体是一个大圆锥挖去一个同底的小圆锥.3.已知AAB攏边长为2a的正三角形,那么△ABCE勺平面直观图△ A'B‘ C'的面积为()D.\Ga~【鮮析】选C.直观图面积S与原图面积S具有关系:S' Mfs.因为S 好芸12a)所以S …c 三•X\/3a'=^a .4- 4 4【补偿训练】某三角形的直观图是斜边长为2的等腰直角三角形,如图所示,则原三信形的面积是【解析】根据宜观图和原图形的关系可知原图形的面积为X 2vl X 2二2卮 答案:2^24. 某三梭锥的三视图如图所示,则该三検锥的体积是【解析】选B .由三视图可判断该三棱锥底面为等腰直角三角形,三 棱锥旳高为 2. RI V=x x 1 x 1 x 2=.^【补偿洲练】已知正三棱镣V-ABC 的正视图、侧视图和帽视图如图所 示,则该正三枝锥侧视图的面积是A.B. C. D.1A.v39B.6\,r 3D.6俯视C.即3【解析】选D .如图,根据三视图间的关系可得BCM3,所以侧视图 中VA 二\|铲一任X ? X 2妁七整,所以三橙锥侧视图面积S- 海=x 2V 3X 2\顶二6,故选 D.5.(2016 •蚌瑋高二检测)若一个回锥的侧面展开图是面积为 2工的半圆面,则该圆锥的体积为B.V3 X C .拓x【解析】选A.设园锥的母线长为I,底面半径为r,由题意|7苗2 = 211,vnl = 2TTT ,解得'所以圆锥的高为 h=\F —尸=寸3 , V= * r 2h= r x 12x r = L . 6.(2016 •雅安高二检测)设正方体的全面积为 24,邪么其内切球的体积是A .扼KB.兀32 D.—【解析】 选B.正方体的全面积为24,所以,设正方体的棱长为a.6 宀 24, a 二2,正方体的内切球的直径就是正方体的校长,所以球的半径为1,内切球旳体积:V = 7t . ID RC乙 第*已回刮寻詠回王曲>=s '哥USS 甲'里蛔国皿【果到】&&価91实逐刘t ¥豈我到国丑屬T 風濕&一天喔宰邕€好日-6肝里N 二縛:毒虽•*+£,W=M*£Axl X >t=S rft凰峯4 Z^A^Ax^ x=A '風刘"坦 NN 八一醇E3HI 诳乙 弟学段皿期一旧耳闻1/峯'皓也乎书屋絶三零净【爆蜴】醇車回1/溟【四'(国⑰)国隴三阳财回廿必日(脈玛二堆※困• 9L0S1-8LL :孝晶U=x 韧 N 刮’壽」三三)阜尚‘X 興覃毋号密祺[菓到】 麹*辛矣廚留丄壬至藏乌去廖犯讪目丄竺羽诲同争宙【睾里區墙】^实些阳号屛醇斟濯施*09实邊回回淮即回通士互士 .乙屿%邊国基’9L 实雙団驚勢N(G&详‘&9鲤W 辱)谴乏帯 '二=M 媛苴'務nD所以AQ=\吃,A O=R^/6.所以S丼二4兀F<=24T.答案:24 x10•圖台的底面半径分别为1和2,母线长为3,则此圖台的体积为【解析】圆台的高h= 732 - (2 - I)2 =2 <1 ,所以体积71 2 aV=y(R+Rr4-r )h=^^i(. 答案:學三、解答题(共4小题,共50分)11.(12分)如區几何体上半部分是母线长为5,底面圆半径为3的圆锥,下半部分是下底面圆半径为2,母线长为2的圆台,计算该几何体的表面枳和体枳【韻析】圖锥侧面积为S = X rl=15r ,圖台的侧面积为缶冗(r+r ' )1二10冗,圖台的底面宜积为订’』牝,所以表面积为:S=S+S+S s=15i +10兀+4H=29X;圆锥的体积V-xr2hi=12x ,圆台的体积V:= r h2(r :+rr , +「’ 2)=^y^r ,所以体积为:V=V+U=12i------ X .312.(12分)如图是一个几何体的正视图和俯视图(1)试判断该几何体是什么几何体?(2)画出其侧视图,并求该平面图形的面积.(3)求出该几何体的体积.【解析】(1)由该几何体的正视图和俯视图可知该几何体是一个正六棱锥.(2)该几何体的側视图如图.其中AB=AC AD^BC,且BC的长是俯视图正六边形对边的距离,即BC=v3a, AD是正六棱锥的高,即AD十3a,所以该平面图形的面积(3)没这个正六棱锥的底面积是S,体积为V,则S=6< —a=—a\4 2所以V=x三歯x JJa=a°.13.(13分)如图所示,在四边形ABC畔,Z DAB=90 , ZADCF35 ,AB二5 CD二不臣,AD二2求四边形ABC说AD旋转一周所成几何体的表面积及体积.【鮮析】S 表面二S SOFB +S Bo ma +S 四部面=it x 5~+ i x (2+5) x 5+ r X 2X 2V2=(4 克+60) x .V=V H&-V B*=z (4-r if z+Fj )h- x h148=I (25+10+4) X 4- Jt X 4X 2. x .14.(13分)(2016 ,湖北实验中学高一检测 )如图,△ ABC中,ZACB=90 , Z ABC=30* , BC%3 在三角形内挖去一个半圆(圆心。
第九章综合测试一、选择题(本题共12小题,每小题5分,共60分)1.下面抽样方法是简单随机抽样的是()A .从平面直角坐标系中抽取5个点作为样本B .从仓库中的1 000箱饮料中一次性抽取20箱进行质量检查C .从某连队200名战士中,挑选出50名最优秀的战士去参加抢险救灾活动D .从l0个手机中逐个不放回地随机抽取2个进行质量检验(假设10个手机已编好号,对编号随机抽取)2.对某校1 200名学生的耐力进行调查,抽取其中120名学生,测试他们1 500 m 跑步的成绩,得出相应的数值,在这项调查中,样本是指( )A .l20名学生B .1200名学生C .120名学生的成绩D .1200名学生的成绩3.简单随机抽样和分层随机抽样之间的共同点是( )A .都是从总体中逐个抽取的B .将总体分成几部分,按事先确定的规则在各部分抽取C .抽样过程中每个个体被抽到的机会相等D .将总体分成几层,然后各层按照比例抽取4.某市有大型、中型与小型商店共1 500家,它们的数量之比为l:5:9,用分层随机抽样的方法抽取其中的30家进行调查,则中型商店应抽取( )A .10家B .18家C .2家D .20家5.抽样统计甲射击运动员10次的训练成绩分别为86,85,88,86,90,89,88,87,85,92,则这10次成绩的80%分位数为( )A .88.5B .89C .91D .89.56.甲、乙两名同学6次考试的成绩统计如图9-4-1,甲、乙两名同学成绩的平均数分别为x 甲,x 乙,标准差分别为s 甲,s 乙,则()A .x x 乙甲<,s s 乙甲<B .x x 乙甲<,s s 乙甲>C .x x 乙甲>,s s 乙甲<D .x x 乙甲>,s s 乙甲>7.某校高中三个年级的人数扇形统计图如图9-4-2所示,按年级用分层随机抽样的方法抽取一个样本,已知样本中高一年级学生有8人,则样本量为()A .24B .30C .32D .358.总体由编号为00,01,02,…,48,49的50个个体组成,利用下面的随机数表选取8个个体,选取方法是从随机数表第6行的第9列和第10列数字开始从左到右依次选取两个数字,则选出的第4个个体的编号为()附:第6行至第9行的随机数表2635790033709160162038827757495032114919730649167677873399746732274861987164414870862888851916207477011l 163024042979799196835125A .3B .16C .38D .499.对以下两组数据进行分析,下列说法不正确的是( )甲:8121327243722202526乙:9141311181920212123A .甲的极差是29B .甲的中位数是25C .乙的众数是21D .甲的平均数比乙的大10.某中学有高中生3 000人,初中生2 000人,高中生中男生、女生人数之比为3:7,初中生中男生、女生人数之比为6:4,为了解学生的学习状况,用分层随机抽样的方法从该校学生中抽取一个容量为n 的样本,已知从初中生中抽取男生12人,则从高中生中抽取女生的人数是( )A .12B .15C .20D .2111.如果一组数据1x ,2x ,…,n x 的平均数是x ,方差是2s 1+2,…n + )A ,2s B +,2sC +,23s D +212.在去年某地区的足球比赛上,一队每场比赛平均失球数是1.5,全年比赛失球个数的标准差是1.1;二队每场比赛平均失球数是2.1,全年比赛失球个数的标准差是0.4.下列说法:①平均来说一队比二队防守技术好;②二队比一队防守技术水平更稳定;③一队防守有时表现很差,有时表现又非常好;④二队很少不失球,其中正确的有()A.l个B.2个C.3个D.4个二、填空题(本题共4小题,每小题5分,共20分)13.某种福利彩票的中奖号码是从1~36个号码中,选出7个号码来按规则确定中奖情况,从36个号码中选出7个号码,适宜的抽样方法是________.14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.15.气象意义上从春季进入夏季的标志为“连续5天的日平均温度均不低于22 ℃”、现有甲、乙、丙三地连续5天的日平均温度的相关记录数据(记录数据都是正整数,单位:℃):①甲地:5个数据的中位数为24,众数为22;②乙地:5个数据的中位数为27,总体均值为24;③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.2这三地肯定进入夏季的地区有________个.16.某校为了解本校中、老年教师的身体状况,采用分层随机抽样的方法,从中年教师中抽取20人,从老年教师中抽取10人参加体检,经医院反馈信息知某项体检指标:中年教师均值为90,方差为4,老年教师均值为96,方差为6.据此估计该校中、老年教师该项指标的方差为________.三、解答题(本题共6小题,共70分)17.(10分)某电视台举行颁奖典礼,邀请来自三个地区的20名演员演出,其中从30名A地区演员中随机挑选10人,从18名B地区演员中随机挑选6人,从10名C地区演员中随机挑选4人.试用抽签法确定选中的演员,并确定他们的表演顺序.18.(12分)某市组织了一次普法知识竞赛,从甲、乙两单位中各随机抽取了5名职工的成绩,统计如下:甲单位职工的成绩(分)8788919193甲单位职工的成绩(分)8589919293根据表中的数据,分别求出样本中甲、乙两单位职工成绩的平均数和方差,并判断哪个单位的职工对法律知识的掌握更为稳定.19.(12分)某大学共有“机器人”兴趣团队1 000个,大一、大二、大三、大四分别有100个、200个、300个、400个.为挑选优秀团队,现用分层随机抽样的方法,从以上团队中抽取20个.(1)应从大三中抽取多少个团队?(2)将20个团队分为甲、乙两组,每组10个团队,进行理论和实践操作考试(共150分),甲、乙两组的成绩如下:甲:125,141,140,137,122,114,119,139,121,142乙:127,116,144,127,144,116,140,140,116,140从甲、乙两组中选一组强化训练,备战机器人大赛.从统计学数据看,若选择甲组,理由是什么?若选择乙组,理由是什么?20.(12分)某网站推出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护仍是百姓最为关心的问题,参与调查者中关注此问题的约占80%现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组[)15,25,第2组[)25,35,第3组[)35,45,第4组[)45,55,第5组[]55,56,得到的频率分布直方图如图9-4-3所示。
高中数学必修二检测题
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间90分钟.
第Ⅰ卷(选择题,共60分)
一、选择题:本大题共12小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.
1 、一个棱锥被平行于底面的平面所截,若截面面积与底面面积之比为4∶9,则此棱锥的侧棱被分成上下长度两部分之比为( )
A .4∶9
B .2∶1
C .2∶3
D .2∶5
2 、 如果实数x ,y 满足
22
(2)3x y -+=,那么y
x 的最大值是( ) A 、3 B 、3- C 、33 D 、33
-
3 、已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x
4 、 如果两个球的体积之比为8:27,那么两个球的表面积之比为( ) A.8:27 B. 2:3 C.4:9 D. 2:9
5 、有一个几何体的三视图及其尺寸如下(单位cm ),则该几何体的表面积及体积为( )
俯视图 主视图 侧视图 A.24πcm 2,12πcm 3 B.15πcm 2,12πcm 3
C.24πcm 2,36πcm 3
D.以上都不正确
6 、棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在平面的位置关系是( )
A .平行
B .相交
C .平行或相交
D .不相交
7 、直线13kx y k -+=,当k 变动时,所有直线都通过定点( ) A .(0,0) B .(0,1) C .(3,1) D .(2,1)
8 、 两直线330x y +-=与610x my ++=平行,则它们之间的距离为( )
A .4
B
C D
9、 直线3x-4y-4=0被圆(x-3)2+y 2=9截得的弦长为( )
(A)2
2 (B)4 (C)2
4
(D)2
10、在正方体1111ABCD A B C D -中,下列几种说法正确的是
A 、11AC AD ⊥
B 、11D
C AB ⊥ C 、1AC 与DC 成45角
D 、11AC 与1B C 成60角
11 、a ,b ,c 表示直线,M 表示平面,给出下列四个命题:①若a ∥M ,b ∥M ,则a ∥b ;②若b ⊂M ,a ∥b ,则a ∥M ;③若a ⊥c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b .其中正确命题的个数有 A 、0个 B 、1个 C 、2个 D 、3个 12 、点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( )
(A) 11<<-a (B) 10<<a (C) 11>-<a a 或 (D) 1±=a
第Ⅱ卷(非选择题 共90分)
二、填空题:本大题4小题,每小题4分,共16分. 把正确答案填在题中横线上.
13 、已知点A (-2,1),B (1,-2),直线y =2上一点P ,使|AP |=|BP |,则P 点坐标为 14、已知一个长方体共一顶点的三个面的面积分别是2、3、6,这个 长方体的对
角线长是________;若长方体的共顶点的三个面的面积分别为3,5,15,则它的体积为________.
15、过点P(-1,6)且与圆4)2()3(2
2=-++y x 相切的直线方程是_______________.
16、平行四边形的一个顶点A 在平面α内,其余顶点在α的同侧,已知其中
有两个顶点到α的距离分别为1和2 ,那么剩下的一个顶点到平面α的距离可能是: ①1; ②2; ③3; ④4; 以上结论正确的为______________。
(写出所有正确结论的编号..) 三、解答题:本大题共6题,共74分,解答应写出文字说明,证明过程或演算步骤. 17、(12分)求经过直线0323:,0532:21=--=-+y x l y x l 的交点且平行于直线
032=-+y x 的直线方程.
18、(12分)圆心在直线2x +y =0上,且圆与直线x +y -1=0切于点M (2,-1)的圆的标准方程
19、(12分)求与x轴相切,圆心C在直线3x-y=0上,且截直线x-y=0得的弦长为27的圆的方程.
20、(12分)
已知圆台的上下底面半径分别是2、5,且侧面面积等于两底面面积之和,求该圆台的母线长.
21、已知△ABC 的三顶点是A (-1,-1),B (3,1),C (1,6).直线l 平行于AB ,交AC ,BC
分别于E ,F ,△CEF 的面积是△CAB 面积的
4
1
.求直线l 的方程.
22、(14分).已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点.
求证:(1)O C 1∥面11AB D ;
(2 )1
AC ⊥面11AB D .
D 1O
D
B A
C 1
B 1
A 1
C
答案
1-5BABCA 6-10BCDCD 11-12BA
17、解:由23503230x y x y +-=⎧⎨--=⎩,得19139
13x y ⎧=⎪⎪⎨⎪=⎪⎩
,再设
20x y c ++=,则4713c =-
47
2013
x y +-
=为所求. 18、2)2()1(2
2
=-+-y x
19、解:因为圆心C 在直线3x -y =0上,设圆心坐标为(a ,3a ),
圆心(a ,3a )到直线x -y =0的距离为d =2
2 - a .
又圆与x 轴相切,所以半径r =3|a |, 设圆的方程为(x -a )2+(y -3a )2=9a 2, 设弦AB 的中点为M ,则|AM |=7. 在Rt △AMC 中,由勾股定理,得 2
2 2 - ⎪⎪⎭
⎫
⎝
⎛a +(7)2=(3|a |)2. 解得a =±1,r 2=9.
故所求的圆的方程是(x -1)2+(y -3)2=9,或(x +1)2+(y +3)2=9.
20、解:设圆台的母线长为l ,则 1分
圆台的上底面面积为224S ππ=⋅=上 3分
圆台的上底面面积为2525S ππ=⋅=下 5分 所以圆台的底面面积为29S S S π=+=下上 6分 又圆台的侧面积(25)7S l l ππ=+=侧 8分
于是725l ππ= 9分 即29
7
l =
为所求. 10分
(第11题)
21、x -2y +5=0.
解析:由已知,直线AB 的斜率 k =
1311++=21
. 因为EF ∥AB ,所以直线EF 的斜率为2
1. 因为△CEF 的面积是△CAB 面积的41,所以E 是CA 的中点.点E 的坐标是(0,2
5
). 直线EF 的方程是 y -
25=2
1
x ,即x -2y +5=0. 22、证明:(1)连结11A C ,设11
111A C B D O =
连结
1AO ,
1111ABCD A B C D -是正方体 11A ACC ∴是平行四边形
11A C AC ∴且 11A C AC = 2分
又1,O O 分别是11,A C AC 的中点,11
O C AO ∴且11O C AO =
11AOC O ∴是平行四边形 4分
111,C O AO AO ∴⊂面11AB D ,1C O ⊄面11AB D
∴1C O 面11AB D 6分
(2)
1CC ⊥面1111A B C D 11!CC B D ∴⊥ 7分 又
1111A C B D ⊥, 1111B D AC C ∴⊥面 9分 1
11AC B D ⊥即 11分 同理可证11A C AB ⊥, 12分 又11
11D B AB B =
∴1
AC ⊥面11AB D。