2016届《新步步高》一轮复习数学理科(浙江专用)知识梳理 第十章 推理与证明10.2
- 格式:docx
- 大小:319.14 KB
- 文档页数:13
第 3 讲简单的逻辑联络词、全称量词与存在量词一、选择题1. 已知命题 p:存在 n∈N,2n>1 000,则非 p 为()A .随意n∈N,2n ≤ 1 000B.随意n∈N,2n>1 000C.存在n∈N,2n ≤ 1 000D.存在n∈N,2n<1 000分析特称命题的否认是全称命题,即p:存在x∈ M ,p(x),则非p:随意x ∈M,非p(x).答案A2.ax2+2x+ 1= 0 起码有一个负的实根的充要条件是().A .0<a≤ 1B. a<1C.a≤ 1D. 0< a≤1或 a<0分析(挑选法 )当 a= 0 时,原方程有一个负的实根,能够清除= 1 时,原方程有两个相等的负实根,能够清除B,应选 C.答案C3.以下命题中的真命题是().A、D;当aA .? x∈ R,使得3 sin x+ cos x= 2B.? x∈ (0,+∞),ex>x+1 C.? x∈ (-∞, 0),2x<3x D.? x∈ (0,π),sin x>cos x分析由于sin x +cos x=π2sin x+ 4 ≤32<2,故A 错误;当x<0时, y=2xπ的图象在 y= 3x 的图象上方,故 C 错误;由于 x∈ 0,4时有 sin x<cos x,故D 错误.所以选 B.答案By24.已知命题p:? a0∈ R,曲线 x2+a0=1 为双曲线;命题q:x2- 7x+12<0的解集是 {x|3 <x<4} .给出以下结论:①命题“p∧q”是真命题;②命题“p∧綈 q”是假命题;③命题“綈 p∨ q”是真命题;④命题“綈 p∨綈 q”是假命题.此中正确的选项是 ________.A .②③B.①②④C.①③④D.①②③④分析由于命题 p 和命题 q 都是真命题,所以命题“p∧q”是真命题,命题“p∧綈 q”是假命题,命题“綈 p∨ q”是真命题,命题“綈 p∨綈 q”是假命题.答案 D5.已知命题 p:? x0∈ R, mx20+1≤0,命题 q: ? x∈ R, x2+mx+1>0.若 p∨q 为假命题,则实数m 的取值范围为 ()A .m≥2B.m≤-2C.m≤-2 或 m≥2D.- 2≤ m≤2分析若 p∨ q 为假命题,则 p、q 均为假命题,即綈 p:? x∈R,mx2+1>0与綈 q:? x0∈R,x20+ mx0+1≤0均为真命题.依据綈 p: ? x ∈R,mx2+1>0 为真命题可得 m≥0,依据綈 q:? x0∈R,x20+mx0 +1≤0为真命题可得= m2- 4≥0,解得 m≥2或 m≤-2.综上, m≥2.答案A6.以下相关命题的说法错误的选项是()A .命题“若 x2- 3x+2=0,则 x= 1”的逆否命题为“若 x≠1,则 x2-3x+2≠ 0”B.“x= 1”是“ x2-3x+2=0”的充足不用要条件C.若 p∧q 为假命题,则 p、q 均为假命题D.关于命题 p:? x∈R,使得 x2+x+ 1<0,则綈 p:? x∈R,均有 x2+ x+1≥0分析 A 、B、 D 正确;当 p∧q 为假命题时, p、q 中起码有一个为假命题,故 C错误.答案 C二、填空题7.命题“存在 x∈R,使得 x2 +2x+ 5= 0 建立”的否认是 ________.答案对随意 x∈R,都有 x2+2x+5≠08.存在实数 x,使得 x2-4bx+ 3b<0 建立,则 b 的取值范围是________.分析要使x2- 4bx+3b<0 建立,只需方程x2- 4bx+3b= 0 有两个不相等的3实根,即鉴别式=16b2- 12b>0,解得 b<0 或 b>4.3答案(-∞,0)∪4,+∞9.若“? x∈R,(a- 2)x+ 1>0”是真命题,则实数a 的取值会合是 ________.分析“? x∈ R,(a-2)x +1>0”是真命题,等价于 (a- 2)x +1>0 的解集为 R,所以 a-2=0,所以 a=2.答案{2}110.已知命题p:“? x∈ R 且 x>0, x>x”,命题p 的否认为命题q,则 q 是“ ____________;”q 的真假为 ________.(选填“真”或“假”)1答案? x ∈R+, x≤假x11.命题“? x0∈R,2x20- 3ax0+ 9<0”为假命题,则实数 a 的取值范围为 ________.分析题目中的命题为假命题,则它的否认“? x∈R,2x2-3ax+9≥0”为真命题,也就是常有的“恒建立”问题,只需=9a2- 4×2×9≤0,即可解得- 2 2≤a≤2.答案[-2 2,22]12.令 p(x):ax2+2x+a>0,若对随意 x∈R, p(x)是真命题,则实数a 的取值范围是 ________.分析∵对随意 x∈ R,p(x)是真命题.∴对随意 x∈ R,ax2+2x+ a> 0 恒建立,当a=0 时,不等式为2x>0 不恒建立,当 a≠0时,若不等式恒建立,则 { a>0,=4-4a2<0,∴a>1.答案a>113.若命题“? x ∈R,ax2-ax-2≤0”是真命题,则实数 a 的取值范围是 ________.a<0,分析当 a= 0 时,不等式明显建立;当a≠0时,由题意知=a2+ 8a≤0,得- 8≤a<0.综上,- 8≤a≤0.答案[ -8,0]三、解答题14.写出以下命题的否认,并判断真假 .(1)q:x∈ R,x 不是 5x-12=0 的根 ;(2)r: 有些素数是奇数 ;(3)s: x0∈R,|x0|>0.解(1) q: x0∈R,x0 是 5x-12=0 的根,真命题 .(2)r:每一个素数都不是奇数,假命题 .(3)s: x∈R,|x| ≤0,假命题 .115.已知 c>0,设命题 p:函数 y=cx 为减函数.命题 q:当 x∈2,2 时,函数1 1f(x) =x +x>c恒建立.假如“p或 q”为真命题,“p且 q”为假命题,求 c 的取值范围.解由命题 p 为真知, 0<c<1,1 5由命题 q 为真知, 2≤x+≤,x 211要使此式恒建立,需c<2,即 c>2,若“p或 q”为真命题,“p且 q”为假命题,则 p、q 中必有一真一假,1当 p 真 q 假时, c 的取值范围是 0<c≤;2当 p 假 q 真时, c 的取值范围是 c≥1.1综上可知, c 的取值范围是c|0<c≤或 c≥1 .216.已知命题p:方程x2+mx+1=0 有两个不等的负根;命题q:方程4x2+4(m-2)x+1=0 无实根.若“p∨q”为真,“p∧q”为假,务实数m 的取值范围.解若方程 x2+ mx+ 1= 0 有两个不等的负根,则=m2-4>0,解得 m>2,即命题 p:m> 2.m>0,若方程 4x2+ 4(m-2)x+1=0 无实根,则=16(m-2)2-16=16(m2-4m+ 3)< 0,解得 1<m< 3,即 q:1<m<3.因“p∨q”为真,所以 p,q 起码有一个为真,又“p∧q”为假,所以命题p,q 起码有一个为假,所以,命题 p,q 应一真一假,即命题p 为真、命题 q 为假或命题 p 为假、命题 q 为真.m >,m≤2,2或解得: m≥3 或 1< m≤2,∴m≤1或m≥31<m< 3.即实数 m 的取值范围为 [3 ,+∞)∪(1,2].。
步步高一轮复习知识点在进行步步高一轮的复习过程中,我们需要对各个学科的知识点进行全面的回顾和梳理。
本文将从数学、语文、英语和科学四个学科的知识点进行介绍和总结,帮助同学们更好地复习备考。
一、数学1. 数与代数- 整数、有理数与实数- 整式的加减乘除- 一元一次方程与一元一次不等式- 平方根与立方根- 幂与指数- 等式、不等式与方程理论2. 几何与图形- 平面图形的认识与性质- 三角形的认识与性质- 直角三角形与斜角三角形- 圆的认识与性质- 空间几何体的认识与性质3. 函数与图像- 函数的概念与性质- 一次函数与二次函数- 指数与对数函数- 三角函数与反三角函数- 解析几何与坐标系二、语文1. 词汇与文言文- 常用词汇的理解与运用- 文言文篇章的解读与分析- 古代文化与典故的了解与应用 - 词语的辨析与短语的运用2. 语法与修辞- 词类与句法成分的认识- 语法规则的理解与应用- 修辞手法与修辞效果的分析 - 修辞语言的鉴赏与仿写- 文章的主旨与结构分析- 阅读材料的理解与推理- 写作思路与表达能力培养- 文章写作与修改技巧的掌握三、英语1. 词汇与语法- 基础词汇的记忆与扩充- 句型结构与语法规则的理解- 从句与状语从句的使用- 动词时态与语态的运用- 名词、代词和形容词的用法2. 阅读与听力- 阅读材料的理解与推理- 阅读策略的运用与技巧- 听力理解与口语表达能力的提升 - 阅读与听力训练的方法与实践- 写作思路与表达能力的培养- 文章结构与篇章逻辑的构建- 口语表达与演讲技巧的训练- 语法与词汇在写作与口语中的应用四、科学1. 数理化- 常见物理量及其单位- 物质的分类与性质- 常见化学反应与化学方程式- 酸碱与盐的性质及常见反应- 光的反射与折射规律2. 生物与地理- 生物的基本结构与功能- 生物的分类与进化- 生态系统及其相互关系- 地球的结构与地貌特征- 气候与气象现象的认识3. 科学与技术- 科学研究的方法与过程- 科学技术对社会发展的影响- 科学实验与观察的设计与分析- 科学与技术的伦理问题与思考- 创新思维与科学实践的培养通过对以上学科的知识点进行逐一回顾和总结,我们能够更好地备考步步高一轮复习。
高考专题突破高考中函数图象与性质的应用问题考点自测1.已知a =(12),b =2,c =(12),则下列关系式中正确的是( )A .c <a <bB .b <a <cC .a <c <bD .a <b <c答案 B解析 把b 化简为b =(12),而函数y =(12)x 在R 上为减函数,43>23>13,所以(12)<(12)<(12),即b <a <c .2.函数f (x )=|log 3x |在区间[a ,b ]上的值域为[0,1],则b -a 的最小值为( ) A.13 B.23 C .1 D .2 答案 B解析 令f (x )=0,解得x =1;令f (x )=1,解得x =13或3.因为函数f (x )在(0,1)上为减函数,在(1,+∞)上为增函数.故b -a 的最小值为1-13=23.3.设函数f (x )=⎩⎪⎨⎪⎧21-x , x ≤1,1-log 2x , x >1,则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)答案 D解析 当x ≤1时,由21-x ≤2,知x ≥0,即0≤x ≤1.当x >1时,由1-log 2x ≤2,知x ≥12,即x >1,所以满足f (x )≤2的x 的取值范围是[0,+∞).4.已知y =f (x )的图象如图,则y =f (1-x )的图象为下列四图中的( )答案 A解析 将y =f (1-x )变形为y =f [-(x -1)]①作y =f (-x )图象,将y =f (x )关于y 轴对称即可; ②将f (-x )的图象沿x 轴正方向平移1个单位, 得y =f [-(x -1)]=f (1-x )的图象.5.设函数f (x )=⎩⎨⎧x ,x >0,4x ,x ≤0.若函数y =f (x )-k 存在两个零点,则实数k 的取值范围是______.答案 (0,1]解析 函数y =f (x )-k 有两个零点,即函数y =f (x )与y =k 有两个交点,作出函数y =f (x )的大致图象如图,可知当0<k ≤1时满足,即实数k 的取值范围是(0,1].题型一 函数性质及应用例1 已知函数f (x )是定义在R 上的单调函数,满足f (-3)=2,且对任意的实数a ∈R 有f (-a )+f (a )=0恒成立.(1)试判断f (x )在R 上的单调性,并说明理由; (2)解关于x 的不等式f (2-xx)<2.解 (1)函数是R 上的减函数.理由如下: ∵a ∈R 有f (-a )+f (a )=0恒成立. ∴函数f (x )是奇函数.又f (-3)=2,∴f (3)=-f (-3)=-2, ∵-3<3,而f (-3)>f (3)且f (x )在R 上单调. 所以函数f (x )是R 上的减函数. (2)∵f (2-x x)<2,又f (-3)=2,∴f (2-xx )<f (-3),又由(1)知函数f (x )在R 上单调递减, ∴2-xx>-3, 整理得:x +1x >0,解得x >0或x <-1.所以原不等式的解集为{x |x >0或x <-1}.思维升华 解决和函数有关的不等式的问题,如果已知函数的单调性,可化为f (x 1)<f (x 2)的形式.“脱去”f 符号后得到x 1,x 2的大小,解题时可结合函数的奇偶性灵活变换. (1)函数f (x )满足f (x +1)=-f (x ),且x ∈(-1,0)时,f (x )=2x ,则f (log 210)=________. (2)设函数f (x )在(0,2)上是增函数,函数f (x +2)是偶函数,则f (1),f (52),f (72)的大小关系是________.答案 (1)58 (2)f (72)<f (1)<f (52)解析 (1)由f (x +1)=-f (x ), 知函数f (x )的周期T =2,∴f (log 210)=f (log 210-4)=f (log 258)==58.(2)因为函数f (x +2)是偶函数, 所以f (x )的图象关于直线x =2对称. 所以f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫32,f ⎝⎛⎭⎫72=f ⎝⎛⎭⎫12.又因为f (x )在(0,2)上是增函数,且12<1<32.所以f ⎝⎛⎭⎫12<f (1)<f ⎝⎛⎭⎫32, 即f ⎝⎛⎭⎫72<f (1)<f ⎝⎛⎭⎫52. 题型二 函数图象及应用例2 对于实数a 和b ,定义运算“*”:a *b =⎩⎪⎨⎪⎧a 2-ab ,a ≤b ,b 2-ab ,a >b .设f (x )=(2x -1)*(x -1),且关于x 的方程f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3,求x 1x 2x 3的取值范围. 解 由定义可知,f (x )=⎩⎪⎨⎪⎧(2x -1)x ,x ≤0,-(x -1)x ,x >0.作出函数f (x )的图象,如图所示. 由图可知,当0<m <14时,f (x )=m 恰有三个互不相等的实数根x 1,x 2,x 3. 不妨设x 1<x 2<x 3, 易知x 2>0, 且x 2+x 3=1, ∴x 2x 3<14.令⎩⎪⎨⎪⎧(2x -1)x =14,x <0,解得x =1-34或x =1+34(舍去).∴1-34<x 1<0,∴1-316<x 1x 2x 3<0. 思维升华 函数图象的应用步骤:已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是________. 答案 (10,12)解析 画出函数f (x )的图象,再画出直线y =d (0<d <1),如图所示,直观上可知110<a <1,1<b <10,10<c <12,再由|lg a |=|lg b |,得-lg a =lg b ,从而得ab =1, 则10<abc <12.题型三 函数的值域与不等式恒成立问题例3 定义在R 上的奇函数f (x ),当x ∈[0,+∞)时,f (x )是增函数,对于任意的θ∈⎣⎡⎦⎤0,π2,均有f (cos 2θ-3)+f (4m -2m cos θ)>0,试求实数m 的取值范围.解 因为f (x )是定义在R 上的奇函数,当x ∈[0,+∞)时,f (x )是增函数,则f (x )在(-∞,0]上也是增函数,所以f (x )在R 上是增函数,且f (0)=0, ∵f (cos 2θ-3)+f (4m -2m cos θ)>0, ∴f (cos 2θ-3)>f (2m cos θ-4m ),于是cos 2θ-3>2m cos θ-4m ,即cos 2θ-m cos θ+2m -2>0. 得m >cos 2θ-2cos θ-2,设h (θ)=cos 2θ-2cos θ-2,则h (θ)=4-⎣⎡⎦⎤(2-cos θ)+22-cos θ≤4-22,即h (θ)max =4-22,只须m >4-2 2. 故实数m 的取值范围是(4-22,+∞).思维升华 对于恒成立问题,若能转化为a >f (x ) (或a <f (x ))恒成立,则a 必须大于f (x )的最大值(或小于f (x )的最小值).因此恒成立问题可以转化为我们较为熟悉的求最值的问题进行求解.若不能分离参数,可以将参数看成常数直接求解. 已知函数f (x )=2x +k ·2-x ,k ∈R .(1)若函数f (x )为奇函数,求实数k 的值;(2)若对任意的x ∈[0,+∞)都有f (x )>2-x 成立,求实数k 的取值范围.解 (1)∵f (x )=2x +k ·2-x 是奇函数,∴f (-x )=-f (x ),x ∈R , 即2-x +k ·2x =-(2x +k ·2-x ),∴(k +1)(2x +2-x )=0对一切x ∈R 恒成立,∴k =-1.(2)∵x ∈[0,+∞),均有f (x )>2-x ,即2x +k ·2-x >2-x 成立,∴1-k <22x 对x ≥0恒成立,∴1-k <(22x )min . ∵y =22x 在[0,+∞)上单调递增, ∴(22x )min =1,∴k >0.∴实数k 的取值范围是(0,+∞).(时间:70分钟)1.已知函数f (x )=x 2+4x +5x 2+4x +4.(1)求f (x )的单调区间; (2)比较f (-π)与f ⎝⎛⎭⎫-22的大小. 解 (1)方法一 f (x )=x 2+4x +5x 2+4x +4=1+(x +2)-2,其图象可由幂函数y =x-2向左平移2个单位,再向上平移1个单位,如图,所以该函数在(-2,+∞)上是减函数,在(-∞,-2)上是增函数. 方法二 f (x )=x 2+4x +5x 2+4x +4=1+(x +2)-2,定义域为{x |x ≠-2}. 设x 1<x 2,x 1,x 2∈{x |x ≠-2},则f (x 2)-f (x 1)=[1+(x 2+2)-2]-[1+(x 1+2)-2]=1(x 2+2)2-1(x 1+2)2=(x 1-x 2)(x 1+x 2+4)(x 2+2)2(x 1+2)2,当x 1,x 2∈(-∞,-2)时,f (x 2)-f (x 1)>0,y =f (x )在(-∞,-2)上是增函数,即增区间为(-∞,-2); 当x 1,x 2∈(-2,+∞)时,f (x 2)-f (x 1)<0,y =f (x )在(-2,+∞)上是减函数,即减区间为(-2,+∞). (2)∵图象关于直线x =-2对称, 又∵-2-(-π)=π-2<-22-(-2)=2-22, ∴f (-π)>f ⎝⎛⎭⎫-22. 2.设函数f (x )=log 2(a x -b x ),且f (1)=1,f (2)=log 212. (1)求a ,b 的值;(2)当x ∈[1,2]时,求f (x )的最大值.解 (1)由题设得⎩⎪⎨⎪⎧log 2(a -b )=1,log 2(a 2-b 2)=log 212, 即⎩⎪⎨⎪⎧a -b =2,a 2-b 2=12,解得a =4,b =2. (2)因为f (x )=log 2(4x -2x ), 由定义域4x -2x >0,得x >0.又[1,2](0,+∞),令t =2x,1≤x ≤2,则2≤t ≤4. 由于f (x )=φ(t )=log 2(t 2-t )=log 2⎣⎡⎦⎤⎝⎛⎭⎫t -122-14, φ(t )在[2,4]上为增函数, 即f (x )在[1,2]上为增函数,故f (x )的最大值为f (2)=φ(4)=log 212=2+log 23. 3.已知函数f (x )=x 2-4x +a +3,a ∈R .(1)若函数f (x )在(-∞,+∞)上至少有一个零点,求a 的取值范围; (2)若函数f (x )在[a ,a +1]上的最大值为3,求a 的值.解 (1)依题意,函数y =f (x )在R 上至少有一个零点,即方程f (x )=x 2-4x +a +3=0至少有一个实数根.所以Δ=16-4(a +3)≥0,解得a ≤1. (2)函数y =f (x )=x 2-4x +a +3图象的对称轴方程是x =2.①当a +12≤2,即a ≤32时,y max =f (a )=a 2-3a +3=3.解得a =0或a =3.又a ≤32,所以a =0.②当a +12>2,即a >32时,y max =f (a +1)=a 2-a =3,解得a =1±132.又a >32,所以a =1+132.综上,a =0或a =1+132.4.随着机构改革工作的深入进行,各单位要减员增效,有一家公司现有职员2a 人(140<2a <420,且a 为偶数),每人每年可创利b 万元.据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年多创利0.01b 万元,但公司需付下岗职员每人每年0.4b 万元的生活费,并且该公司正常运转所需人数不得小于现有职员的34,为获得最大的经济效益,该公司应裁员多少人?解 设裁员x 人,可获得的经济效益为y 万元,则 y =(2a -x )(b +0.01bx )-0.4bx =-b100[x 2-2(a -70)·x ]+2ab .依题意得2a -x ≥34·2a ,所以0<x ≤a2.又140<2a <420,即70<a <210.①当0<a -70≤a2,即70<a ≤140时,x =a -70,y 取到最大值;②当a -70>a 2,即140<a <210时,x =a2,y 取到最大值.故当70<a <140时,公司应裁员(a -70)人,经济效益取到最大, 当140<a <210时,公司应裁员a2人,经济效益取到最大.5.已知函数f (x )=2x -12|x |.(1)若f (x )=2,求x 的值;(2)若2t f (2t )+mf (t )≥0对t ∈[1,2]恒成立,求实数m 的取值范围. 解 (1)当x ≤0时,f (x )=2x -12-x =0,方程f (x )=2无解;当x >0时,方程f (x )=2可化为2x -12x =2,即(2x )2-2×2x -1=0,由求根公式得2x =2±222=1±2,又∵2x >1,1-2<1,∴2x =1+2,得x =log 2(1+2). (2)在t ∈[1,2]时,原不等式可化为 2t (22t -122t )+m (2t-12t )≥0, 即2t (2t -12t )(2t +12t )+m (2t -12t )≥0,又∵2t -12t >0,∴2t (2t +12t )+m ≥0,即22t +1+m ≥0,此不等式左边的最小值为22+1+m =5+m , 故由5+m ≥0,得m ≥-5.综上所述,m 的取值范围为[-5,+∞).6.已知函数f (x )对任意实数x 均有f (x )=kf (x +2),其中常数k 为负数,且f (x )在区间[0,2]上有表达式f (x )=x (x -2). (1)求f (-1),f (2.5)的值;(2)写出f (x )在[-3,3]上的表达式,并讨论函数f (x )在[-3,3]上的单调性; (3)求出f (x )在[-3,3]上的最小值与最大值,并求出相应的自变量的值. 解 (1)f (-1)=kf (-1+2)=kf (1)=k ×1×(1-2)=-k . ∵f (0.5)=kf (2.5),∴f (2.5)=1k f (0.5)=1k ⎝⎛⎭⎫-34=-34k. (2)∵f (x )=x (x -2),x ∈[0,2],设-2≤x ≤0,则0≤x +2<2, ∴f (x )=kf (x +2)=k (x +2)(x +2-2)=kx (x +2), 设-3≤x <-2,则-1≤x +2<0, ∴f (x )=kf (x +2)=k 2(x +2)(x +4). 设2<x ≤3,则0<x -2≤1. 又∵f (x -2)=kf (x ),∴f (x )=1k f (x -2)=1k(x -2)(x -4).∴f (x )=⎩⎪⎨⎪⎧k 2(x +2)(x +4), -3≤x <-2,kx (x +2), -2≤x <0,x (x -2), 0≤x ≤2,1k (x -2)(x -4), 2<x ≤3.∵k <0,∴由二次函数知识得f (x )在[-3,-2)上是增函数,在[-2,-1]上是增函数,在[-1,0)上是减函数,在[0,1]上是减函数,在[1,2]上是增函数,在(2,3]上是增函数. (3)由函数f (x )在[-3,3]上的单调性可知,f (x )在x =-3或x =1处取得最小值f (-3)=-k 2或f (1)=-1,而在x =-1或x =3处取得最大值f (-1)=-k 或f (3)=-1k.故有:①k <-1时,f (x )在x =-3处取得最小值f (-3)=-k 2,在x =-1处取得最大值f (-1)=-k .②k =-1时,f (x )在x =-3与x =1处取得最小值f (-3)=f (1)=-1,在x =-1或x =3处取得最大值f (-1)=f (3)=1.③-1<k <0时,f (x )在x =1处取得最小值f (1)=-1,在x =3处取得最大值f (3)=-1k .。
高考专题突破 高考中的圆锥曲线问题考点自测1.已知双曲线x 2a 2-y 2b 2=1 (a >0,b >0)和椭圆x 216+y 29=1有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为____________. 答案 x 24-y 23=1解析 由题意得,双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的焦点坐标为(7,0),(-7,0),c =7;且双曲线的离心率为2×74=72=ca⇒a =2,b 2=c 2-a 2=3, 双曲线的方程为x 24-y 23=1.2.已知椭圆x 2a 2+y 2b 2=1 (a >b >0)与抛物线y 2=2px (p >0)有相同的焦点F ,P ,Q 是椭圆与抛物线的交点,若PQ 经过焦点F ,则椭圆x 2a 2+y 2b 2=1 (a >b >0)的离心率为____________.答案2-1解析 因为抛物线y 2=2px (p >0)的焦点F 为⎝⎛⎭⎫p 2,0,设椭圆另一焦点为E .当x =p2时代入抛物线方程得y =±p ,又因为PQ 经过焦点F ,所以P ⎝⎛⎭⎫p 2,p 且PF ⊥OF . 所以|PE |=(p 2+p2)2+p 2=2p , |PF |=p ,|EF |=p .故2a = 2p +p,2c =p ,e =2c2a=2-1.3.若双曲线x 2a 2-y 23=1的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则该双曲线的实轴长为( )A .1B .2C .3D .6 答案 B解析 双曲线x 2a 2-y 23=1的渐近线方程为y =±3a x ,即3x ±ay =0,圆(x -2)2+y 2=4的圆心为C (2,0),半径为r =2,如图,由圆的弦长公式得弦心距|CD |=22-12=3,另一方面,圆心C (2,0)到双曲线x 2a 2-y 23=1的渐近线3x -ay =0的距离为d =|3×2-a ×0|3+a 2=233+a 2,所以233+a2=3,解得a 2=1,即a =1,该双曲线的实轴长为2a =2.4.若双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的渐近线与抛物线y =x 2+2有公共点,则此双曲线的离心率的取值范围是( ) A .[3,+∞) B .(3,+∞) C .(1,3] D .(1,3)答案 A解析 依题意可知双曲线渐近线方程为y =±b a x ,与抛物线方程联立消去y 得x 2±ba x +2=0.∵渐近线与抛物线有交点, ∴Δ=b 2a 2-8≥0,求得b 2≥8a 2,∴c =a 2+b 2≥3a ,∴e =ca≥3.5.设坐标原点为O ,抛物线y 2=2x 与过焦点的直线交于A 、B 两点,则OA →·OB →等于( ) A.34 B .-34 C .3 D .-3 答案 B解析 方法一 (特殊值法)抛物线的焦点为F ⎝⎛⎭⎫12,0,过F 且垂直于x 轴的直线交抛物线于A (12,1),B (12,-1), ∴OA →·OB →=⎝⎛⎭⎫12,1·⎝⎛⎭⎫12,-1=14-1=-34. 方法二 设A (x 1,y 1),B (x 2,y 2), 则OA →·OB →=x 1x 2+y 1y 2.由抛物线的过焦点的弦的性质知: x 1x 2=p 24=14,y 1y 2=-p 2=-1.∴OA →·OB →=14-1=-34.题型一 圆锥曲线中的范围、最值问题例1 如图所示,在直角坐标系xOy 中,点P (1,12)到抛物线C :y 2=2px (p >0)的准线的距离为54.点M (t,1)是C 上的定点,A ,B 是C 上的两动点,且线段AB 的中点Q (m ,n )在直线OM 上. (1)求曲线C 的方程及t 的值; (2)记d =|AB |1+4m 2,求d 的最大值.思维点拨 (2)用点差法求k AB ,用m 表示出|AB |,利用基本不等式求最值. 解 (1)y 2=2px (p >0)的准线x =-p2,∴1-(-p 2)=54,p =12,∴抛物线C 的方程为y 2=x . 又点M (t,1)在曲线C 上,∴t =1.(2)由(1)知,点M (1,1),从而n =m ,即点Q (m ,m ), 依题意,直线AB 的斜率存在,且不为0, 设直线AB 的斜率为k (k ≠0). 且A (x 1,y 1),B (x 2.y 2),由⎩⎪⎨⎪⎧y 21=x 1,y 22=x 2,得(y 1-y 2)(y 1+y 2)=x 1-x 2, 故k ·2m =1,∴直线AB 的方程为y -m =12m(x -m ), 即x -2my +2m 2-m =0.由⎩⎪⎨⎪⎧x -2my +2m 2-m =0,y 2=x 消去x , 整理得y 2-2my +2m 2-m =0,∴Δ=4m -4m 2>0,y 1+y 2=2m ,y 1y 2=2m 2-m . 从而|AB |=1+1k 2·|y 1-y 2|=1+4m 2·4m -4m 2 =2(1+4m 2)(m -m 2). ∴d =|AB |1+4m 2=2m (1-m )≤m +(1-m )=1,当且仅当m =1-m ,即m =12时,上式等号成立,又m =12满足Δ=4m -4m 2>0.∴d 的最大值为1.思维升华 圆锥曲线中最值问题的解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.已知点A (-1,0),B (1,0),动点M 的轨迹曲线C 满足∠AMB =2θ,|AM →|·|BM →|cos 2θ=3,过点B 的直线交曲线C 于P ,Q 两点. (1)求|AM →|+|BM →|的值,并写出曲线C 的方程; (2)求△APQ 面积的最大值. 解 (1)设M (x ,y ),在△MAB 中, |AB |=2,∠AMB =2θ, 根据余弦定理得|AM →|2+|BM →|2-2|AM →|·|BM →|cos 2θ=4. 即(|AM →|+|BM →|)2-2|AM →|·|BM →|(1+cos 2θ)=4. (|AM →|+|BM →|)2-4|AM →|·|BM →|cos 2θ=4. 而|AM →|·|BM →|cos 2θ=3, 所以(|AM →|+|BM →|)2-4×3=4. 所以|AM →|+|BM →|=4. 又|AM →|+|BM →|=4>2=|AB |,因此点M 的轨迹是以A ,B 为焦点的椭圆(点M 在x 轴上也符合题意),a =2,c =1. 所以曲线C 的方程为x 24+y 23=1.(2)设直线PQ 的方程为x =my +1. 由⎩⎪⎨⎪⎧x =my +1,x 24+y 23=1,消去x 并整理得(3m 2+4)y 2+6my -9=0.① 显然方程①的Δ>0,设P (x 1,y 1),Q (x 2,y 2), 则S △APQ =12×2×|y 1-y 2|=|y 1-y 2|.由根与系数的关系得y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4.所以(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=48×3m 2+3(3m 2+4)2.令t =3m 2+3,则t ≥3,(y 1-y 2)2=48t +1t+2. 由于函数φ(t )=t +1t在[3,+∞)上是增函数,所以t +1t ≥103,当t =3m 2+3=3,即m =0时取等号.所以(y 1-y 2)2≤48103+2=9,即|y 1-y 2|的最大值为3.所以△APQ 面积的最大值为3, 此时直线PQ 的方程为x =1.题型二 圆锥曲线中的定点、定值问题例2 在平面直角坐标系xOy 中,已知椭圆x 29+y 25=1的左,右顶点分别为A ,B ,右焦点为F .设过点T (t ,m )的直线TA ,TB 与此椭圆分别交于点M (x 1,y 1),N (x 2,y 2),其中m >0,y 1>0,y 2<0.(1)设动点P 满足:|PF |2-|PB |2=4,求点P 的轨迹; (2)设x 1=2,x 2=13,求点T 的坐标;(3)设t =9,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关). (1)解 设P (x ,y ),由题意知F (2,0),B (3,0),A (-3,0), 则|PF |2=(x -2)2+y 2,|PB |2=(x -3)2+y 2,由|PF |2-|PB |2=4,得(x -2)2+y 2-[(x -3)2+y 2]=4, 化简,得x =92.故点P 的轨迹方程是x =92.(2)解 将x 1=2,x 2=13分别代入椭圆方程,并考虑到y 1>0,y 2<0,得M ⎝⎛⎭⎫2,53,N ⎝⎛⎭⎫13,-209.则直线MA 的方程为y -053-0=x +32+3,即x -3y +3=0.直线NB 的方程为y -0-209-0=x -313-3,即5x -6y -15=0.联立方程⎩⎪⎨⎪⎧x -3y +3=0,5x -6y -15=0,解得x =7,y =103,所以点T 的坐标为⎝⎛⎭⎫7,103.(3)证明 如图所示,点T 的坐标为(9,m ). 直线TA 的方程为y -0m -0=x +39+3,直线TB 的方程为y -0m -0=x -39-3,分别与椭圆x 29+y 25=1联立方程,解得M ⎝ ⎛⎭⎪⎫3(80-m 2)80+m 2,40m 80+m 2,N ⎝ ⎛⎭⎪⎫3(m 2-20)20+m 2,-20m 20+m 2.直线MN 的方程为y +20m 20+m 240m 80+m 2+20m 20+m 2=x -3(m 2-20)20+m 23(80-m 2)80+m 2-3(m 2-20)20+m 2.令y =0,解得x =1,所以直线MN 必过x 轴上的一定点(1,0).思维升华 求定点及定值问题常见的方法有两种: (1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(2013·江西)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e = 32,a +b =3.(1)求椭圆C 的方程;(2)如图所示,A 、B 、D 是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意一点,直线DP 交x 轴于点N ,直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m .证明:2m -k 为定值.(1)解 因为e =32=c a, 所以a =23c ,b =13c . 代入a +b =3得,c =3,a =2,b =1. 故椭圆C 的方程为x 24+y 2=1.(2)证明 方法一 因为B (2,0),点P 不为椭圆顶点,则直线BP 的方程为y =k (x -2)(k ≠0,k ≠±12),①①代入x 24+y 2=1,解得P ⎝ ⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1.直线AD 的方程为y =12x +1.②①与②联立解得M ⎝⎛⎭⎪⎫4k +22k -1,4k 2k -1.由D (0,1),P ⎝ ⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1,N (x,0)三点共线知-4k4k 2+1-18k 2-24k 2+1-0=0-1x -0,解得N ⎝ ⎛⎭⎪⎫4k -22k +1,0.所以MN 的斜率为m =4k2k -1-04k +22k -1-4k -22k +1=4k (2k +1)2(2k +1)2-2(2k -1)2=2k +14.则2m -k =2k +12-k =12(定值).方法二 设P (x 0,y 0)(x 0≠0,±2),则k =y 0x 0-2,直线AD 的方程为y =12(x +2),直线BP 的方程为y =y 0x 0-2(x -2),直线DP 的方程为y -1=y 0-1x 0x ,令y =0,由于y 0≠1可得N ⎝ ⎛⎭⎪⎫-x 0y 0-1,0,联立⎩⎨⎧y =12(x +2),y =y0x 0-2(x -2),解得M ⎝⎛⎭⎪⎫4y 0+2x 0-42y 0-x 0+2,4y 02y 0-x 0+2,因此MN 的斜率为m =4y 02y 0-x 0+24y 0+2x 0-42y 0-x 0+2+x 0y 0-1=4y 0(y 0-1)4y 20-8y 0+4x 0y 0-x 20+4=4y 0(y 0-1)4y 20-8y 0+4x 0y 0-(4-4y 20)+4 =y 0-12y 0+x 0-2.所以2m -k =2(y 0-1)2y 0+x 0-2-y 0x 0-2=2(y 0-1)(x 0-2)-y 0(2y 0+x 0-2)(2y 0+x 0-2)(x 0-2)=2(y 0-1)(x 0-2)-2y 20-y 0(x 0-2)(2y 0+x 0-2)(x 0-2)=2(y 0-1)(x 0-2)-12(4-x 20)-y 0(x 0-2)(2y 0+x 0-2)(x 0-2)=12(定值). 题型三 圆锥曲线中的探索性问题例3 在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =23,且椭圆C 上的点到点Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程.(2)在椭圆C 上,是否存在点M (m ,n ),使得直线l :mx +ny =1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及对应的△OAB 的面积;若不存在,请说明理由.思维点拨 圆锥曲线中,这类问题的解题思想是假设其结论成立、存在等,在这个假设下进行推理论证,如果得到了一个合情合理的推理结果,就肯定假设,对问题作出正面回答;如果得到一个矛盾的结果,就否定假设,对问题作出反面回答.解 (1)∵e 2=c 2a 2=a 2-b 2a 2=23,∴a 2=3b 2,∴椭圆方程为x 23b 2+y 2b 2=1,即x 2+3y 2=3b 2.设椭圆上的点到点Q (0,2)的距离为d ,则 d =(x -0)2+(y -2)2=x 2+(y -2)2=3b 2-3y 2+(y -2)2=-2(y +1)2+3b 2+6, ∴当y =-1时,d 取得最大值,d max =3b 2+6=3, 解得b 2=1,∴a 2=3. ∴椭圆C 的方程为x 23+y 2=1.(2)假设存在点M (m ,n )满足题意,则m 23+n 2=1,即m 2=3-3n 2.设圆心到直线l 的距离为d ′,则d ′<1, d ′=|m ·0+n ·0-1|m 2+n 2=1m 2+n 2. ∴|AB |=212-d ′2=2 1-1m 2+n 2. ∴S △OAB =12|AB |d ′=12·21-1m 2+n 2·1m 2+n2 =1m 2+n 2⎝⎛⎭⎫1-1m 2+n 2.∵d ′<1,∴m 2+n 2>1, ∴0<1m 2+n 2<1, ∴1-1m 2+n 2>0.∴S △OAB =1m 2+n 2⎝⎛⎭⎫1-1m 2+n 2 ≤⎝ ⎛⎭⎪⎪⎫1m 2+n 2+1-1m 2+n 222=12, 当且仅当1m 2+n 2=1-1m 2+n2,即m 2+n 2=2>1时,S △OAB 取得最大值12.由⎩⎪⎨⎪⎧m 2+n 2=2,m 2=3-3n 2得⎩⎨⎧m 2=32,n 2=12,∴存在点M 满足题意,M 点坐标为⎝⎛⎭⎫62,22,⎝⎛⎭⎫62,-22,⎝⎛⎭⎫-62,22或⎝⎛⎭⎫-62,-22, 此时△OAB 的面积为12.思维升华 (1)探索性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用的方法.已知椭圆C 1、抛物线C 2的焦点均在x 轴上,C 1的中心和C 2的顶点均为原点O ,从每条曲线上各取两个点,将其坐标记录于下表中:(1)求C 1,C 2(2)是否存在直线l 满足条件:①过C 2的焦点F ;②与C 1交于不同的两点M ,N ,且满足OM →⊥ON →?若存在,求出直线l 的方程;若不存在,请说明理由.解 (1)设抛物线C 2:y 2=2px (p ≠0),则有y 2x=2p (x ≠0),据此验证四个点知(3,-23),(4,-4)在C 2上,易求得C 2的标准方程为y 2=4x . 设椭圆C 1:x 2a 2+y 2b2=1(a >b >0),把点(-2,0),(2,22)代入得⎩⎨⎧4a 2=1,2a 2+12b 2=1,解得⎩⎪⎨⎪⎧a 2=4b 2=1,所以C 1的标准方程为x 24+y 2=1.(2)容易验证当直线l 的斜率不存在时,不满足题意. 当直线l 的斜率存在时,设其方程为y =k (x -1),与C 1的交点为M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧x 24+y 2=1,y =k (x -1),消去y 并整理得(1+4k 2)x 2-8k 2x +4(k 2-1)=0,于是x 1+x 2=8k 21+4k 2,① x 1x 2=4(k 2-1)1+4k 2.② 所以y 1y 2=k 2(x 1-1)(x 2-1)=k 2[x 1x 2-(x 1+x 2)+1]=k 2[4(k 2-1)1+4k 2-8k 21+4k 2+1]=-3k 21+4k 2.③ 由OM →⊥ON →,即OM →·ON →=0,得x 1x 2+y 1y 2=0.(*)将②③代入(*)式,得4(k 2-1)1+4k 2-3k 21+4k 2=k 2-41+4k 2=0, 解得k =±2,所以存在直线l 满足条件,且直线l 的方程为2x -y -2=0或2x +y -2=0.题型四 直线、圆及圆锥曲线的交汇问题例4 (2013·浙江)如图,点P (0,-1)是椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径.l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D .(1)求椭圆C 1的方程;(2)求△ABD 面积取最大值时直线l 1的方程.思维点拨 (1)根据椭圆的几何性质易求出a ,b 的值,从而写出椭圆的方程;(2)要求△ABD 的面积,需要求出AB ,PD 的长,AB 是圆的弦,考虑用圆的知识来求,PD 应当考虑用椭圆的相关知识来求.求出AB ,PD 的长后,表示出△ABD 的面积,再根据式子的形式选择适当的方法求最值.解 (1)由题意得⎩⎪⎨⎪⎧b =1,a =2. 所以椭圆C 1的方程为x 24+y 2=1. (2)设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0).由题意知直线l 1的斜率存在,不妨设其为k ,则直线l 1的方程为y =kx -1.又圆C 2:x 2+y 2=4,故点O 到直线l 1的距离d =1k 2+1, 所以|AB |=24-d 2=24k 2+3k 2+1. 又l 2⊥l 1,故直线l 2的方程为x +ky +k =0.由⎩⎪⎨⎪⎧x +ky +k =0,x 2+4y 2=4. 消去y ,整理得(4+k 2)x 2+8kx =0, 故x 0=-8k 4+k 2. 所以|PD |=8k 2+14+k 2. 设△ABD 的面积为S ,则S =12·|AB |·|PD |=84k 2+34+k 2, 所以S =324k 2+3+134k 2+3 ≤3224k 2+3·134k 2+3=161313, 当且仅当k =±102时取等号.所以所求直线l 1的方程为y =±102x -1. 思维升华 对直线、圆及圆锥曲线的交汇问题,要认真审题,学会将问题拆分成基本问题,然后综合利用数形结合思想、化归与转化思想、方程的思想等来解决问题,这样可以渐渐增强自己解决综合问题的能力.如图,已知圆M :(x -2)2+y 2=73,椭圆C :x 2a 2+y 2b 2=1 (a >b >0)的右顶点为圆M 的圆心,左焦点与双曲线x 2-y 2=1的左顶点重合.(1)求椭圆C 的方程;(2)已知直线l :y =kx 与椭圆C 分别交于两点A ,B ,与圆M 分别交于两点G ,H (其中点G 在线段AB 上),且|AG |=|BH |,求k 的值.解 (1)由题意,圆心M (2,0),双曲线的左顶点(-1,0),所以a =2,c =1,b =1,椭圆C的方程为x 22+y 2=1. (2)设A (x 1,y 1),B (x 2,y 2),由直线l 与椭圆相交于两点A ,B ,则⎩⎪⎨⎪⎧y =kx ,x 2+2y 2-2=0, 所以(1+2k 2)x 2-2=0,则x 1+x 2=0,x 1x 2=-21+2k 2, 所以|AB |= (1+k 2)81+2k 2= 8(1+k 2)1+2k 2. 点M (2,0)到直线l 的距离d =|2k |1+k 2, 则|GH |=2r 2-d 2=2 73-2k 21+k 2. 显然,若点H 也在线段AB 上,则由对称性知,直线y =kx 就是y 轴,矛盾.因为|AG |=|BH |,所以|AB |=|GH |, 即8(1+k 2)1+2k 2=4⎝⎛⎭⎫73-2k 21+k 2, 整理得4k 4-3k 2-1=0.解得k 2=1,即k =±1.(时间:80分钟)1.已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点.(1)求椭圆C 的方程;(2)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在,求出直线l 的方程;若不存在,说明理由.解 方法一 (1)依题意,可设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),且可知其左焦点为F ′(-2,0).从而有⎩⎪⎨⎪⎧ c =2,2a =|AF |+|AF ′|=3+5=8,解得⎩⎪⎨⎪⎧c =2,a =4. 又a 2=b 2+c 2,所以b 2=12,故椭圆C 的方程为x 216+y 212=1. (2)假设存在符合题意的直线l ,设其方程为y =32x +t .由⎩⎨⎧ y =32x +t ,x 216+y 212=1,得3x 2+3tx +t 2-12=0.因为直线l 与椭圆C 有公共点,所以Δ=(3t )2-4×3×(t 2-12)≥0,解得-43≤t ≤4 3.另一方面,由直线OA 与l 的距离d =4,得|t |94+1=4,解得t =±213. 由于±213∉[-43,43],所以符合题意的直线l 不存在.方法二 (1)依题意,可设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0), 且有⎩⎪⎨⎪⎧4a 2+9b 2=1,a 2-b 2=4.解得b 2=12,b 2=-3(舍去). 从而a 2=16. 所以椭圆C 的方程为x 216+y 212=1. (2)同方法一.2.已知椭圆C :x 2a 2+y 2b 2=1 (a >b >0)与双曲线x 24-v +y 21-v=1 (1<v <4)有公共焦点,过椭圆C 的右顶点B 任意作直线l ,设直线l 交抛物线y 2=2x 于P 、Q 两点,且OP ⊥OQ .(1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点R (m ,n )使得直线l :mx +ny =1与圆O :x 2+y 2=1相交于不同的两点M 、N ,且△OMN 的面积最大?若存在,求出点R 的坐标及对应的△OMN 的面积;若不存在,请说明理由.解 (1)∵1<v <4,∴双曲线的焦点在x 轴上,设F (±c,0),则c 2=4-v +v -1=3, 由椭圆C 与双曲线共焦点,知a 2-b 2=3,设直线l 的方程为x =ty +a ,代入y 2=2x ,可得y 2-2ty -2a =0,设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=2t ,y 1y 2=-2a ,∵OP ⊥OQ ,∴x 1x 2+y 1y 2=a 2-2a =0,∴a =2,b =1,∴椭圆C 的方程为x 24+y 2=1. (2)在△MON 中,S △OMN =12|OM ||ON |sin ∠MON =12sin ∠MON .当∠MON =90°时,12sin ∠MON 有最大值12, 此时点O 到直线l 的距离为d =1m 2+n 2=22, ∴m 2+n 2=2.又∵m 2+4n 2=4,联立⎩⎪⎨⎪⎧m 2+n 2=2,m 2+4n 2=4,解得m 2=43,n 2=23, 此时点R 的坐标⎝⎛⎭⎫233,±63或⎝⎛⎭⎫-233,±63,△MON 的面积为12. 3.已知椭圆C 的中心为坐标原点O ,一个长轴顶点为(0,2),它的两个短轴顶点和焦点所组成的四边形为正方形,直线l 与y 轴交于点P (0,m ),与椭圆C 交于异于椭圆顶点的两点A ,B ,且AP →=2PB →.(1)求椭圆的方程;(2)求m 的取值范围.解 (1)由题意,知椭圆的焦点在y 轴上,设椭圆方程为y 2a 2+x 2b2=1(a >b >0), 由题意,知a =2,b =c ,又a 2=b 2+c 2,则b =2,所以椭圆方程为y 24+x 22=1. (2)设A (x 1,y 1),B (x 2,y 2),由题意,知直线l 的斜率存在,设其方程为y =kx +m ,与椭圆方程联立,即⎩⎪⎨⎪⎧y 2+2x 2=4,y =kx +m ,消去y ,得 (2+k 2)x 2+2mkx +m 2-4=0,Δ=(2mk )2-4(2+k 2)(m 2-4)>0,由根与系数的关系,知⎩⎪⎨⎪⎧ x 1+x 2=-2mk 2+k 2,x 1·x 2=m 2-42+k 2,又AP →=2PB →,即有(-x 1,m -y 1)=2(x 2,y 2-m ),所以-x 1=2x 2.则⎩⎪⎨⎪⎧x 1+x 2=-x 2,x 1x 2=-2x 22,所以m 2-42+k 2=-2⎝⎛⎭⎫2mk2+k 22. 整理,得(9m 2-4)k 2=8-2m 2,又9m 2-4=0时等式不成立,所以k 2=8-2m 29m 2-4>0,得49<m 2<4,此时Δ>0. 所以m 的取值范围为⎝⎛⎭⎫-2,-23∪⎝⎛⎭⎫23,2.4.如图,椭圆长轴的端点为A ,B ,O 为椭圆的中心,F 为椭圆的右焦点,且AF →·FB →=1,|OF →|=1.(1)求椭圆的标准方程;(2)记椭圆的上顶点为M ,直线l 交椭圆于P ,Q 两点,问:是否存在直线l ,使点F 恰为△PQM 的垂心,若存在,求出直线l 的方程;若不存在,请说明理由.解 (1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),则c =1, 又∵AF →·FB →=(a +c )·(a -c )=a 2-c 2=1.∴a 2=2,b 2=1,故椭圆的标准方程为x 22+y 2=1. (2)假设存在直线l 交椭圆于P ,Q 两点,且F 恰为△PQM 的垂心,设P (x 1,y 1),Q (x 2,y 2),∵M (0,1),F (1,0),∴直线l 的斜率k =1.于是设直线l 为y =x +m ,由⎩⎪⎨⎪⎧y =x +m ,x 22+y 2=1 得3x 2+4mx +2m 2-2=0,x 1+x 2=-43m ,① x 1x 2=2m 2-23.② ∵MP →·FQ →=x 1(x 2-1)+y 2(y 1-1)=0.又y i =x i +m (i =1,2),∴x 1(x 2-1)+(x 2+m )(x 1+m -1)=0,即2x 1x 2+(x 1+x 2)(m -1)+m 2-m =0.(*)将①②代入(*)得2·2m 2-23-4m 3(m -1)+m 2-m =0, 解得m =-43或m =1,经检验m =-43符合条件. 故存在直线l ,使点F 恰为△PQM 的垂心,直线l 的方程为y =x -43.5.(2013·重庆)如图,椭圆的中心为原点O ,长轴在x 轴上,离心率e =22,过左焦点F 1作x 轴的垂线交椭圆于A ,A ′两点,|AA ′|=4. (1)求该椭圆的标准方程;(2)取垂直于x 轴的直线与椭圆相交于不同的两点P ,P ′,过P ,P ′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.若PQ ⊥P ′Q ,求圆Q 的标准方程. 解 (1)由题意知点A (-c,2)在椭圆上,则(-c )2a 2+22b 2=1.从而e 2+4b2=1. 由e =22得b 2=41-e 2=8,从而a 2=b 21-e 2=16. 故该椭圆的标准方程为x 216+y 28=1. (2)由椭圆的对称性,可设Q (x 0,0).又设M (x ,y )是椭圆上任意一点,则|QM |2=(x -x 0)2+y 2=x2-2x 0x +x 20+8⎝⎛⎭⎫1-x 216=12(x -2x 0)2-x 20+8(x ∈[-4,4]). 设P (x 1,y 1),由题意知,点P 是椭圆上到点Q 的距离最小的点.因此,上式当x =x 1时取最小值,又因为x 1∈(-4,4),所以上式当x =2x 0时取最小值, 从而x 1=2x 0,且|QP |2=8-x 20.因为PQ ⊥P ′Q ,且P ′(x 1,-y 1),所以QP →·QP ′→=(x 1-x 0,y 1)·(x 1-x 0,-y 1)=0,即(x 1-x 0)2-y 21=0.由椭圆方程及x 1=2x 0得14x 21-8⎝⎛⎭⎫1-x 2116=0, 解得x 1=±463,x 0=x 12=±263. 从而|QP |2=8-x 20=163. 故这样的圆有两个,其标准方程分别为⎝⎛⎭⎫x +2632+y 2=163,⎝⎛⎭⎫x -2632+y 2=163. 6.在平面直角坐标系xOy 中,已知双曲线C 1:2x 2-y 2=1.(1)过C 1的左顶点引C 1的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成的三角形的面积.(2)设斜率为1的直线l 交C 1于P 、Q 两点.若l 与圆x 2+y 2=1相切,求证:OP ⊥OQ .(3)设椭圆C 2:4x 2+y 2=1.若M 、N 分别是C 1、C 2上的动点,且OM ⊥ON ,求证:O 到直线MN 的距离是定值.(1)解 双曲线C 1:x 212-y 2=1,左顶点A ⎝⎛⎭⎫-22,0,渐近线方程:y =±2x . 不妨取过点A 与渐近线y =2x 平行的直线方程为 y =2⎝⎛⎭⎫x +22,即y =2x +1. 解方程组⎩⎨⎧ y =-2x ,y =2x +1得⎩⎨⎧ x =-24,y =12.所以所求三角形的面积为S =12|OA ||y |=28. (2)证明 设直线PQ 的方程是y =x +b .因为直线PQ 与已知圆相切,故|b |2=1,即b 2=2. 由⎩⎪⎨⎪⎧ y =x +b ,2x 2-y 2=1得x 2-2bx -b 2-1=0. 设P (x 1,y 1)、Q (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=2b ,x 1x 2=-1-b 2. 又y 1y 2=(x 1+b )(x 2+b ),所以OP →·OQ →=x 1x 2+y 1y 2=2x 1x 2+b (x 1+x 2)+b 2=2(-1-b 2)+2b 2+b 2=b 2-2=0.故OP ⊥OQ .(3)证明 当直线ON 垂直于x 轴时,|ON |=1,|OM |=22,则O 到直线MN 的距离为33. 当直线ON 不垂直于x 轴时,设直线ON 的方程为y =kx ⎝⎛⎭⎫显然|k |>22, 则直线OM 的方程为y =-1kx . 由⎩⎪⎨⎪⎧ y =kx ,4x 2+y 2=1得⎩⎨⎧ x 2=14+k 2,y 2=k 24+k 2,所以|ON|2=1+k24+k2.同理|OM|2=1+k2 2k2-1.设O到直线MN的距离为d,因为(|OM|2+|ON|2)d2=|OM|2|ON|2,所以1d2=1|OM|2+1|ON|2=3k2+3k2+1=3,即d=33.综上,O到直线MN的距离是定值.。
1.排列与组合的概念名称定义排列从n个不同元素中取出m(m≤n)个元素按照一定的顺序排成一列组合合成一组2.排列数与组合数(1)排列数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫作从n个不同元素中取出m个元素的排列数,用A m n表示.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫作从n 个不同元素中取出m个元素的组合数,用C m n表示.3.排列数、组合数的公式及性质公式(1)A m n=n(n-1)(n-2)…(n-m+1)=n!(n-m)!(2)C m n=A m nA m m=n(n-1)(n-2)…(n-m+1)m!=n!m!(n-m)!性质(1)0!=1;A n n=n!(2)C m n=C n-mn ;C m n+1=C m n+C m-1n【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)所有元素完全相同的两个排列为相同排列.(×)(2)一个组合中取出的元素讲究元素的先后顺序.(×)(3)两个组合相同的充要条件是其中的元素完全相同.(√)(4)(n+1)!-n!=n·n!.(√)(5)A m n=n A m-1n-1.(√)(6)k C k n=n C k-1n-1.(√)1.(2016·四川)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为() A.24 B.48C.60 D.72答案D解析由题可知,五位数要为奇数,则个位数只能是1,3,5;分为两步:先从1,3,5三个数中选一个作为个位数有C13种情况,再将剩下的4个数字排列得到A44种情况,则满足条件的五位数有C13·A44=72(个).故选D.2.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120 C.72 D.24答案D解析“插空法”,先排3个空位,形成4个空隙供3人选择就座,因此任何两人不相邻的坐法种数为A34=4×3×2=24.3.(教材改编)用数字1,2,3,4,5组成的无重复数字的四位数,其中偶数的个数为()A.8 B.24 C.48 D.120答案C解析末位数字排法有A12种,其他位置排法有A34种,共有A12A34=48(种).4.某高三毕业班有40人,同学这间两两彼此给对方写一条毕业留言,那么全班共写了________条毕业留言.(用数字作答)答案 1 560解析依题意知两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了A240=40×39=1 560(条)留言.5.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案有________种.答案14解析分两类:①有1名女生:C12C34=8.②有2名女生:C22C24=6.∴不同的选派方案有8+6=14(种).题型一排列问题例1(1)3名男生,4名女生,选其中5人排成一排,则有________种不同的排法.(2)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有________种.答案(1)2 520(2)216解析(1)问题即为从7个元素中选出5个全排列,有A57=2 520(种)排法.(2)当最左端排甲时,不同的排法共有A55种;当最左端排乙时,甲只能排在中间四个位置之一,则不同的排法共有C14A44种.故不同的排法共有A55+C14A44=120+96=216(种).引申探究1.本例(1)中若将条件“选其中5人排成一排”改为“排成前后两排,前排3人,后排4人”,其他条件不变,则有多少种不同的排法?解前排3人,后排4人,相当于排成一排,共有A77=5 040(种)排法.2.本例(1)中若将条件“选其中5人排成一排”改为“全体站成一排,男、女各站在一起”,其他条件不变,则有多少种不同的排法?解相邻问题(捆绑法):男生必须站在一起,是男生的全排列,有A33种排法;女生必须站在一起,是女生的全排列,有A44种排法;全体男生、女生各视为一个元素,有A22种排法.根据分步乘法计数原理,共有A33·A44·A22=288(种)排法.3.本例(1)中若将条件“选其中5人排成一排”改为“全体站成一排,男生不能站在一起”,其他条件不变,则有多少种不同的排法?解不相邻问题(插空法):先安排女生共有A44种排法,男生在4个女生隔成的5个空中安排共有A35种排法,故共有A44·A35=1 440(种)排法.4.本例(1)中若将条件“选其中5人排成一排”改为“全体站成一排,甲不站排头也不站排尾”,其他条件不变,则有多少种不同的排法?解先安排甲,从除去排头和排尾的5个位置中安排甲,有A15=5(种)排法;再安排其他人,有A66=720(种)排法.所以共有A15·A66=3 600(种)排法.思维升华排列应用问题的分类与解法(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.由0,1,2,3,4,5这六个数字组成的无重复数字的自然数.求:(1)有多少个含2,3,但它们不相邻的五位数?(2)有多少个含数字1,2,3,且必须按由大到小顺序排列的六位数?解(1)先不考虑0是否在首位,0,1,4,5先排三个位置,则有A34个,2,3去排四个空档,有A24个,即有A34A24个;而0在首位时,有A23A23个,即有A34A24-A23A23=252(个)含有2,3,但它们不相邻的五位数.(2)在六个位置先排0,4,5,先不考虑0是否在首位,则有A36个,去掉0在首位,即有A36-A25个,0,4,5三个元素排在六个位置上留下了三个空位,1,2,3必须由大到小进入相应位置,并不能自由排列,所以有A36-A25=100(个)六位数.题型二组合问题例2(1)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法的种数是()A.60 B.63C.65 D.66(2)要从12人中选出5人去参加一项活动,A,B,C三人必须入选,则有________种不同选法.答案(1)D(2)36解析(1)因为1,2,3,…,9中共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数或全为偶数或2个奇数和2个偶数,故有C45+C44+C25C24=66(种)不同的取法.(2)只需从A,B,C之外的9人中选择2人,即有C29=36(种)不同的选法.引申探究1.本例(2)中若将条件“A,B,C三人必须入选”改为“A,B,C三人都不能入选”,其他条件不变,则不同的选法有多少种?解由A,B,C三人都不能入选只需从余下9人中选择5人,即有C59=C49=126(种)不同的选法.2.本例(2)中若将条件“A,B,C三人必须入选”改为“A,B,C三人只有一人入选”,其他条件不变,则不同的选法有多少种?解可分两步,先从A,B,C三人中选出1人,有C13种选法,再从余下的9人中选4人,有C49种选法,所以共有C13×C49=378(种)不同的选法.3.本例(2)中若将条件“A,B,C三人必须入选”改为“A,B,C三人至少一人入选”,其他条件不变,则不同的选法有多少种?解可考虑间接法,从12人中选5人共有C512种,再减去A,B,C三人都不入选的情况C59种,共有C512-C59=666(种)不同的选法.思维升华组合问题常有以下两类题型变化(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解.用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.某市工商局对35种商品进行抽样检查,已知其中有15种假货.现从35种商品中选取3种.(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?解(1)从余下的34种商品中,选取2种有C234=561(种),∴某一种假货必须在内的不同取法有561种.(2)从34种可选商品中,选取3种,有C334种或者C335-C234=C334=5 984(种).∴某一种假货不能在内的不同取法有5 984种.(3)从20种真货中选取1件,从15种假货中选取2件有C120C215=2 100(种).∴恰有2种假货在内的不同的取法有2 100种.(4)选取2件假货有C120C215种,选取3件假货有C315种,共有选取方式C120C215+C315=2 100+455=2 555(种).∴至少有2种假货在内的不同的取法有2 555种.(5)选取3件的总数为C335,因此共有选取方式C335-C315=6 545-455=6 090(种).∴至多有2种假货在内的不同的取法有6 090种.题型三排列与组合问题的综合应用命题点1相邻问题例3(2017·济南调研)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为()A.3×3! B.3×(3!)3C.(3!)4D.9!答案C解析把一家三口看作一个排列,然后再排列这3家,所以有(3!)4种坐法.命题点2相间问题例4某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是________.答案120解析先安排小品节目和相声节目,然后让歌舞节目去插空.安排小品节目和相声节目的顺序有三种:“小品1,小品2,相声”,“小品1,相声,小品2”和“相声,小品1,小品2”.对于第一种情况,形式为“□小品1歌舞1小品2□相声□”,有A22C13A23=36(种)安排方法;同理,第三种情况也有36种安排方法,对于第二种情况,三个节目形成4个空,其形式为“□小品1□相声□小品2□”,有A22A34=48(种)安排方法.由分类加法计数原理知共有36+36+48=120(种)安排方法.命题点3特殊元素(位置)问题例5(2016·郑州检测)从1,2,3,4,5这五个数字中任取3个组成无重复数字的三位数,当三个数字中有2和3时,2需排在3的前面(不一定相邻),这样的三位数有________个.答案51解析分三类:第一类,没有2,3,由其他三个数字组成三位数,有A33=6(个);第二类,只有2或3其中的一个,需从1,4,5中选两个数字组成三位数,有2C23A33=36(个);第三类,2,3均有,再从1,4,5中选一个,因为2需排在3的前面,所以可组成12C13A33=9(个).由分类加法计数原理,知这样的三位数共有51个.思维升华排列与组合综合问题的常见类型及解题策略(1)相邻问题捆绑法.在特定条件下,将几个相关元素视为一个元素来考虑,待整个问题排好之后,再考虑它们“内部”的排列.(2)相间问题插空法.先把一般元素排好,然后把特定元素插在它们之间或两端的空当中,它与捆绑法有同等作用.(3)特殊元素(位置)优先安排法.优先考虑问题中的特殊元素或位置,然后再排列其他一般元素或位置.(4)多元问题分类法.将符合条件的排列分为几类,而每一类的排列数较易求出,然后根据分类加法计数原理求出排列总数.(1)(2016·山西四校联考三)有5名优秀毕业生到母校的3个班去做学习经验交流,则每个班至少去一名的不同分派方法种数为( ) A .150 B .180 C .200D .280(2)将甲、乙、丙、丁、戊五位同学分别保送到北大、上海交大和浙大3所大学,若每所大学至少保送1人,甲不能被保送到北大,则不同的保送方案共有( ) A .150种 B .114种 C .100种 D .72种答案 (1)A (2)C解析 (1)分两类:一类,3个班分派的毕业生人数分别为2,2,1,则有C 25C 23A 22·A 33=90(种)分派方法;另一类,3个班分派的毕业生人数分别为1,1,3,则有C 35·A 33=60(种)分派方法,所以不同分派方法种数为90+60=150,故选A.(2)先将五人分成三组,因为要求每组至少一人,所以可选择的只有2,2,1或者3,1,1,所以共有C 25C 23C 112+C 35C 12C 112=25(种)分组方法.因为甲不能被保送到北大,所以有甲的那组只有上海交大和浙大两个选择,剩下的两组无限制,一共有4种方法,所以不同的保送方案共有25×4=100(种).14.排列、组合问题典例有20个零件,其中16个一等品,4个二等品,若从20个零件中任意取3个,那么至少有1个一等品的不同取法有________种.错解展示解析先从一等品中取1个,有C116种取法;再从余下的19个零件中任取2个,有C219种不同取法,共有C116×C219=2 736(种)不同取法.答案 2 736现场纠错解析方法一将“至少有1个是一等品的不同取法”分三类:“恰有1个一等品”,“恰有2个一等品”,“恰有3个一等品”,由分类加法计数原理,知有C116C24+C216C14+C316=1 136(种).方法二考虑其对立事件“3个都是二等品”,用间接法:C320-C34=1 136(种).答案 1 136纠错心得(1)解排列、组合问题的基本原则:特殊优先,先分组再分解,先取后排;较复杂问题可采用间接法,转化为求它的对立事件.(2)解题时要细心、周全,做到不重不漏.1.两家夫妇各带一个小孩一起到动物园游玩,购票后排队依次入园,为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这6人的入园顺序排法种数为() A.48 B.36 C.24 D.12答案C解析(捆绑法)爸爸排法有A22种,两个小孩排在一起故看成一体,有A22种排法,妈妈和孩子共有A33种排法,∴排法种数共有A22A22A33=24(种).故选C.2.(2016·黄山月考)某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为()A.16 B.18 C.24 D.32答案C解析将四个车位捆绑在一起,看成一个元素,先排3辆不同型号的车,在三个车位上任意排列,有A33=6(种)排法,再将捆绑在一起的四个车位插入4个空档中,有4种方法,故共有4×6=24(种)方法.3.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一或最后一步,程序B和C在实施时必须相邻,问实验顺序的编排方法共有()A.34种B.48种C.96种D.144种答案C解析程序A有A12=2(种)结果,将程序B和C看作一个元素与除A外的3个元素排列有A22 A44=48(种),由分步乘法计数原理,知实验编排共有2×48=96(种)方法.4.将A,B,C,D,E排成一列,要求A,B,C在排列中顺序为“A,B,C”或“C,B,A”(可以不相邻),这样的排列数有()A.12种B.20种C.40种D.60种答案C解析(消序法)五个元素没有限制全排列为A55,由于要求A,B,C的次序一定(按A,B,C或C,B,A),故除以这三个元素的全排列A33,可得A55A33×2=40(种).5.(2016·长沙模拟)某校高二年级共有6个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为( )A .A 26C 24 B.12A 26C 24 C .A 26A 24D .2A 26答案 B解析 方法一 将4人平均分成两组有12C 24种方法,将此两组分配到6个班级中的2个班有A 26种.所以不同的安排方法有12C 24A 26(种).方法二 先从6个班级中选2个班级有26C 种不同方法,然后安排学生有C 24C 22种,故有222642C C C =12A 26C 24(种). 6.(2017·汉中质检)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( ) A .24对 B .30对 C .48对 D .60对答案 C解析 正方体中共有12条面对角线,任取两条作为一对共有C 212=66(对),12条对角线中的两条所构成的关系有平行、垂直、成60°角.相对两面上的4条对角线组成的C 24=6(对)组合中,平行有2对,垂直有4对,所以所有的平行和垂直共有3C 24=18(对).所以成60°角的有C 212-3C 24=66-18=48(对). 7.(2016·北京西城区期末)现有5名教师要带3个兴趣小组外出学习考察,要求每个兴趣小组的带队教师至多2人,但其中甲教师和乙教师均不能单独带队,则不同的带队方案有________种.(用数字作答) 答案 54解析 第一类,把甲、乙看作一个复合元素,另外3人分成两组,再分配到3个小组中,有C 23A 33=18(种);第二类,先把另外的3人分配到3个小组,再把甲、乙分配到其中2个小组,有A33A23=36(种).根据分类加法计数原理可得,共有36+18=54(种).8.(2017·福州质检)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种.(用数字作答)答案60解析分两类:第一类:3张中奖奖券分给3个人,共A34种分法;第二类:3张中奖奖券分给2个人相当于把3张中奖奖券分两组再分给4人中的2人,共有C23A24种分法.总获奖情况共有A34+C23A24=60(种).9.把5件不同产品摆成一排,若产品A与产品B相邻,产品A与产品C不相邻,则不同的摆法有________种.答案36解析先考虑产品A与B相邻,把A,B作为一个元素有A44种方法,而A,B可交换位置,所以有2A44=48(种)摆法,又当A,B相邻且又满足A,C相邻,有2A33=12(种)摆法,故满足条件的摆法有48-12=36(种).10.若把英语单词“good”的字母顺序写错了,则可能出现的错误方法共有________种.答案11解析把g、o、o、d 4个字母排一列,可分两步进行,第一步:排g和d,共有A24种排法;第二步:排两个o.共一种排法,所以总的排法种数为A24=12.其中正确的有一种,所以错误的共有A24-1=12-1=11(种).11.将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有________种.(用数字作答)答案480解析从左往右看,若C排在第1位,共有A55=120(种)排法;若C排在第2位,A和B有C右边的4个位置可以选,共有A24·A33=72(种)排法;若C排在第3位,则A,B可排C的左侧或右侧,共有A22·A33+A23·A33=48(种)排法;若C排在第4,5,6位时,其排法数与排在第3,2,1位相同,故共有2×(120+72+48)=480(种)排法.12.(2017·青岛月考)2016年某通讯公司推出一组手机卡号码,卡号的前七位数字固定,后四位数从“0000”到“9999”共10 000个号码中选择.公司规定:凡卡号的后四位恰带有两个数字“6”或恰带有两个数字“8”的一律作为“金猴卡”,享受一定优惠政策.如后四位数为“2663”,“8685”为“金猴卡”,求这组号码中“金猴卡”的张数.解①当后四位数恰有2个6时,“金猴卡”共有C24×9×9=486(张);②当后四位数恰有2个8时,“金猴卡”也共有C24×9×9=486(张).但这两种情况都包含了后四位数是由2个6和2个8组成的这种情况,所以要减掉C24=6,即“金猴卡”共有486×2-6=966(张).13.有9名学生,其中2名会下象棋但不会下围棋,3名会下围棋但不会下象棋,4名既会下围棋又会下象棋.现在要从这9名学生中选出2名学生,一名参加象棋比赛,另一名参加围棋比赛,共有多少种不同的选派方法?解设2名会下象棋但不会下围棋的同学组成集合A,3名会下围棋但不会下象棋的同学组成集合B,4名既会下围棋又会下象棋的同学组成集合C,则选派2名参赛同学的方法可以分为以下4类:第一类:A中选1人参加象棋比赛,B中选1人参加围棋比赛,方法数为C12·C13=6(种);第二类:C中选1人参加象棋比赛,B中选1人参加围棋比赛,方法数为C14·C13=12(种);第三类:C中选1人参加围棋比赛,A中选1人参加象棋比赛,方法数为C14·C12=8(种);第四类:C中选2人分别参加两项比赛,方法数为A24=12(种).由分类加法计数原理,知不同的选派方法共有6+12+8+12=38(种).*14.(2017·洛阳预测)设三位数n=abc,若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n有多少个?解a,b,c要能构成三角形的边长,显然均不为0,即a,b,c∈{1,2,3,…,9}.①若构成等边三角形,设这样的三位数的个数为n1,由于三位数中三个数字都相同,所以n1=C19=9;②若构成等腰(非等边)三角形,设这样的三位数的个数为n2,由于三位数中只有2个不同数字,设为a,b,注意到三角形腰与底可以互换,所以可取的数组(a,b)共有2C29组,但当大数为底时,设a>b,必须满足b<a<2b,此时,不能构成三角形的数字是共20种情况.同时,每个数组(a,b)中的两个数字填上三个数位,有C23种情况,故n2=C23(2C29-20)=156.综上,n=n1+n2=165.。
§11.1分类加法计数原理与分步乘法计数原理1.分类加法计数原理完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,……,在第n类方案中有m n种不同的方法,则完成这件事共有N=m1+m2+…+m n种不同的方法.2.分步乘法计数原理完成一件事需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,……,完成第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n 种不同的方法.3.分类加法计数原理与分步乘法计数原理,都涉及完成一件事的不同方法的种数.它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.(×)(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.(√)(3)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都不能完成这件事,只有两个步骤都完成后,这件事情才算完成.(√)(4)如果完成一件事情有n个不同步骤,在每一步中都有若干种不同的方法m i(i=1,2,3,,…,n),那么完成这件事共有m1m2m3…m n种方法.(√)1.三个人踢毽子,互相传递,每人每次只能踢一下.由甲开始踢,经过3次传递后,毽子又被踢回给甲.则不同的传递方式共有()A.5种B.2种C.3种D.4种答案 B解析传递方式有甲→乙→丙→甲;甲→丙→乙→甲.2.(2013·山东)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为() A.243 B.252 C.261 D.279答案 B解析由分步乘法计数原理知,用0,1,…,9十个数字组成三位数(可用重复数字)的个数为9×10×10=900,组成没有重复数字的三位数的个数为9×9×8=648.则组成有重复数字的三位数的个数为900-648=252.故选B.3.(2013·福建)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14 B.13 C.12 D.10答案 B解析当a=0时,关于x的方程为2x+b=0,此时有序数对(0,-1),(0,0),(0,1),(0,2)均满足要求;当a≠0时Δ=4-4ab≥0,ab≤1此时满足要求的有序数对为(-1,-1),(-1,0),(-1,1),(-1,2),(1,-1),(1,0),(1,1),(2,-1),(2,0).综上,满足要求的有序数对共有13个,故选B.4.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个.(用数字作答)答案14解析数字2,3至少都出现一次,包括以下情况:“2”出现1次,“3”出现3次,共可组成C14=4(个)四位数.“2”出现2次,“3”出现2次,共可组成C24=6(个)四位数.“2”出现3次,“3”出现1次,共可组成C34=4(个)四位数.综上所述,共可组成14个这样的四位数.题型一分类加法计数原理的应用例1高三一班有学生50人,男生30人,女生20人;高三二班有学生60人,男生30人,女生30人;高三三班有学生55人,男生35人,女生20人.(1)从高三一班或二班或三班中选一名学生任学生会主席,有多少种不同的选法?(2)从高三一班、二班男生中,或从高三三班女生中选一名学生任学生会体育部长,有多少种不同的选法?思维点拨按班级分类.解(1)完成这件事有三类方法:第一类,从高三一班任选一名学生共有50种选法;第二类,从高三二班任选一名学生共有60种选法;第三类,从高三三班任选一名学生共有55种选法,根据分类加法计数原理,任选一名学生任学生会主席共有50+60+55=165(种)选法.(2)完成这件事有三类方法:第一类,从高三一班男生中任选一名共有30种选法;第二类,从高三二班男生中任选一名共有30种选法;第三类,从高三三班女生中任选一名共有20种选法.综上知,共有30+30+20=80(种)选法.思维升华分类标准是运用分类计数原理的难点所在,重点在于抓住题目中的关键词或关键元素、关键位置.首先根据题目特点恰当选择一个分类标准;其次分类时应注意完成这件事情的任何一种方法必须属于某一类.在所有的两位数中,个位数字大于十位数字的两位数共有多少个?解方法一按个位数字分类,个位可为2,3,4,5,6,7,8,9,共分成8类,在每一类中满足条件的两位数分别有1个,2个,3个,4个,5个,6个,7个,8个,则共有1+2+3+4+5+6+7+8=36个.方法二按十位数字分类,十位可为1,2,3,4,5,6,7,8,共分成8类,在每一类中满足条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个,则共有8+7+6+5+4+3+2+1=36个.题型二分步乘法计数原理的应用例2有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法?(不一定六名同学都能参加)(1)每人恰好参加一项,每项人数不限;(2)每项限报一人,且每人至多参加一项;(3)每项限报一人,但每人参加的项目不限.解(1)每人都可以从这三个比赛项目中选报一项,各有3种不同选法,由分步乘法计数原理,知共有选法36=729(种).(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目只有4种选法,由分步乘法计数原理,得共有报名方法6×5×4=120(种).(3)由于每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,由分步乘法计数原理,得共有不同的报名方法63=216(种).思维升华(1)利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.已知集合M={-3,-2,-1,0,1,2},若a,b,c∈M,则:(1)y=ax2+bx+c可以表示多少个不同的二次函数;(2)y=ax2+bx+c可以表示多少个图象开口向上的二次函数.解(1)a的取值有5种情况,b的取值有6种情况,c的取值有6种情况,因此y=ax2+bx+c 可以表示5×6×6=180(个)不同的二次函数.(2)y=ax2+bx+c的图象开口向上时,a的取值有2种情况,b、c的取值均有6种情况,因此y=ax2+bx+c可以表示2×6×6=72(个)图象开口向上的二次函数.题型三两个原理的综合应用例3如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法总数.思维点拨染色问题是常见的计数应用问题,可从选颜色、选顶点进行分类、分步,从不同角度解决问题.解方法一可分为两大步进行,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用分步乘法计数原理即可得出结论.由题设,四棱锥S—ABCD的顶点S、A、B 所染的颜色互不相同,它们共有5×4×3=60(种)染色方法.当S、A、B染好时,不妨设其颜色分别为1、2、3,若C染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染法;若C染5,则D可染3或4,有2种染法.可见,当S、A、B已染好时,C、D还有7种染法,故不同的染色方法有60×7=420(种).方法二以S、A、B、C、D顺序分步染色.第一步,S点染色,有5种方法;第二步,A点染色,与S在同一条棱上,有4种方法;第三步,B点染色,与S、A分别在同一条棱上,有3种方法;第四步,C点染色,也有3种方法,但考虑到D点与S、A、C相邻,需要针对A与C是否同色进行分类,当A与C同色时,D点有3种染色方法;当A与C不同色时,因为C与S、B 也不同色,所以C点有2种染色方法,D点也有2种染色方法.由分步乘法、分类加法计数原理得不同的染色方法共有5×4×3×(1×3+2×2)=420(种).方法三按所用颜色种数分类.第一类,5种颜色全用,共有A55种不同的方法;第二类,只用4种颜色,则必有某两个顶点同色(A与C,或B与D),共有2×A45种不同的方法;第三类,只用3种颜色,则A与C、B与D必定同色,共有A35种不同的方法.由分类加法计数原理,得不同的染色方法种数为A55+2×A45+A35=420.思维升华(1)应用两个计数原理的难点在于明确分类还是分步.(2)分类要做到“不重不漏”,正确把握分类标准是关键.(3)分步要做到“步骤完整”,步步相连能将事件完成.(4)较复杂的问题可借助图表完成.如图,正五边形ABCDE中,若把顶点A、B、C、D、E染上红、黄、绿三种颜色中的一种,使得相邻顶点所染颜色不相同,则不同的染色方法共有()A.30种B.27种C.24种D.21种答案 A解析由题意知本题需要分类来解答,首先A选取一种颜色,有3种情况.如果A的两个相邻点颜色相同,有2种情况;这时最后两个点也有2种情况;如果A的两个相邻点颜色不同,有2种情况;这时最后两个点有3种情况.∴方法共有3(2×2+2×3)=30种.对两个基本原理认识不清致误典例:(1)把3封信投到4个信箱,所有可能的投法共有()A.24种B.4种C.43种D.34种(2)某人从甲地到乙地,可以乘火车,也可以坐轮船,在这一天的不同时间里,火车有4趟,轮船有3次,问此人的走法可有________种.易错分析解决计数问题的基本策略是合理分类和分步,然后应用加法原理和乘法原理来计算.解决本题易出现的问题是完成一件事情的标准不清楚导致计算出现错误,对于(1),选择的标准不同,误认为每个信箱有三种选择,所以可能的投法有34种,没有注意到一封信只能投在一个信箱中;对于(2),易混淆“类”与“步”,误认为到达乙地先坐火车后坐轮船,使用乘法原理计算.解析(1)第1封信投到信箱中有4种投法;第2封信投到信箱中也有4种投法;第3封信投到信箱中也有4种投法.只要把这3封信投完,就做完了这件事情,由分步乘法计数原理可得共有43种方法.(2)因为某人从甲地到乙地,乘火车的走法有4种,坐轮船的走法有3种,每一种方法都能从甲地到乙地,根据分类加法计数原理,可得此人的走法可有4+3=7(种).答案(1)C(2)7温馨提醒(1)每封信只能投到一个信箱里,而每个信箱可以装1封信,也可以装2封信,其选择不是唯一的,所以应注意由信来选择信箱,每封信有4种选择.(2)在处理具体的应用问题时,首先必须弄清楚“分类”与“分步”的具体标准是什么.选择合理的标准处理事情,可以避免计数的重复或遗漏.方法与技巧1.分类加法和分步乘法计数原理,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.2.分类标准要明确,做到不重复不遗漏.3.混合问题一般是先分类再分步.4.要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律.失误与防范1.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行.2.分类的关键在于要做到“不重不漏”,分步的关键在于要正确设计分步的程序,即合理分类,准确分步.3.确定题目中是否有特殊条件限制.A组专项基础训练(时间:40分钟)1.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为( )A .3B .4C .6D .8答案 D解析 按从小到大顺序有124,139,248,469共4个,同理按从大到小顺序也有4个,故这样的等比数列的个数为8个.2.小明有4枚完全相同的硬币,每个硬币都分正反两面.他想把4个硬币摆成一摞,且满足相邻两枚硬币的正面与正面不相对,不同的摆法有( )A .4种B .5种C .6种D .9种答案 B解析 记反面为1,正面为2;则正反依次相对有12121212,21212121两种;有两枚反面相对有21121212,21211212,21212112三种;共5种摆法,故选B.3.集合P ={x,1},Q ={y,1,2},其中x ,y ∈{1,2,3,…,9},且P ⊆Q .把满足上述条件的一对有序整数对(x ,y )作为一个点的坐标,则这样的点的个数是( )A .9B .14C .15D .21答案 B解析 当x =2时,x ≠y ,点的个数为1×7=7;当x ≠2时,x =y ,点的个数为7×1=7,则共有14个点,故选B.4.(2013·四川)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到lg a -lg b 的不同值的个数是( )A .9B .10C .18D .20答案 C解析 由于lg a -lg b =lg a b (a >0,b >0),从1,3,5,7,9中任取两个作为a b 有A 25=20种,又13与39相同,31与93相同,∴lg a -lg b 的不同值的个数为A 25-2=20-2=18,选C. 5.从-2、-1、0、1、2、3这六个数字中任选3个不重复的数字作为二次函数y =ax 2+bx +c 的系数a 、b 、c ,则可以组成顶点在第一象限且过原点的抛物线条数为( )A .6B .20C .100D .120答案 A解析 分三步:第一步c =0只有1种方法;第二步确定a ,a 从-2、-1中选一个,有2种不同方法;第三步确定b ,b 从1、2、3中选一个,有3种不同的方法.根据乘法计数原理得1×2×3=6种不同的方法.6.如图,将网格中的三条线段沿网格线上下或左右平移,组成一个首尾相接的三角形,则三条线段一共至少需要移动________格.答案9解析如图,将网格中的三条线段沿网格线平移后组成一个首尾相接的三角形,根据平移的基本性质知:左边的线段向右平移3格,中间的线段向下平移2格,最右边的线段先向左平移2格,再向上平移2格,此时平移的格数最少为3+2+2+2=9,其他平移方法都超过9格,∴至少需要移动9格.7.某次活动中,有30人排成6行5列,现要从中选出3人进行礼仪表演,要求这3人中的任意2人不同行也不同列,则不同的选法种数为________(用数字作答).答案7 200解析其中最先选出的一个人有30种方法,此时不能再从这个人所在的行和列上选人,还剩一个5行4列的队形,故选第二个人有20种方法,此时不能再从该人所在的行和列上选人,还剩一个4行3列的队形,此时第三个人的选法有12种,根据分步乘法计数原理,总的选法种数是30×20×12=7 200.8.已知集合M={1,-2,3},N={-4,5,6,-7},从M,N这两个集合中各选一个元素分别作为点的横坐标,纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是________.答案 6解析分两类:第一类,第一象限内的点,有2×2=4(个);第二类,第二象限内的点,有1×2=2(个).共4+2=6(个).9.某外语组有9人,每人至少会英语和日语中的一门,其中7人会英语,3人会日语,从中选出会英语和日语的各一人,有多少种不同的选法?解由题意得有1人既会英语又会日语,6人只会英语,2人只会日语.第一类:从只会英语的6人中选1人说英语,共有6种方法,则说日语的有2+1=3(种),此时共有6×3=18(种);第二类:不从只会英语的6人中选1人说英语,则只有1种方法,则选会日语的有2种,此时共有1×2=2(种);所以根据分类加法计数原理知共有18+2=20(种)选法.10.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为多少?解 方法一 分0个相同、1个相同、2个相同讨论.(1)若0个相同,则信息为1001.共1个.(2)若1个相同,则信息为0001,1101,1011,1000.共4个.(3)若2个相同,又分为以下情况:①若位置一与二相同,则信息为0101;②若位置一与三相同,则信息为0011;③若位置一与四相同,则信息为0000;④若位置二与三相同,则信息为1111;⑤若位置二与四相同,则信息为1100;⑥若位置三与四相同,则信息为1010.共6个.故与信息0110至多有两个对应位置上的数字相同的信息个数为1+4+6=11.方法二 若0个相同,共有1个;若1个相同,共有C 14=4(个);若2个相同,共有C 24=6(个).故共有1+4+6=11(个).B 组 专项能力提升(时间:25分钟)11.已知集合M ={1,2,3},N ={1,2,3,4},定义函数f :M →N .若点A (1,f (1))、B (2,f (2))、C (3,f (3)),△ABC 的外接圆圆心为D ,且DA →+DC →=λDB →(λ∈R ),则满足条件的函数f (x )有( )A .6种B .10种C .12种D .16种答案 C解析 由DA →+DC →=λDB →(λ∈R ),说明△ABC 是等腰三角形,且BA =BC ,必有f (1)=f (3),f (1)≠f (2);当f (1)=f (3)=1时,f (2)=2、3、4,有三种情况.f (1)=f (3)=2;f (2)=1、3、4,有三种情况.f (1)=f (3)=3;f (2)=2、1、4,有三种情况.f (1)=f (3)=4;f (2)=2、3、1,有三种情况.因而满足条件的函数f (x )有12种.12.直角坐标xOy 平面上,平行直线x =n (n =0,1,2,…,5)与平行直线y =n (n =0,1,2,…,5)组成的图形中,矩形共有( )A .25个B .36个C .100个D .225个答案 D解析由题意知:从横轴上的点中任选两点作为矩形的两个顶点,有C26种选法,再从纵轴中选两个点有C26种选法,作为矩形的另两个顶点,由分步乘法计数原理知:有C26C26=225.13.如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为()A.96 B.84 C.60 D.48答案 B解析可依次种A、B、C、D四块,当C与A种同一种花时,有4×3×1×3=36(种)种法;当C与A所种花不同时,有4×3×2×2=48(种)种法,由分类加法计数原理,不同的种法总数为36+48=84.14.已知直线方程Ax+By=0,若从0,1,2,3,5,7这6个数字中任取两个不同的数作为A、B的值,则可表示________条不同的直线.答案22解析分成三类:A=0,B≠0;A≠0,B=0和A≠0,B≠0,前两类各表示1条直线;第三类先取A有5种取法,再取B有4种取法,故有5×4=20(种).所以可以表示22条不同的直线.15.五名学生报名参加四项体育比赛,每人限报一项,则报名方法的种数为________.五名学生争夺四项比赛的冠军(冠军不并列),获得冠军的可能性有________种.答案4554解析报名的方法种数为4×4×4×4×4=45.获得冠军的可能情况有5×5×5×5=54(种).16.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有________种.答案24解析分步完成.首先甲、乙两人从4门课程中同选1门,有4种方法,其次甲从剩下的3门课程中任选1门,有3种方法,最后乙从剩下的2门课程中任选1门,有2种方法,于是,甲、乙所选的课程中恰有1门相同的选法共有4×3×2=24(种).17.已知集合A={a1,a2,a3,a4},B={0,1,2,3},f是从A到B的映射.(1)若B中每一元素都有原象,这样不同的f有多少个?(2)若B中的元素0必无原象,这样的f有多少个?(3)若f满足f(a1)+f(a2)+f(a3)+f(a4)=4,这样的f又有多少个?解(1)显然对应是一一对应的,即为a1找象有4种方法,a2找象有3种方法,a3找象有2种方法,a4找象有1种方法,所以不同的f共有4×3×2×1=24(个).(2)0必无原象,1,2,3有无原象不限,所以为A中每一元素找象时都有3种方法.所以不同的f共有34=81(个).(3)分为如下四类:第一类:A中每一元素都与1对应,有1种方法;第二类:A中有两个元素对应1,一个元素对应2,另一个元素与0对应,有C24·C12=12(种)方法;第三类,A中有两个元素对应2,另两个元素对应0,有C24·C22=6(种)方法;第四类,A中有一个元素对应1,一个元素对应3,另两个元素与0对应,有C14·C13=12(种)方法.所以不同的f共有1+12+6+12=31(个).- 11 -。
§10.2直接证明与间接证明1.直接证明(1)综合法①定义:利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.②框图表示:P⇒Q1―→Q1⇒Q2―→Q2⇒Q3―→…―→Q n⇒Q(其中P表示已知条件、已有的定义、定理、公理等,Q表示要证的结论).③思维过程:由因导果.(2)分析法①定义:从要证明的结论出发,逐步寻求使它成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.②框图表示:Q⇐P1―→P1⇐P2―→P2⇐P3―→…―→得到一个明显成立的条件(其中Q表示要证明的结论).③思维过程:执果索因.2.间接证明反证法:假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立的证明方法.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)综合法是直接证明,分析法是间接证明.(×)(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.(×)(3)用反证法证明结论“a>b”时,应假设“a<b”.(×)(4)反证法是指将结论和条件同时否定,推出矛盾.(×)(5)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.(√)(6)证明不等式2+7<3+6最合适的方法是分析法.(√)1.p =ab +cd ,q =ma +nc ·b m +dn(m ,n ,a ,b ,c ,d 均为正数),则p ,q 的大小为( ) A .p ≥q B .p ≤q C .p >q D .不确定答案 B 解析 q =ab +mad n +nbc m+cd ≥ab +2abcd +cd =ab +cd =p .2.要证a 2+b 2-1-a 2b 2≤0只要证明( ) A .2ab -1-a 2b 2≤0 B .a 2+b 2-1-a 4+b 42≤0C.(a +b )22-1-a 2b 2≤0D .(a 2-1)(b 2-1)≥0 答案 D解析 a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0.3.若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A .ac 2<bc 2 B .a 2>ab >b 2 C.1a <1b D.b a >a b答案 B解析 a 2-ab =a (a -b ),∵a <b <0,∴a -b <0,∴a 2-ab >0, ∴a 2>ab .①又ab -b 2=b (a -b )>0,∴ab >b 2,② 由①②得a 2>ab >b 2.4.如果a a +b b >a b +b a ,则a 、b 应满足的条件是__________________. 答案 a ≥0,b ≥0且a ≠b 解析 ∵a a +b b -(a b +b a ) =a (a -b )+b (b -a ) =(a -b )(a -b )=(a -b )2(a +b ).∴当a ≥0,b ≥0且a ≠b 时,(a -b )2(a +b )>0. 故a a +b b >a b +b a 成立的条件是a ≥0,b ≥0且a ≠b .题型一 综合法的应用例1 已知数列{a n }满足a 1=12,且a n +1=a n3a n +1(n ∈N *).(1)证明数列{1a n}是等差数列,并求数列{a n }的通项公式;(2)设b n =a n a n +1(n ∈N *),数列{b n }的前n 项和记为T n ,证明:T n <16.思维点拨 (1)已知等式两边取倒数,得1a n +1-1a n 为常数.(2)求出b n 利用拆项求和再与16比较.(1)解 由已知可得,当n ∈N *时,a n +1=a n3a n +1. 两边取倒数得,1a n +1=3a n +1a n =1a n +3,即1a n +1-1a n =3, 所以数列{1a n }是首项为1a 1=2,公差为3的等差数列,其通项公式为1a n =1a 1+(n -1)×3=2+(n -1)×3=3n -1.所以数列{a n }的通项公式为a n =13n -1.(2)证明 由(1)知a n =13n -1,故b n =a n a n +1=13n -1×13(n +1)-1=1(3n -1)(3n +2)=13(13n -1-13n +2),故T n =b 1+b 2+…+b n=13×(12-15)+13×(15-18)+…+13×(13n -1-13n +2) =13(12-13n +2) =16-13·13n +2. 因为13n +2>0,所以T n <16.思维升华 (1)综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性.(2)综合法的逻辑依据是三段论式的演绎推理.(2013·课标全国Ⅱ)设a 、b 、c 均为正数,且a +b +c =1,证明:(1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a≥1.证明 (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac 得 a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1, 即a 2+b 2+c 2+2ab +2bc +2ca =1. 所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c .所以a 2b +b 2c +c 2a ≥1. 题型二 分析法的应用 例2 已知a >0,求证a 2+1a 2-2≥a +1a-2.思维点拨 用分析法,移项,平方,化简.证明 要证 a 2+1a 2-2≥a +1a -2,只需要证a 2+1a 2+2≥a +1a+ 2.∵a >0,故只需要证( a 2+1a 2+2)2≥(a +1a+2)2,即a 2+1a 2+4a 2+1a 2+4≥a 2+2+1a 2+22(a +1a )+2,从而只需要证2a 2+1a 2≥2(a +1a),只需要证4(a 2+1a 2)≥2(a 2+2+1a2),即a 2+1a2≥2,而上述不等式显然成立,故原不等式成立.思维升华 (1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.已知a ,b ∈(0,+∞),求证:11332232()()a b a b <++.证明 因为a ,b ∈(0,+∞),所以要证原不等式成立, 只需证1133622632[()()]a b a b ⎤⎡<⎦⎣++, 即证(a 3+b 3)2<(a 2+b 2)3,即证a 6+2a 3b 3+b 6<a 6+3a 4b 2+3a 2b 4+b 6, 只需证2a 3b 3<3a 4b 2+3a 2b 4. 因为a ,b ∈(0,+∞), 所以即证2ab <3(a 2+b 2).而a 2+b 2≥2ab,3(a 2+b 2)≥6ab >2ab 成立, 以上步骤步步可逆, 所以11332232()()a b a b <++. 题型三 反证法的应用例3 已知数列{a n }的前n 项和为S n ,且满足a n +S n =2. (1)求数列{a n }的通项公式;(2)求证:数列{a n }中不存在三项按原来顺序成等差数列.思维点拨 证明(2)用反证法,假设存在三项,符合条件推出矛盾. (1)解 当n =1时,a 1+S 1=2a 1=2,则a 1=1. 又a n +S n =2,所以a n +1+S n +1=2, 两式相减得a n +1=12a n ,所以{a n }是首项为1,公比为12的等比数列,所以a n =12n -1.(2)证明 反证法:假设存在三项按原来顺序成等差数列,记为a p +1,a q +1,a r +1(p <q <r ,且p ,q ,r ∈N *),则2·12q =12p +12r ,所以2·2r -q =2r -p +1.(*)又因为p <q <r ,所以r -q ,r -p ∈N *.所以(*)式左边是偶数,右边是奇数,等式不成立. 所以假设不成立,原命题得证.思维升华 (1)当一个命题的结论是以“至多”“至少”“唯一”或以否定形式出现时,可用反证法来证,反证法关键是在正确的推理下得出矛盾,矛盾可以是与已知条件矛盾,与假设矛盾,与定义、公理、定理矛盾,与事实矛盾等.(2)用反证法证明不等式要把握三点:①必须否定结论;②必须从否定结论进行推理;③推导出的矛盾必须是明显的.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.(1)解 由已知得⎩⎪⎨⎪⎧a 1=2+1,3a 1+3d =9+32,∴d =2,故a n =2n -1+2,S n =n (n +2).(2)证明 由(1)得b n =S nn=n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r ∈N *,且互不相等)成等比数列,则b 2q =b p b r ,即(q +2)2=(p +2)(r +2). ∴(q 2-pr )+2(2q -p -r )=0.∵p ,q ,r ∈N *,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0.∴(p +r 2)2=pr ,即(p -r )2=0.∴p =r ,与p ≠r 矛盾.∴假设不成立,即数列{b n }中任意不同的三项都不可能成等比数列.反证法在证明题中的应用典例:(10分)(2013·北京)直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A 、C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长; (2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.思维点拨 第(2)题可以用反证法进行证明,从四边形OABC 为菱形开始推理,最后得到矛盾. 规范解答(1)解 因为四边形OABC 为菱形, 则AC 与OB 相互垂直平分. 由于O (0,0),B (0,1)所以设点A ⎝⎛⎭⎫t ,12,代入椭圆方程得t 24+14=1, 则t =±3,故|AC |=2 3.[4分] (2)证明 假设四边形OABC 为菱形,因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0.由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m ,消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0.[6分] 设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 2+y 22=k ·x 1+x 22+m =m1+4k2. 所以AC 的中点为M ⎝ ⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2.[8分] 因为M 为AC 和OB 的交点,且m ≠0,k ≠0, 所以直线OB 的斜率为-14k,因为k ·⎝⎛⎭⎫-14k =-14≠-1,所以AC 与OB 不垂直. 所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.[10分]温馨提醒 (1)掌握反证法的证明思路及证题步骤,正确作出假设是反证法的基础,应用假设是反证法的基本手段,得到矛盾是反证法的目的.(2)当证明的结论和条件联系不明显、直接证明不清晰或正面证明分类较多、而反面情况只有一种或较少时,常采用反证法.(3)利用反证法证明时,一定要回到结论上去.方法与技巧1.分析法的特点:从未知看需知,逐步靠拢已知. 2.综合法的特点:从已知看可知,逐步推出未知.3.分析法和综合法各有优缺点.分析法思考起来比较自然,容易寻找到解题的思路和方法,缺点是思路逆行,叙述较繁;综合法从条件推出结论,较简捷地解决问题,但不便于思考.实际证题时常常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来. 失误与防范1.用分析法证明时,要注意书写格式的规范性,常常用“要证(欲证)……”“即证……”“只需证……”等,逐步分析,直至一个明显成立的结论.2.利用反证法证明数学问题时,要假设结论错误,并用假设的命题进行推理,如果没有用假设命题推理而推出矛盾结果,其推理过程是错误的.A 组 专项基础训练 (时间:40分钟)1.若a 、b ∈R ,则下面四个式子中恒成立的是( ) A .lg(1+a 2)>0 B .a 2+b 2≥2(a -b -1) C .a 2+3ab >2b 2 D.a b <a +1b +1答案 B解析 在B 中,∵a 2+b 2-2(a -b -1)=(a 2-2a +1)+(b 2+2b +1)=(a -1)2+(b +1)2≥0, ∴a 2+b 2≥2(a -b -1)恒成立.2.若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系是( ) A .P >Q B .P =QC .P <QD .由a 的取值确定 答案 C解析 ∵P 2=2a +7+2a ·a +7 =2a +7+2a 2+7a , Q 2=2a +7+2a +3·a +4=2a +7+2a 2+7a +12,∴P 2<Q 2,∴P <Q .3.对于平面α和共面的直线m ,n .下列命题中的真命题是( ) A .若m ⊥α,m ⊥n ,则n ∥α B .若m ∥α,n ∥α,则m ∥n C .若m ⊂α,n ∥α,则m ∥nD .若m 、n 与α所成的角相等,则m ∥n 答案 C解析 对于平面α和共面的直线m ,n ,设m ,n 确定的平面为β.对于C ,若m ⊂α,则α∩β=m , 从而n ∥α,可得m ∥n ,因此C 正确.4.已知a >0,b >0,则1a +1b +2ab 的最小值是( )A .2B .2 2C .4D .5 答案 C解析 因为1a +1b +2ab ≥21ab+2ab =2(1ab+ab )≥4. 当且仅当1a =1b且1ab=ab , 即a =b =1时,取“=”.5.(2014·山东)用反证法证明命题:“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( ) A .方程x 3+ax +b =0没有实根 B .方程x 3+ax +b =0至多有一个实数 C .方程x 3+ax +b =0至多有两个实根 D .方程x 3+ax +b =0恰好有两个实根 答案 A解析 方程x 3+ax +b =0至少有一个实根的反面是方程x 3+ax +b =0没有实根,故应选A. 6.下列条件:①ab >0;②ab <0;③a >0,b >0;④a <0,b <0. 其中能使b a +ab ≥2成立的条件的个数是________.答案 3解析 要使b a +a b ≥2,只要b a >0,且ab>0,即a 、b 不为0且同号,故有3个.7.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是________. 答案 (5,7)解析 依题意,把“整数对”的和相同的分为一组,不难得知每组中每个“整数对”的和为n +1,且每组共有n 个“整数对”,这样的前n 组一共有n (n +1)2个“整数对”,注意到10(10+1)2<60<11(11+1)2,因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位置,结合题意可知每个“整数对”的和为12的组中的各数对依次为(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7).8.凸函数的性质定理:如果函数f (x )在区间D 上是凸函数,则对于区间D 内的任意x 1,x 2,…,x n ,有f (x 1)+f (x 2)+…+f (x n )n ≤f (x 1+x 2+…+x n n),已知函数y =sin x 在区间(0,π)上是凸函数,则在△ABC 中,sin A +sin B +sin C 的最大值为________.答案 332解析 ∵f (x )=sin x 在区间(0,π)上是凸函数,且A 、B 、C ∈(0,π).∴f (A )+f (B )+f (C )3≤f (A +B +C 3)=f (π3), 即sin A +sin B +sin C ≤3sin π3=332, 所以sin A +sin B +sin C 的最大值为332. 9.已知非零向量a ⊥b ,求证:|a |+|b ||a -b |≤ 2. 证明 ∵a ⊥b ,∴a ·b =0.要证|a |+|b ||a -b |≤2,只需证:|a |+|b |≤2|a -b |, 平方得:|a |2+|b |2+2|a ||b |≤2(|a |2+|b |2-2a ·b ),只需证:|a |2+|b |2-2|a ||b |≥0,即(|a |-|b |)2≥0,显然成立.故原不等式得证.10.已知四棱锥S -ABCD 中,底面是边长为1的正方形,又SB =SD =2,SA =1.(1)求证:SA ⊥平面ABCD ;(2)在棱SC 上是否存在异于S ,C 的点F ,使得BF ∥平面SAD ?若存在,确定F 点的位置;若不存在,请说明理由.(1)证明 由已知得SA 2+AD 2=SD 2,∴SA ⊥AD .同理SA ⊥AB .又AB ∩AD =A ,∴SA ⊥平面ABCD .(2)解 假设在棱SC 上存在异于S ,C 的点F ,使得BF ∥平面SAD .∵BC ∥AD ,BC ⊄平面SAD .∴BC ∥平面SAD .而BC ∩BF =B ,∴平面FBC ∥平面SAD .这与平面SBC 和平面SAD 有公共点S 矛盾,∴假设不成立.故不存在这样的点F ,使得BF ∥平面SAD .B 组 专项能力提升(时间:30分钟)11.已知函数f (x )=(12)x ,a ,b 是正实数,A =f (a +b 2),B =f (ab ),C =f (2ab a +b),则A 、B 、C 的大小关系为( )A .A ≤B ≤CB .A ≤C ≤B C .B ≤C ≤AD .C ≤B ≤A 答案 A解析 ∵a +b 2≥ab ≥2ab a +b,又f (x )=(12)x 在R 上是减函数. ∴f (a +b 2)≤f (ab )≤f (2ab a +b),即A ≤B ≤C . 12.(2013·广东)设整数n ≥4,集合X ={1,2,3,…,n },令集合S ={(x ,y ,z )|x ,y ,z ∈X ,且三条件x <y <z ,y <z <x ,z <x <y 恰有一个成立}.若(x ,y ,z )和(z ,w ,x )都在S 中,则下列选项正确的是( )A .(y ,z ,w )∈S ,(x ,y ,w )∉SB .(y ,z ,w )∈S ,(x ,y ,w )∈SC .(y ,z ,w )∉S ,(x ,y ,w )∈SD .(y ,z ,w )∉S ,(x ,y ,w )∉S答案 B解析 方法一 因为(x ,y ,z )∈S ,则x ,y ,z 的大小关系有3种情况,同理,(z ,w ,x )∈S ,则z ,w ,x 的大小关系也有3种情况,如图所示,由图可知,x ,y ,w ,z 的大小关系有4种可能,均符合(y ,z ,w )∈S ,(x ,y ,w )∈S .故选B.方法二 (特殊值法)因为(x ,y ,z )和(z ,w ,x )都在S 中,不妨令x =2,y =3,z =4,w =1,则(y ,z ,w )=(3,4,1)∈S ,(x ,y ,w )=(2,3,1)∈S ,故(y ,z ,w )∉S ,(x ,y ,w )∉S 的说法均错误,可以排除选项A 、C 、D ,故选B.13.a 2+2+2a 2+2与22的大小关系是________________. 答案 a 2+2+2a 2+2>2 2 14.已知二次函数f (x )=ax 2+bx +c (a >0)的图象与x 轴有两个不同的交点,若f (c )=0,且0<x <c 时,f (x )>0.(1)证明:1a是函数f (x )的一个零点; (2)试用反证法证明1a>c . 证明 (1)∵f (x )图象与x 轴有两个不同的交点,∴f (x )=0有两个不等实根x 1,x 2,∵f (c )=0,∴x 1=c 是f (x )=0的根,又x 1x 2=c a ,∴x 2=1a (1a≠c ), ∴1a是f (x )=0的一个根. 即1a是函数f (x )的一个零点. (2)假设1a <c ,又1a>0,由0<x <c 时,f (x )>0, 知f (1a )>0与f (1a )=0矛盾,∴1a≥c , 又∵1a ≠c ,∴1a>c . 15.已知数列{a n }满足:a 1=12,3(1+a n +1)1-a n =2(1+a n )1-a n +1,a n a n +1<0(n ≥1),数列{b n }满足:b n =a 2n +1-a 2n (n ≥1).。