2020年浙江高考数学一轮复习: 二项式定理
- 格式:ppt
- 大小:1.97 MB
- 文档页数:34
二项式定理知识点与题型复习一、基础知识1.二项式定理(1)二项式定理:(a+b)n=C0n a n+C1n a n-1b+…+C k n a n-k b k+…+C n n b n(n∈N*)(2)通项公式:T k+1=C k n a n-k b k,它表示第k+1项;(3)二项式系数:二项展开式中各项的系数为C0n,C1n,…,C n n.2.二项式系数的性质注:(1)项数为n+1.(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n.(3)字母a按降幂排列,从第一项开始,次数由n逐项减1直到零;字母b按升幂排列,从第一项起,次数由零逐项增1直到n.二项式系数与项的系数的区别二项式系数是指C0n,C1n,…,C n n,它只与各项的项数有关,而与a,b的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a,b的值有关.如(a+bx)n的二项展开式中,第k+1项的二项式系数是C k n,而该项的系数是C k n a n-k b k.当然,在某些二项展开式中,各项的系数与二项式系数是相等的.二、考点解析考点一二项展开式中特定项或系数问题考法(一)求解形如(a+b)n(n∈N*)的展开式中与特定项相关的量例1、(1)522⎪⎭⎫⎝⎛+xx的展开式中x4的系数为()A.10B.20C.40D.80(2)若(2x-a)5的二项展开式中x3的系数为720,则a=________.(3)已知5⎪⎭⎫⎝⎛+xax的展开式中x5的系数为A,x2的系数为B,若A+B=11,则a=________.[解题技法]求形如(a+b)n(n∈N*)的展开式中与特定项相关的量(常数项、参数值、特定项等)的步骤第一步,利用二项式定理写出二项展开式的通项公式T r+1=C r n a n-r b r,常把字母和系数分离开来(注意符号不要出错);第二步,根据题目中的相关条件(如常数项要求指数为零,有理项要求指数为整数)先列出相应方程(组)或不等式(组),解出r;第三步,把r代入通项公式中,即可求出T r+1,有时还需要先求n,再求r,才能求出T r+1或者其他量.考法(二)求解形如(a+b)m(c+d)n(m,n∈N*)的展开式中与特定项相关的量例2、(1)(1-x)6(1+x)4的展开式中x的系数是()A.-4B.-3C.3D.4(2)已知(x-1)(ax+1)6的展开式中含x2项的系数为0,则正实数a=________.[解题技法]求形如(a+b)m(c+d)n(m,n∈N*)的展开式中与特定项相关的量的步骤第一步,根据二项式定理把(a+b)m与(c+d)n分别展开,并写出其通项公式;第二步,根据特定项的次数,分析特定项可由(a+b)m与(c+d)n的展开式中的哪些项相乘得到;第三步,把相乘后的项合并即可得到所求特定项或相关量.考法(三)求形如(a+b+c)n(n∈N*)的展开式中与特定项相关的量例3、(1)(x2+x+y)5的展开式中x5y2的系数为()A.10B.20C.30D.60(2)将344⎪⎭⎫⎝⎛-+xx展开后,常数项是________.[解题技法]求形如(a+b+c)n(n∈N*)的展开式中与特定项相关的量的步骤第一步,把三项的和a+b+c看成是(a+b)与c两项的和;第二步,根据二项式定理写出[(a +b )+c ]n 的展开式的通项;第三步,对特定项的次数进行分析,弄清特定项是由(a +b )n -r 的展开式中的哪些项和c r 相乘得到的; 第四步,把相乘后的项合并即可得到所求特定项或相关量. 跟踪训练1.在(1-x 3)(2+x )6的展开式中,x 5的系数是________.(用数字作答)3.5212⎪⎭⎫⎝⎛++x x (x >0)的展开式中的常数项为________.考点二 二项式系数的性质及各项系数和[典例精析](1)若531⎪⎪⎭⎫ ⎝⎛+x x 的展开式中各项系数之和大于8,但小于32,则展开式中系数最大的项是( ) A.63x B.4x C.4x 6x D.4x或4x 6x(2)若nx x ⎪⎭⎫ ⎝⎛-12的展开式中含x 的项为第6项,设(1-3x )n =a 0+a 1x +a 2x 2+…+a n x n ,则a 1+a 2+…+a n的值为________.(3)若(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.[解题技法] 1.赋值法的应用二项式定理给出的是一个恒等式,对于x ,y 的一切值都成立.因此,可将x ,y 设定为一些特殊的值.在使用赋值法时,令x ,y 等于多少,应视具体情况而定,一般取“1,-1或0”,有时也取其他值.如: (1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子,求其展开式的各项系数之和,只需令x =1即可. (2)形如(ax +by )n (a ,b ∈R )的式子,求其展开式各项系数之和,只需令x =y =1即可. 2.二项展开式各项系数和、奇数项系数和与偶数项系数和的求法 若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )的展开式中 (1)各项系数之和为f (1).(2)奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2.(3)偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.跟踪训练1.已知(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则|a0|+|a1|+…+|a5|=()A.1B.243C.121D.1222.若(x+2+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9,且(a0+a2+…+a8)2-(a1+a3+…+a9)2=39,则实数m的值为________.3.已知(1+3x)n的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项为____.考点三二项展开式的应用例、设a∈Z,且0≤a<13,若512 018+a能被13整除,则a=()A.0B.1C.11D.12[解题技法]利用二项式定理解决整除问题的思路(1)要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.因此,一般要将被除式化为含相关除式的二项式,然后再展开.(2)用二项式定理处理整除问题,通常把底数写成除数(或与除数密切关联的数)与某数的和或差的形式,再用二项式定理展开.但要注意两点:①余数的范围,a=cr+b,其中余数b∈[0,r),r是除数,若利用二项式定理展开变形后,切记余数不能为负;②二项式定理的逆用.跟踪训练]1.使得多项式81x4+108x3+54x2+12x+1能被5整除的最小自然数x为()A.1B.2C.3D.4课后作业1.3422⎪⎪⎭⎫ ⎝⎛+x x 的展开式中的常数项为( ) A.-32 B.32 C.6 D.-6 2.设(2-x )5=a 0+a 1x +a 2x 2+…+a 5x 5,则a 2+a 4a 1+a 3的值为( )A.-6160B.-122121C.-34D.-901213.若二项式72⎪⎭⎫ ⎝⎛+x a x 的展开式的各项系数之和为-1,则含x 2项的系数为( )A.560B.-560C.280D.-2804.已知(1+x )n 的展开式中第5项与第7项的二项式系数相等,则奇数项的二项式系数和为( ) A.29 B.210 C.211 D.2125.二项式9221⎪⎭⎫⎝⎛-x x 的展开式中,除常数项外,各项系数的和为( )A.-671B.671C.672D.673 6.在(1-x )5(2x +1)的展开式中,含x 4项的系数为( )A.-5B.-15C.-25D.257.若(x 2-a )101⎪⎭⎫ ⎝⎛+x x 的展开式中x 6的系数为30,则a 等于( )A.13B.12C.1D.2 8.若(1+mx )6=a 0+a 1x +a 2x 2+…+a 6x 6,且a 1+a 2+…+a 6=63,则实数m 的值为( ) A.1或3 B.-3 C.1 D.1或-3 9.(2x -1)6的展开式中,二项式系数最大的项的系数是________.(用数字作答)10.9⎪⎭⎫ ⎝⎛+x a x 的展开式中x 3的系数为-84,则展开式的各项系数之和为________.11.511⎪⎭⎫ ⎝⎛++x x 展开式中的常数项为________.12.已知nx x ⎪⎪⎭⎫ ⎝⎛+41的展开式中,前三项的系数成等差数列. (1)求n ;(2)求展开式中的有理项;(3)求展开式中系数最大的项.。
高中数学一轮复习(十三) 二项式定理1.二项式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二项式展开式:右边的多项式叫做()n a b +的二项展开式。
②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅.③项数:共(1)r +项,是关于a 与b 的齐次多项式④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。
用1r n r r r nT C a b -+=表示。
3.注意关键点:①项数:展开式中总共有(1)n +项。
②顺序:注意正确选择a ,b ,其顺序不能更改。
()n a b +与()n b a +是不同的。
③指数:a 的指数从n 逐项减到0,是降幂排列。
b 的指数从0逐项减到n ,是升幂排列。
各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。
4.常用的结论:令1,,a b x == 0122(1)()n r rn nn n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122rnn n n n n n C C C C C ++++++=,变形式1221rnn n n n n C C C C +++++=-。
2020届高三数学一轮复习测试:二项式定理数学试卷〔二项式定理〕时刻:90分钟,总分值:110分一、选择题〔共55分,每题5分〕1. 假设21()(*,100)n x n N n x +∈≤展开式中一定存在常数项,那么n 的最大值为A .90B .96C .99D .100 2. 假设b a b a ,(2215+=)+(为有理数〕,那么a b +=A .45B .55C .70D .80 3. 假设5)1(-ax 的展开式中3x 的系数是80,那么实数a 的值是A .-2 B. 22 D. 24. 假设多项式=+++++++=+910109910102,)1()1()1(a x a x a x a a x x 则A .9B .10C .-9D .-10 5. 设n x x )5(3121-的展开式的各项系数之和为M ,而二项式系数之和为N ,且M -N=992。
那么展开式中x 2项的系数为A .250B .-250C .150D .-150 6. n x x )1(2-的展开式中,常数项为15,那么n =A .3B .4C .5D .67. 6)12(x x -的展开式中含2x 项的系数是A .240B .-240C .192D .-192 8. 假设)12(x x -n 展开式中含21x 项的系数与含41x 项的系数之比为-5,那么n 等于 A .4 B .6 C .8 D .109. 设(1+x)8=a 0+a 1x+…+a 8x 8,那么a 0,a 1,…,a 8中奇数的个数为A .2B .3C .4D .510. 假设多项为+++++++++=+201010991010,)1()1()1(a a x a x a x a a x x 则 8a + =A .509B .510C .511D .102211. 73)12(x x -的展开式中常数项是 A .-14 B .14 C .-42 D .42二、填空题〔共55分,每题5分〕12. 假设nx )2(+展开式的二项式系数之和等于64,那么第三项是 。
一、自我诊断 知己知彼1.在()()()()()12345x x x x x -----的展开式中,含4x 的项的系数是( ) A.-15 B.85 C.-120 D.274 【答案】A【解析】 本题可通过选括号(即5个括号中4个提供x ,其余1个提供常数)的思路来完成。
故含4x 的项的系数为()()()()()1234515-+-+-+-+-=- 2.()52y x x++的展开式中,25y x 的系数为( )A.10B.20 C .30 D .60 【答案】C【解析】r r r r y x x C T -++=5251)(,令r=2,则232253)(y x x C T +=,对于二项式()32x x +,由tt t t t t x C x x C T --+=⋅=633231)(,令t=1, 所以25y x 的系数为301325=C C .【易错点】通项公式易错.【方法点拨】求二项展开式特定项的系数的关键是求出满足条件的r 的值,因此应通过求出二项展开式的通项,然后根据已知条件列出方程,解出r 的值,最后代入通项中,求出特定项的系数. 3.()4x y y x -的展开式中,55y x 项的系数为________. 【答案】6【解析】由二项展开式的通项可得22244441)1()()(r r r rr rrr yxC x y y x C T +--+⋅-=-⋅-=.令⎩⎨⎧4-r 2=32+r2=3解得r =2,所以展开式中55y x 的系数为()61242=-C .4.若512⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+x x x a x 的展开式中各项系数的和为2,则该展开式的常数项为( )A .-40B .-20C .20D .40【答案】D【解析】令x =1,得(1+a )(2-1)5=2,∴a =1.∴512⎪⎭⎫ ⎝⎛-x x 的通项为()()r r r rrrrr x C x x C T 25555512112---+⋅⋅-=⎪⎭⎫ ⎝⎛-⋅=. 令521r -=,得2r =.令521r -=-,得3r =∴展开式的常数项为()()233223551212804040C C -⨯⋅+-⋅⋅=-=二、温故知新 夯实基础1.二项式定理公式())(1110*--∈+++++=+N n b C b a C b aC a C b a nn n k k n k n n n n n nΛΛ叫做二项式定理.公式中右边的多项式叫做nb a )(+的二项展开式,其中的系数),,1,0(n k C k n Λ=叫做二项式系数,式中的kk n k n b a C -叫做二项展开式的通项,用1+k T 表示. 2.二项式系数的性质(1)对称性:在二项展开式中与首末两端“等距离”的两个二项式系数相等,即mn n m n C C -=.(2)增减性与最大值:二项式系数kn C ,当21+<n k 时,二项式系数逐渐增大,当21+>n k 时,二项式系数逐渐减小.当n 是偶数时,中间一项的二项式系数最大;当n 是奇数时,中间两项的二项式系数最大.(3)各二项式系数的和:nb a )(+展开式的各个二项式系数的和等于n2,即nn n n n C C C 210=+++Λ(4)奇数项的二项式系数之和等于偶数项的二项式系数之和,即131202-=++=++n n n n n C C C C ΛΛ.三、典例剖析 思维拓展考点一 求展开式中的指定项例1 ()52y x x ++的展开式中,25y x 的系数为( )A.10B.20 C .30 D .60 【答案】C【解析】r r r r y x x C T -++=5251)(,令r=2,则232253)(y x x C T +=,对于二项式()32x x +,由tt t t t t x C x x C T --+=⋅=633231)(,令t=1, 所以25y x 的系数为301325=C C .【易错点】通项公式易错.【方法点拨】求二项展开式特定项的系数的关键是求出满足条件的r 的值,因此应通过求出二项展开式的通项,然后根据已知条件列出方程,解出r 的值,最后代入通项中,求出特定项的系数.例2.6221⎪⎭⎫⎝⎛-x x 的展开式中,常数项是( ) A. 54-B. 54 C .1516- D. 1516【答案】D【解析】 ()rr rr rr r xC x xC T 312662612121--+⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=,令12-3r =0,解得r =4.∴常数项为161521464=⎪⎭⎫ ⎝⎛-C .故选D .例3.8421⎪⎭⎫ ⎝⎛-x x 的展开式中的有理项共有________项. 【答案】3 【解析】()4316848812121rrr r rrr xC x x CT --+⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Θ,∴r 为4的倍数,故r =0,4,8共3项.考点二 利用二项式定理求参数例1 .若521⎪⎭⎫ ⎝⎛+x ax 的展开式中x 5的系数是-80,则实数a =________.【答案】-2 【解析】rrr r xaC T 2510551--+=,令10-52r =5,解之得r =2,所以80325-=a C ,a =-2.例2.若二项式72⎪⎭⎫ ⎝⎛+x a x 的展开式中31x 的系数是84,则实数a =( )A .2 B.54 C .1 D.24【答案】C【解析】727777112)2(---+=⎪⎭⎫ ⎝⎛⋅=x rr r rr r r x a C x a x C T .令2r -7=3,则r =5.由8425572=⋅a C 得a =1.故选C.考点三 二项式系数的和或各项系数的和例1.二项式()923x y -的展开式中,求: (1)二项式系数之和; (2)各项系数之和; (3)所有奇数项系数之和; (4)各项系数绝对值之和.【答案】(1)92(2)1- (3)9512- (4)95【解析】设()992728190932ya y x a y x a x a y x ++++=-Λ.(1)二项式系数之和为9992919092=++++C C C C Λ.(2)各项系数之和为9210a a a a ++++Λ,令x =1,y =1,得()13299210-=-=++++a a a a Λ.(3)由(2)知19210-=++++a a a a Λ,①令x =1,y =-1,得992105=--+-a a a a Λ,②①+②得215986420-=++++a a a a a ,此即为所有奇数项系数之和.(4)92109210a a a a a a a a --+-=++++ΛΛ,令x =1,y =-1,得9921092105=--+-=++++a a a a a a a a ΛΛ,此即为各项系数绝对值之和.考点四 项的系数的最值问题例1.已知nx x ⎪⎪⎭⎫ ⎝⎛+2323的展开式中,各项系数和与它的二项式系数和的比为32. (1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项. 【答案】(1)322270x;(2)326405x.【解析】令x =1,则展开式中各项系数和为()nn2231=+.又展开式中二项式系数和为2n.∴22n 2n =2n=32,n =5.(1)∵n =5,展开式共6项,∴二项式系数最大的项为第三、四两项,()622332253903x x x C T =⎪⎪⎭⎫ ⎝⎛=∴, ()322322323542703x x x C T =⎪⎪⎭⎫ ⎝⎛=. (2)设展开式中第k +1项的系数最大, 则由()3410525325133k k k kkk k xC x x C T +-+=⎪⎪⎭⎫ ⎝⎛=,得⎪⎩⎪⎨⎧≥≥++--151515153333k k k k k k k k C C C C ∴72≤k ≤92,∴k =4, 即展开式中系数最大的项为()32642324554053xx x C T =⎪⎪⎭⎫ ⎝⎛=.考点五 与整除有关的问题例1.设a Z ∈,且013a ≤<,若201851a +能被13整除,则a =( ) A .0 B .1 C .11 D .12【答案】D【解析】 由于51521=-,()15252521521201720182017120182018020182018+-+-=-C C C Λ,又由于13整除52,所以只需13整除1a +,013a ≤<,a Z ∈,所以12a =考点六 求近似值问题例1.求60.998的近似值,使误差小于0.001. 【答案】0.988【解析】()()()()62660.99810.002160.002150.0020.002=-=+⨯-+⨯-++-L∵()23150.0020.000060.001T =⨯-=<, 即第3项以后的项的绝对值都小于0.001, ∴从第3项起,以后的项可以忽略不计, 即()()660.99810.002160.0020.988=-≈+⨯-=四、举一反三 成果巩固考点一 求展开式中的指定项1.8⎪⎪⎭⎫ ⎝⎛-x y y x 的展开式中22y x 的系数为 ( ) A. 70 B. 80 C. -1 D. -80 【答案】A【解析】因为8⎪⎪⎭⎫ ⎝⎛-x y y x 的展开式的通项公式为2832388881)1(---+-=⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=r r rr rrr r yx C x y y x C T令3388222r r --==,得4r =所以22y x 的系数为70)1(448=-C .2.的展开式中,的系数为__________.【答案】90【解析】把()621+-y x 看成6个相同因式12+-y x 的乘积, 6个因式中有两个因式提供2x , 余下的4个因式有两个提供y -,其余的因式提供常数,故系数为()9011222426=⨯-C C .填90.点睛:一般地,()s s r rn sr rn nc b aC C c b a --=++,其中rn C 表示n 个因式()c b a ++中有r n -个因式提供a ,s r C 表示余下的r 个因式()c b a ++中有s 提供c ,余下的s r -个因式()c b a ++提供b ,这样的思想方法来自二项展开式的推导过程.3.已知nx x ⎪⎪⎭⎫⎝⎛+12的展开式中各项的二项式系数之和为32.(1)求n 的值; (2)求n x x )12(+的展开式中2x 项的系数;(3)求n xx xx )12)(1(+-展开式中的常数项.【答案】(1)5;(2)80;(3)-30.【解析】(1)由题意结合二项式系数的性质可得322=n , 解得5=n . (2)由题意得5)12(xx +的通项公式为()23555551212rr r rr r r x C x x C T ---+=⎪⎪⎭⎫ ⎝⎛=, 令2235=-r,解得2=r , 所以5)12(xx +的展开式中2x 项的系数为802253=⨯C .(3)由(2)知,5)12(xx +的展开式的通项为2355512r r rr xC T --+=,令1235-=-r,解得4=r ; 令21235=-r ,解得3=r .故2nx x⎛ ⎝展开式中的常数项为5445335522104030C C ---=-=-考点二 利用二项式定理求参数1.若6)(xa x -的展开式中含23x 项的系数为160,则实数a 的值为( )A.2B.-2C. 22D. -22 【答案】B【解析】二项式6)(xa x -的展开式的通项为23661)(r r rr xC a T -+-=,令23236=-r ,解得3=r ,160)(363=-∴C a , 解得2-=a故选B.2.已知5)1)(1(xax x -+的展开式中常数项为-40,则a 的值为( )A. 2B. -2C. 2±D. 4【答案】C 【解析】5)1(x ax -展开式的通项公式为:r r r r r r r r x C a xax C T 2555551)1()1()(---+-=-=, 令125-=-r 可得:,结合题意可得:3=r 40)1(35353-=--C a ,即40102=a ,2±=∴a .本题选择C 选项.3.若52)12)(3(xx a x --的展开式中3x 的系数为80,则a= . 【答案】-2.【解析】二项式5)12(x x -展开式的通项为r r r r r r rr x C xx C T 25555512)1()1()2(---+-=-=, 故展开式中3x 的系数为a C a C 801202)1()(23154253+=⋅⋅-⨯-+⋅⨯,由题意得8080240=+a , 解得2-=a .考点三 二项式系数的和或各项系数的和 1. 已知)()1()1()1()1()21(201720172016201622102017R x x a x a x a x a a x ∈-+-++-+-+=-Λ,则=+-+-+-20172016432120172016432a a a a a a Λ .【答案】-4034. 【解析】因为)()1()1()1()1()21(201720172016201622102017R x x a x a x a x a a x ∈-+-++-+-+=-Λ,两边同时求导可得)()1(2017)1(2016)1(2)21(201722016201720152016212016R x x a x a x a a x ∈-+-++-+=-⨯-Λ,令0=x ,得40342017201643220172201720164321-=+-+-+-=⨯-a a a a a a Λ.2. 已知6)(b ax +的展开式中4x 项的系数与5x 项的系数分别为135与-18,则6)(b ax +的展开式中所有项系数之和为______________. 【答案】10.【解析】因为6)(b ax +的展开式中4x 项的系数为135,所以1352426=b a C ;又因为6)(b ax +的展开式中5x 项的系数为-18,所以181516-=b a C ,解得3,1=-=b a ,或3,1-=-=b a ,令1=x ,可得6)(b ax +的展开式中所有项系数之和为6426=.3.若()5234501234523x a a x a x a x a x a x -=+++++,则123452345a a a a a ++++=__________. 【解析】对等式两边求导得()42341234510232345x a a x a x a x a x -=++++, 令1x =得12345102345a a a a a =++++,故答案为10.考点四 项的系数的最值问题1.设nn n x a x a x a a x ++++=-Λ2210)12(展开式中只有第1010项的二项式系数最大.(1)求n ; (2)求n a a a a ++++Λ210;(3)求n n a a a a 222233221++++Λ. 【答案】(1)2018;(2)20183;(3)-1. (1)由二项式系数的对称性,101012=+n,2018=∴n . (2)2018201821020182103=+++-=++++a a a a a a a a ΛΛ.(3)12222201820183201822018120182018201833221-=++-+-=++++C C C C a a a a ΛΛ. 2.设)()1(*2210N n x a x a x a a x n n n ∈++++=+Λ,若6321=+++n a a a Λ,则展开式中系数最大的项是__________. 【答案】320x .【解析】因为)()1(*2210N n x a x a x a a x n n n ∈++++=+Λ,所以10=a , 所以63121)11(21=-=-+=+++nn n a a a Λ,所以6=n , 所以展开式中系数最大的项是333620x x C =.3. 求10)12(xx -的展开式中:(1)第10项 (2)常数项;(3)系数的绝对值最大的项.【答案】(1)820--x ;(2)-8064;(3)415360x -. 【解析】r r r r r r r r x C xx C T 210101010101)1(2)1()2(---+-=-=(1)10)12(xx -的展开式中第10项,即81020--=x T(2)常数项为第6项。
专题13 排列组合、二项式定理二级结论1:排列组合中的分组与分配【结论阐述】①“非均匀分组”是指将所有元素分成元素个数彼此不相等的组,使用分步组合法;①“均匀分组”是指将所有元素分成所有组元素个数相等或部分组元素个数相等的组.不论是全部均匀分组,还是部分均匀分组,如果有m个组的元素是均匀的,都有A m m种顺序不同的分法只能算一种分法;①对于非均匀编号分组采用分步先组合后排列法,部分均匀编号分组采用分组法;①平均分堆问题倍缩法采用缩倍法、除倍法、倍除法、除序法、去除重复法);①有序分配问题逐分法采用分步法);①全员分配问题采用先组后排法;①名额分配问题采用隔板法(或元素相同分配问题隔板法、无差别物品分配问题隔板法);①限制条件分配问题采用分类法.【应用场景】需要根据题意判断出符合题意的分组、分配方式,涉及平均分配、部分平均不定向分配、非平均不定向分配,以及分类、分步计数原理等.【典例指引1】1.某高校从某系的10名优秀毕业生中选派4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?【典例指引2】2.有6本不同的书,分给甲、乙、丙三人,每人至少一本,有多少种分法?【针对训练】(2022·江苏省苏州)3.现有5个不同的小球,放到标号分别为①①①的三个空盒中,每个盒子至少放一个小球,有()种不同的放法A.240种B.150种C.360种D.540种4.将20个完全相同的小球放入编号分别为1,2,3,4的四个盒子中,要求每个盒子中球的个数不小于它的编号,则不同的放法种数为()A.1615B.1716C.286D.3645.10个相同的小球放在三个编号为1,2,3的盒中,每盒至少1个,有_________种方分法.(2022·重庆巴蜀中学高二)6.学校要安排2名班主任,3名科任老师共五人在本校以及另外两所学校去监考,要求在本校监考的老师必须是班主任,且每个学校都有人去,则有( )种不同的分配方案. A .18B .20C .28D .34(2022·山西·芮城)7.有3个完全相同的标号为1的小球和两个标号为2,3的小球,将这5个小球放入3个不同的盒子中,每个盒子至少放一个小球,则不同的放法总数为( ) A .45B .90C .24D .150(2022·山西省长治市)8.某社区服务站将5名志愿者分到3个不同的社区参加活动,要求每个社区至少1人,不同的分配方案有( ) A .360种B .300种C .90种D .150种(2022·江苏·昆山)9.(1)4个不同的小球放入编号为1,2,3,4的盒子,共有多少种放法;(2)4个不同的小球放入编号为1,2,3,4的盒子,恰有一个盒子空,共有多少种放法;(3)10个相同的小球放入编号为1,2,3,4的盒子,每个盒子不空,共有多少种放法;(4)4个相同的小球放入编号为1,2,3,4的盒子,恰有两个盒子空,共有多少种放法?10.按下列要求分配6本不同的书,各有多少种不同的分配方式? (1)分成三份,1份1本,1份2本,1份3本;(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本; (3)平均分成三份,每份2本;(4)平均分配给甲、乙、丙三人,每人2本; (5)分成三份,1份4本,另外两份每份1本;(6)甲、乙、丙三人中,一人得4本,另外两人每人得1本; 二级结论2:()()(),mn nax by cx dy ax by cz ++++型的系数【结论阐述】一、三项展开式中的特定项(系数)问题的处理方法:(1)通常将三项式转化为二项式积的形式,然后利用多项式积的展开式中的特定项(系数)问题的处理方法求解;(2)将其中某两项看成一个整体,直接利用二项式展开,然后再分类考虑特定项产生的所有可能情形;(3)也可以按照推导二项式定理的方法解决问题.二、几个多项式积的展开式中的特定项(系数)问题的处理方法:可先分别化简或展开为多项式和的形式,再分类考虑特定项产生的每一种情形,求出相应的特定项,最后进行合并即可.【应用场景】对于()()(),mn nax by cx dy ax by cz ++++型系数问题,可以采用相应的方法解决问题。
11.2二项式定理挖命题【考情探究】分析解读 1.二项式定理是高考常考内容之一,考查集中在“性质”上,尤其是对于通项的考查.2.主要集中在对系数和常数项的考查上.3.预计2020年高考试题中,考查二项式定理的可能性较大.破考点【考点集训】考点二项式定理及其应用1.(2018浙江新高考调研卷五(绍兴一中),7)若(1+x)4+(1+x)5+…+(1+x)2 017=a0+a1x+a2x2+…+a2 017x2 017,则a3的值为()A. B.-1 C. D.-1答案 D2.(2018浙江新高考调研卷四(金华一中),12)已知的展开式中各项系数绝对值之和为256,则n=,该展开式中含项的系数为.答案4;54炼技法【方法集训】方法1求指定项或指定项系数的方法1.(2018浙江嵊州第一学期期末质检,13)的展开式的第3项的系数为,展开式中x的系数为.答案21;-352.(2018浙江“七彩阳光”联盟期初联考,11)(1+x)6的展开式中含x3项的系数为.答案14方法2 求二项式系数或展开式系数之和的方法1.(2018浙江台州第一学期期末质检,14)若(x2-2x-3)n的展开式中所有项的系数之和为256,则n=,含x2项的系数是(用数字作答).答案4;1082.(2018浙江嘉兴第一学期期末,12)已知(1-x)6=a0+a1x+a2x2+…+a6x6,则含x2项的二项式系数是;|a0|+|a1|+|a2|+…+|a6|=.答案15;64过专题【五年高考】A组自主命题·浙江卷题组考点二项式定理及其应用1.(2014浙江,5,5分)在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45B.60C.120D.210答案 C2.(2017浙江,13,6分)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4=,a5=.答案16;43.(2016浙江自选,“计数原理与概率”模块,04(1),5分)已知(1+2x)4(1-x2)3=a0+a1x+a2x2+…+a10x10,求a2的值.解析因为(1+2x)4的展开式的通项为T r+1=(2x)r,r=0,1,2,3,4,(1-x2)3的展开式的通项为T r+1=(-x2)r,r=0,1,2,3,所以a2=·22·+··(-1)=21.4.(2015浙江自选,“计数原理与概率”模块,04(1),5分)已知n为正整数,在(1+x)2n与(1+2x3)n展开式中含x3项的系数相同,求n的值.解析(1+x)2n中含x3项的系数为,(1+2x3)n中含x3项的系数为2n.由=2n得=2n,解得n=2.B组统一命题、省(区、市)卷题组考点二项式定理及其应用1.(2018课标全国Ⅲ理,5,5分)的展开式中x4的系数为()A.10B.20C.40D.80答案 C2.(2017课标全国Ⅲ理,4,5分)(x+y)(2x-y)5的展开式中x3y3的系数为()A.-80B.-40C.40D.80答案 C3.(2018天津理,10,5分)在的展开式中,x2的系数为.答案4.(2017山东,11,5分)已知(1+3x)n的展开式中含有x2项的系数是54,则n=. 答案 45.(2016北京,10,5分)在(1-2x)6的展开式中,x2的系数为.(用数字作答)答案606.(2016山东,12,5分)若的展开式中x5的系数是-80,则实数a=.答案-2C组教师专用题组考点二项式定理及其应用1.(2017课标全国Ⅰ理,6,5分)(1+x)6展开式中x2的系数为()A.15B.20C.30D.35答案 C2.(2016四川,2,5分)设i为虚数单位,则(x+i)6的展开式中含x4的项为()A.-15x4B.15x4C.-20ix4D.20ix4答案 A3.(2015课标Ⅰ,10,5分)(x2+x+y)5的展开式中,x5y2的系数为()A.10B.20C.30D.60答案 C4.(2015湖北,3,5分)已知(1+x)n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为()A.212B.211C.210D.29答案 D5.(2015湖南,6,5分)已知的展开式中含的项的系数为30,则a=()A. B.- C.6 D.-6答案 D6.(2015陕西,4,5分)二项式(x+1)n(n∈N+)的展开式中x2的系数为15,则n=()A.4B.5C.6D.7答案 C7.(2014湖北,2,5分)若二项式的展开式中的系数是84,则实数a=()A.2B.C.1D.答案 C8.(2014湖南,4,5分)的展开式中x2y3的系数是()A.-20B.-5C.5D.20答案 A9.(2014四川,2,5分)在x(1+x)6的展开式中,含x3项的系数为()A.30B.20C.15D.10答案 C10.(2013陕西,8,5分)设函数f(x)=则当x>0时, f(f(x))表达式的展开式中常数项为()A.-20B.20C.-15D.15答案 A11.(2013课标Ⅰ,9,5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b.若13a=7b,则m=()A.5B.6C.7D.8答案 B12.(2013课标Ⅱ,5,5分)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=()A.-4B.-3C.-2D.-1答案 D13.(2016课标全国Ⅰ,14,5分)(2x+)5的展开式中,x3的系数是.(用数字填写答案)答案1014.(2016天津,10,5分)的展开式中x7的系数为.(用数字作答)答案-5615.(2015课标Ⅱ,15,5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=.答案 316.(2015北京,9,5分)在(2+x)5的展开式中,x3的系数为.(用数字作答)答案4017.(2015天津,12,5分)在的展开式中,x2的系数为.答案18.(2015重庆,12,5分)的展开式中x8的系数是(用数字作答).答案19.(2015福建,11,4分)(x+2)5的展开式中,x2的系数等于.(用数字作答)答案8020.(2015广东,9,5分)在(-1) 4的展开式中,x的系数为.答案 621.(2015四川,11,5分)在(2x-1)5的展开式中,含x2的项的系数是(用数字填写答案).答案-4022.(2015安徽,11,5分)的展开式中x5的系数是.(用数字填写答案)答案3523.(2014大纲全国,13,5分)的展开式中x2y2的系数为.(用数字作答)答案7024.(2014安徽,13,5分)设a≠0,n是大于1的自然数,的展开式为a0+a1x+a2x2+…+a n x n.若点A i(i,a i)(i=0,1,2)的位置如图所示,则a=.答案 325.(2014山东,14,5分)若的展开式中x3项的系数为20,则a2+b2的最小值为.答案 226.(2014课标Ⅱ,13,5分)(x+a)10的展开式中,x7的系数为15,则a=.(用数字填写答案)答案27.(2014课标Ⅰ,13,5分)(x-y)(x+y)8的展开式中x2y7的系数为.(用数字填写答案)答案-20【三年模拟】一、选择题(每小题4分,共12分)1.(2019届衢州、湖州、丽水三地教学质量检测,2)(1+x)6的展开式中含x4项的系数是()A. B. C. D.答案 B2.(2019届浙江“超级全能生”9月联考,3)二项式的展开式中的常数项为()A.6B.12C.15D.20答案 C3.(2018浙江新高考调研卷三(杭州二中),2)设(1-3x)8=a0+a1x+…+a8x8,则|a0|+|a1|+…+|a8|的值为()A.28B.38C.48D.58答案 C二、填空题(单空题4分,多空题6分,共52分)4.(2019届浙江名校协作体高三联考,13)已知(1+2x)n的展开式中第三项的二项式系数为15,则n=,含x2项的系数是.答案6;605.(2019届金丽衢十二校高三第一次联考,11)已知n∈N*,若的展开式中存在常数项,则n的最小值为,此时常数项为.答案5;26.(2019届浙江温州九校联考,14)已知(1+x)5=a0+a1(1-x)+a2(1-x)2+…+a5(1-x)5,则a3=.答案-407.(2019届浙江名校新高考研究联盟第一次联考,13)若的展开式中,x3的系数为6,则a=,展开式中的常数项为.答案1;158.(2018浙江“七彩阳光”联盟期中,13)若(x+1)6+x6=a0+x+a2(x+1)4x2+a3(x+1)3x3+a4(x+1)2x4+a5(1+x)x5,且a i(i=0,1,2,3,4,5)是常数,则a0=;a1+a3=.答案1;269.(2018浙江湖州、衢州、丽水第一学期质检,12)在(x+1)·(2-x)3的展开式中,常数项是,含x项的系数是.答案8;-410.(2018浙江金华十校模拟(4月),13)若(x+y)(2x-y)5=a1x6+a2x5y+a3x4y2+a4x3y3+a5x2y4+a6xy5+a7y6,则a4=,a1+a2+a3+a4+a5+a6+a7=.答案40;211.(2018浙江诸暨高三上学期期末,14)已知(2x+1)6=a0+a1(x+1)+a2(x+1)2+…+a6(x+1)6,则a0+a1+a2+…+a6=;a2=.答案1;6012.(2018浙江新高考调研卷二(镇海中学),13)已知x10=a0+a1(x+1)+a2(x+1)2+a3(x+1)3+…+a10(x+1)10,则a9=;系数a i(i=0,1,2,…,10)中最大的是.答案-10;a4或a6。