初等数论 第二章 不定方程
- 格式:ppt
- 大小:199.00 KB
- 文档页数:16
初等数论初等数论自学安排第一章:整数的可除性(6学时)自学18学时整除的定义、带余数除法 最大公因数和辗转相除法 整除的进一步性质和最小公倍数 素数、算术基本定理[x]和{x}的性质及其在数论中的应用习题要求3p :2,3 ; 8p :4 ;12p :1;17p :1,2,5;20p :1。
第二章:不定方程(4学时)自学12学时二元一次不定方程c by ax =+多元一次不定方程c x a x a x a n n =++Λ2211 勾股数 费尔马大定理。
习题要求29p :1,2,4;31p :2,3。
第三章:同余(4学时)自学12学时同余的定义、性质 剩余类和完全剩余系 欧拉函数、简化剩余系欧拉定理、费尔马小定理及在循环小数中的应用 习题要求43p :2,6;46p :1;49p :2,3;53p 1,2。
第四章:同余式(方程)(4学时)自学12学时同余方程概念 孙子定理高次同余方程的解数和解法 素数模的同余方程 威尔逊定理。
习题要求60p :1;64p :1,2;69p :1,2。
第五章:二次同余式和平方剩余(4学时)自学12学时二次同余式单素数的平方剩余与平方非剩余 勒让德符号 二次互反律 雅可比符号、素数模同余方程的解法习题要求78p :2; 81p :1,2,3;85p :1,2;89p :2;93p :1。
第六章:原根与指标(2学时)自学8学时指数的定义及基本性质 原根存在的条件 指标及n 次乘余 模2 及合数模指标组、 特征函数习题要求123p :3。
➢ 第一章 整除 一、主要内容筛法、[x]和{x}的性质、n !的标准分解式。
二、基本要求通过本章的学习,能了解引进整除概念的意义,熟练掌握整除 整除的定义以及它的基本性质,并能应用这些性质,了解解决整除问题的若干方法,熟练掌握本章中二个著名的定理:带余除法定理和算术基本定理。
认真体会求二个数的最大公因数的求法的理论依据,掌握素数的定义以及证明素数有无穷多个的方法。
初等数论不定方程的解法初等数论是数论中的一部分,主要研究整数之间的性质和关系。
在初等数论中,不定方程是一个非常重要的研究对象。
不定方程是指一个方程中包含的未知数不确定,需要求解这些未知数的取值以满足方程。
本文将介绍不定方程的一般解法,并通过具体例子进行演示。
首先,我们来介绍一下一元一次不定方程的解法。
一元一次不定方程的一般形式为ax + by = c,其中a、b、c为已知整数,x、y为未知整数。
解决这个方程的关键是找到一组x、y的取值,使得方程成立。
我们可以通过以下步骤来解决一元一次不定方程:1.首先,我们要判断方程是否有解。
我们知道,当且仅当c是a和b的最大公约数的倍数时,方程才有整数解。
我们可以使用欧几里得算法来求出a和b的最大公约数gcd(a,b),然后判断c是否是gcd(a,b)的倍数。
2.如果方程有解,我们需要求出一个特解。
我们可以使用扩展欧几里得算法来求解特解。
扩展欧几里得算法可以找到一组整数x0和y0,使得ax0 + by0 = gcd(a,b)。
我们可以将c除以gcd(a,b)得到c',然后将特解x0和y0乘以c'得到一个特解x1 = x0 * c',y1 = y0 * c'。
3.一旦我们找到了一个特解,我们可以通过以下形式来构造方程的通解:x = x1 + k * (b / gcd(a, b))y = y1 - k * (a / gcd(a, b))其中k为整数。
这样,我们就可以通过改变k的值来得到方程的所有整数解。
接下来,我们来介绍一下二次不定方程的解法。
二次不定方程的一般形式为ax^2 + bxy + cy^2 + dx + ey + f = 0,其中a、b、c、d、e、f为已知整数,x、y为未知数。
对于二次不定方程,我们可以通过一些特殊的方法来求解。
下面介绍两种常用的方法:1.利用配方法。
如果二次不定方程中的系数是已知整数,且可以对方程进行配方法,那么我们可以通过配方法来求解方程。
初等数论不定方程一、知识归纳:所谓不定方程,是指未知数的个数多于方程个数,且未知数受到某些(如要求是有理数、整数或正整数等等)的方程或方程组。
不定方程也称为丢番图方程,是数论的重要分支学科,也是历史上最活跃的数学领域之一。
不定方程的内容十分丰富,与代数数论、几何数论、集合数论等等都有较为密切的联系。
不定方程的重要性在数学竞赛中也得到了充分的体现,每年世界各地的数学竞赛吉,不定方程都占有一席之地;另外它也是培养学生思维能力的好材料,数学竞赛中的不定方程问题,不仅要求学生对初等数论的一般理论、方法有一定的了解,而且更需要讲究思想、方法与技巧,创造性的解决问题。
在本节我们来看一看不定方程的基础性的题目。
1.不定方程问题的常见类型:(1)求不定方程的解;(2)判定不定方程是否有解;(3)判定不定方程的解的个数(有限个还是无限个)。
2.解不定方程问题常用的解法:(1)代数恒等变形:如因式分解、配方、换元等;(2)不等式估算法:利用不等式等方法,确定出方程中某些变量的范围,进而求解;(3)同余法:对等式两边取特殊的模(如奇偶分析),缩小变量的范围或性质,得出不定方程的整数解或判定其无解;(4)构造法:构造出符合要求的特解,或构造一个求解的递推式,证明方程有无穷多解;(5)无穷递推法。
以下给出几个关于特殊方程的求解定理:(一)二元一次不定方程(组)定义1.形如(不同时为零)的方程称为二元一次不定方程。
定理1.方程有解的充要是;定理2.若,且为的一个解,则方程的一切解都可以表示成为任意整数)。
定理3.元一次不定方程,()有解的充要条件是.方法与技巧:1.解二元一次不定方程通常先判定方程有无解。
若有解,可先求一个特解,从而写出通解。
当不定方程系数不大时,有时可以通过观察法求得其解,即引入变量,逐渐减小系数,直到容易得其特解为止;2.解元一次不定方程时,可先顺次求出,……,.若,则方程无解;若|,则方程有解,作方程组:求出最后一个方程的一切解,然后把的每一个值代入倒数第二个方程,求出它的一切解,这样下去即可得方程的一切解。
第一章 整数的可除性§1 整除的概念·带余除法 1.证明定理3定理3 若12n a a a ,,,都是m 得倍数,12n q q q ,,,是任意n 个整数,则1122n n q a q a q a +++ 是m 得倍数.证明: 12,,n a a a 都是m 的倍数。
∴ 存在n 个整数12,,n p p p 使 1122,,,n n a p m a p m a p m ===又12,,,n q q q 是任意n 个整数1122n n q a q a q a ∴+++ 1122n n q p m q p m q p m =+++ 1122()n n p q q p q p m =+++即1122n n q a q a q a +++ 是m 的整数 2.证明 3|(1)(21)n n n ++ 证明 (1)(21)(1)(2n n n n n n n ++=+++-(1)(2)(1)(n n n n n n =+++-+又(1)(2)n n n ++ ,(1)(2)n n n -+是连续的三个整数 故3|(1)(2),3|(1)(1)n n n n n n ++-+3|(1)(2)(1)(1)n n n n n n ∴+++-+从而可知3|(1)(21)n n n ++3.若00ax by +是形如ax by +(x ,y 是任意整数,a ,b 是两不全为零的整数)的数中最小整数,则00()|()ax by ax by ++.证: ,a b 不全为0∴在整数集合{}|,S ax by x y Z =+∈中存在正整数,因而有形如ax by +的最小整数00ax by +,x y Z ∀∈,由带余除法有0000(),0ax by ax by q r r ax by +=++≤<+则00()()r x x q a y y q b S =-+-∈,由00ax by +是S 中的最小整数知0r =00|ax by ax by ∴++00|ax by ax by ++ (,x y 为任意整数) 0000|,|ax by a ax by b ∴++ 00|(,).ax by a b ∴+ 又有(,)|a b a ,(,)|a b b00(,)|a b ax by ∴+ 故00(,)ax by a b +=4.若a ,b 是任意二整数,且0b ≠,证明:存在两个整数s ,t 使得||,||2b a bs t t =+≤成立,并且当b 是奇数时,s ,t 是唯一存在的.当b 是偶数时结果如何?证:作序列33,,,,0,,,,2222b b b bb b --- 则a 必在此序列的某两项之间 即存在一个整数q ,使122q q b a b +≤<成立 ()i 当q 为偶数时,若0.b >则令,22q qs t a bs a b ==-=-,则有 02222b q q qa bs t ab a b b t ≤-==-=-<∴<若0b < 则令,22q qs t a bs a b =-=-=+,则同样有2b t < ()ii 当q 为奇数时,若0b >则令11,22q q s t a bs a b ++==-=-,则有若 0b <,则令11,22q q s t a bs a b ++=-=-=+,则同样有2b t ≤,综上所述,存在性得证.下证唯一性当b 为奇数时,设11a bs t bs t =+=+则11()t t b s s b -=-> 而111,22b bt t t t t t b ≤≤∴-≤+≤ 矛盾 故11,s s t t == 当b 为偶数时,,s t 不唯一,举例如下:此时2b为整数 11312(),,22222b b b b b b b t t ⋅=⋅+=⋅+-=≤§2 最大公因数与辗转相除法 1.证明推论4.1推论4.1 a ,b 的公因数与(a ,b )的因数相同. 证:设d '是a ,b 的任一公因数,∴d '|a ,d '|b 由带余除法111222111111,,,,,0n n n n n n n n n n a bq r b r q r r r q r r r q r r r r b ---++-=+=+=+==≤<<<<∴(,)n a b r =∴d '|1a bq -1r =, d '|122b rq r -=,┄, d '|21(,)n n n n r r q r a b --=+=, 即d '是(,)a b 的因数。
第二章不定方程例题分析例1:利用整数分离系数法求得不定方程15x +10y +6z =61。
解:注意到z 的系数最小,把原方程化为z =)()(12361102261101561++-++--=+--y x y x y x 令t 1=z y x ∈++-)(12361,即-3x +2y -6t 1+1=0此时y 系数最小,)()(12131632111-++=-++=∴x t x t x y 令t 2=z x ∈-)(121,即122+=t x ,反推依次可解得y =x +3t 1+t 2=2t 2+1+3t 1+t 2=1+3t 1+3t 2z =-2x -2y +10+t 1=6-5t 1+10t 2∴原不定方程解为⎪⎩⎪⎨⎧--=++=+=21212105633121t t z t t y t x t 1t 2∈z.例2:证明2是无理数证:假设2是有理数,则存在自数数a,b 使得满足222y x =即222b a =,容易知道a 是偶数,设a =2a 1,代入得2122a b =,又得到b 为偶数,a b a <<1,设12b b =,则21212b a =,这里12a b <这样可以进一步求得a 2,b 2…且有a>b>a 1>b 1>a 2>b 2>…但是自然数无穷递降是不可能的,于是产生了矛盾,∴2为无理数。
例3:证明:整数勾股形的勾股中至少一个是3的倍数。
证:设N =3m ±1(m 为整数),∴N 2=9m 2±6m +1=3(3m 2±2m )+1即一个整数若不是3的倍数,则其平方为3k +1,或者说3k +2不可能是平方数,设x,y 为勾股整数,且x,y 都不是3的倍数,则x 2,y 2都是3k +1,但z 2=x 2+y 2=3k +2形,这是不可能,∴勾股数中至少有一个是3的倍数。
例4:求x 2+y 2=328的正整数解解:∵328为偶数,∴x,y 奇偶性相同,即x ±y 为偶数,设x+y =2u ,x -y =2v ,代入原方程即为u 2+v 2=164,同理令u +v =2u 1,u -v =2v 1有21121121212282v v u u v u v u =-=+=+,,,412222=+v u 22v u ,为一偶一奇,且0<u 2<6u 2=1,2,3,4,5代方程,有解(4,5)(5,4)∴原方程解x =18,y =2,或x =2,y =18。
初等数论:不定方程与高斯函数一、不定方程不定方程也称丢番图方程,是指未知数的个数多于方程个数,且未知数受到某些要求(如是有理数、整数或正整数等等)的方程或方程组。
不定方程是数论的重要分支学科,它的内容十分丰富,与代数数论、几何数论、集合数论等都有较为密切的联系。
其重要性在数学竞赛中也得到了充分的体现,是培养思维能力的好材料,它不仅要求对初等数论的一般理论、方法有一定了解,而且更需要讲究思想、方法与技巧,创造性的解决问题。
1.不定方程问题的常见类型:(1)求不定方程的解;(2)判定不定方程是否有解;(3)判定不定方程的解的个数(有限个还是无限个)。
2.解不定方程问题常用的解法:(1)代数恒等变形:如因式分解、配方、换元等;(2)不等式估算法:利用不等式等方法,确定出方程中某些变量的范围,进而求解;(3)同余法:对等式两边取特殊的模(如奇偶分析),缩小变量的范围或性质,得出不定方程的整数解或判定其无解;(4)构造法:构造出符合要求的特解,或构造一个求解的递推式,证明方程有无穷多解;(5)无穷递推法。
以下给出几个求解定理:(一)二元一次不定方程(组)定义.形如ax+by=c(a,b,c∈Z,a,b不同时为零)的方程称为二元一次不定方程定理1.方程ax+by=c有解的充要条件是(a,b)|c;定理2.若(a,b)=1,且x0,y0为ax+by=c的一个解,则方程全部解可以表示成(t为任意整数)。
定理2’..元一次不定方程a1x1+ a2x2+ …a n x n=c(a1,a2, …a n,c∈N)有解的充要条件是(a1,…,a n )|c.方法与技巧:1.解二元一次不定方程通常先判定方程有无解。
若有解,可先求ax+by=0一个特解,从而写出通解。
当不定方程系数不大时,有时可以通过观察法求得其解,即引入变量,逐渐减小系数,直到容易得其特解为止;2.解元一次不定方程a1x1+ a2x2+ …a n x n=c时,可先顺次求出,……,.若,则方程无解;若|,则方程有解,作方程组:00t , y=y tx x b a=+-求出最后一个方程的一切解,然后把的每一个值代入倒数第二个方程,求出它的一切解,这样下去即可得方程的一切解。