壳幔物质与深过程的研究
- 格式:docx
- 大小:27.55 KB
- 文档页数:16
壳-幔物质与深部过程
邓晋福
【期刊名称】《地学前缘》
【年(卷),期】1998(5)3
【摘要】无
【总页数】9页(P67-75)
【作者】邓晋福
【作者单位】无
【正文语种】中文
【相关文献】
1.壳幔混合层的物质过程及其动力学意义 [J], 欧新功;金淑燕
2.青藏新生代钾质火山活动的时空迁移及向东部玄武岩省的过渡:壳幔深部物质流的暗示 [J], 莫宣学;赵志丹;邓晋福;喻学惠;罗照华;董国臣
3.壳—幔物质相互作用的两种形式及研究深部成矿问题的新途径 [J], 普.,ЮД;刘吉成
4.阐明壳幔物质架构和深部过程是解决重大资源战略问题的关键:评侯增谦和王涛论文《同位素填图与深部物质探测:揭示地壳三维架构与区域成矿规律》 [J], 莫宣学
5.岩浆作用、深部壳幔过程与资源—环境效应 [J], 邓晋福;罗照华;赵海玲;赵国春;李凯明
因版权原因,仅展示原文概要,查看原文内容请购买。
封底人物Backcover Characters以实验为履 向地球深部进军——记中国科学院广州地球化学研究所特任研究员王煜 李 刚地球,是人类及万物赖以生存的家园。
揭示地球深部奥秘,是解决人类能源、资源和生存空间等问题的必由之路。
然而,由于地球深部充斥着坚硬的岩石,处于高温高压极端环境,深地探测技术不成熟,致使人类对地球深部仍知之甚少。
地球内部物质是怎么分布和运动的?能量是怎么转移的?对人类生存的表生环境将产生怎样的影响?……一系列基础问题仍悬而未决,从根本上制约着人类对地球深部的探索和应用。
因此,2010年,联合国“国际行星地球年”将地球深部作为地球科学的最后前沿。
为了读懂地球深部的奥秘,近10年来,中国科学院广州地球化学研究所特任研究员王煜始终致力于实验岩石学及地球化学的研究,以实验为履,向地球深部这一前沿课题发起了冲锋。
他在利用高温高压实验,研究再循环地壳熔融过程、壳幔相互作用及钾质-超钾质岩成因等方面取得了突出的创新性成果,为了解地球深部物质循环、元素分配行为、岩石成因及不同岩石系统下熔融过程提供了重要的实验依据,多项研究成果发表在国际一流学术期刊上,受到了国内外同行的高度关注。
一次偶然——“到了实验岩石学的摇篮”2011年,克拉通形成与破坏国际学术研讨会在北京召开。
带着对我国华北克拉通研究的浓厚兴趣,26岁的中国地质大学研究生王煜,也有幸参加了这一吸引了诸多全球顶尖地球科学家的盛会。
其中一位,就是世界著名的高温高压实验学家、德国美因茨大学Stephen Foley教授。
在闲聊时,F o l e y教授向王煜介绍了高温高压实验岩石学的发展情况,他与王煜越聊越投机,主动邀请王煜去德国美因茨大学攻读博士学位,开展高温高压实验的相关研究。
“我一直对高温高压实验岩石学很感兴趣,因为一切科学研究最终还是要根植到实验中去,地学也同样如此,而S t e v e又是这个领域做得最好的几个人之一,尤其是碱性岩方面。
壳幔混合成因-概述说明以及解释1.引言1.1 概述概述壳幔混合成因是地球科学领域的一个重要研究课题。
它涉及到地球内部的壳层和地幔层之间的相互作用和交换过程。
壳幔混合成因的研究在地质学、地球化学和地球物理学等多个学科领域都有广泛的应用和意义。
地球是由不同层次组成的,其中最外层是地壳,下面是地幔。
地壳是我们生活的地方,它包含了岩石、土壤和水等。
地幔则是地球内部最大的层次,占据了地球半径的大部分。
由于地壳和地幔在性质和组成上存在差异,它们之间的相互作用会对地球的演化和动力学过程产生重要影响。
壳幔混合成因的现象主要发生在地壳板块俯冲带和拆沉带等地球构造活动的区域。
在这些区域中,地壳板块在俯冲或拆沉过程中与地幔发生相互作用,导致地壳物质与地幔物质的混合。
这种混合作用使得地壳物质中富含地幔物质的成分,同时也使得地幔物质中富含地壳物质的成分。
壳幔混合成因的研究有助于我们理解地球内部的物质循环和岩石循环过程。
它对地球内部的物质分异、地球表面的地质过程和构造演化等都具有重要意义。
通过分析和研究壳幔混合成因的过程,我们可以揭示地球内部的动力学机制和地球表层的构造变化。
这对于预测地震、地质灾害等自然灾害具有重大意义。
综上所述,壳幔混合成因是一个涉及地球内部物质交换和相互作用的重要研究领域。
通过深入研究壳幔混合成因的过程和机制,我们可以更好地理解地球的演化过程和构造变化,为地球科学的发展做出贡献。
1.2文章结构文章结构部分的内容可以编写如下:文章结构部分旨在介绍整篇长文的组织架构,让读者对文章的脉络有一个清晰的认识。
本文分为引言、正文和结论三个部分。
引言部分包括概述、文章结构和目的三个小节。
首先,我们会对壳幔混合成因这一主题进行概述,简要介绍其背景和重要性。
接着,我们会详细说明文章的组织结构,包括各个部分的主要内容和章节的逻辑顺序。
最后,我们会明确文章的目的,即通过分析壳幔混合成因的要点,提供读者对这一问题更深入的理解。
壳幔作用的途经和判定这一作用的地球化学方法摘要壳幔相互作用是当代地球科学,特别是深部地质和大陆动力学研究的重要课题。
本文介绍了壳幔相互作用的途经:底侵作用和拆离作用;以及判定这一作用的地球化学方法和证据。
关键词壳幔作用底侵作用拆离作用地球化学地球是已知太阳系中唯一一个具有演化的(安山质或英云闪长质) 大陆地壳的行星, 而其它行星, 如月球的月壳由基本未经演化的玄武岩组成。
大陆地壳这种独具特色的组成是如何形成的? 现有研究已证实, 原始地壳是由地幔通过部分熔融产生的岩浆上侵和喷发而成。
因此,为了回答上述地球科学的基本理论问题, 人们必须了解以下壳—幔双向物质交换机制和质量迁移量〔1〕: ①地幔是如何通过部分熔融作用形成地壳的?②地壳物质又是如何通过再循环( recycling)过程返回地幔的?③地壳形成和演化机制在地质历史上是否发生过明显变化?由于软流圈是地幔岩浆的主要策源地, 因此,软流圈地幔和岩石圈地幔以及地壳三者之间的物质交换过程对于认识大陆动力学至关重要。
众所周知, 板块构造在解决大陆地质问题时遇到了许多困难。
例如,大陆地壳为何可保存长达数十亿年而不被消减掉? 大陆内部为何有岩浆作用?为何古老造山带通常是没有山根的? 含柯石英和金刚石的超高压变质带为何会大面积折返暴露地表? 近年来,底侵作用(underplating)和拆沉作用(delamination)受到地质、地球物理和地球化学家们共同重视的另一壳—幔交换过程,被用来解释软流圈、岩石圈地幔和地壳三者之间的物质交换以及随之而造成的山脉隆升、盆地形成过程和陆内大规模岩浆作用等现象。
1 壳幔作用的途经1.1 底侵作用(underplating)底侵作用是指来自深部的岩浆向上侵位、添加和囤积的过程, 它实际上包括两种情况:(1)来自上地幔部分熔融产生的基性岩浆侵入或添加到下地壳底部;(2) 下地壳(包括壳幔混合层) 岩石的部分熔融形成的岩浆向中上地壳的侵位和添加[2]。
第49卷 第6期Vol.49, No.6, 591–6012020年11月GEOCHIMICANov., 2020收稿日期(Received): 2020-12-14; 改回日期(Revised): 2021-02-08; 接受日期(Accepted): 2021-03-03 基金项目: 云南省基础研究专项重点基金(202001BB050015)作者简介: 赵欢(1995–), 男, 硕士研究生, 地球化学专业。
E-mail: 1397509110@* 通讯作者(Corresponding author): WANG Xuan-Ce, E-mail: x.wang4@.au; Tel: +86-29-82339083Geochimica ▌ Vol. 49 ▌ No. 6 ▌ pp. 591–601▌ Nov., 2020洋壳蚀变过程中的镁同位素分馏机理研究进展赵 欢1, 王选策2*, 宫迎增2, 翟华烨2, 李劭杰2,雷 凯3, 田丽艳4, 庞崇进5(1. 长安大学 地球科学与资源学院, 陕西 西安 710054; 2. 云南大学 地球科学学院, 云南 昆明 650500; 3. 中国科学院 地质与地球物理研究所, 北京 100029; 4. 中国科学院 深海科学与工程研究所, 海南 三亚 572000; 5. 桂林理工大学 广西隐伏金属矿产勘查重点实验室, 广西 桂林 541004)摘 要: 板块运动驱动的洋壳再循环一直被认为是造成地幔化学成分不均一的主要原因。
洋壳在从洋中脊形成到俯冲进入地幔的过程中, 持续遭受一系列蚀变改造。
这一过程不仅影响海水化学成分, 同时也会改变洋壳的化学组成, 尤其是一些易活泼元素及相应同位素体系的改变会更加显著。
洋壳蚀变造成的影响会通过洋壳俯冲再循环而传递到地幔, 进而影响到对地幔化学组成不均一性的认识。
镁(Mg)同位素是研究深部碳循环和壳幔物质相互作用的一个新兴示踪计, 已进入深部地幔的俯冲洋壳Mg 同位素组成有可能受高温岩浆过程、俯冲变质过程以及低温蚀变过程的影响。
场发射扫描电子显微镜主要应用范围,可开展的研究项目:场发射环境扫描电镜型号为FEI公司Quanta 450 FEG,是一款兼容性很强的设备,同时配备有X射线能谱仪(EDS)和电子背散射衍射(EBSD)等附件,实现图像、成分和结构的一体化分析功能。
其中:扫描电镜系统(FEG SEM)配有三种真空(高真空,低真空和环境真空)模式,采用先进的系统结构平台和全数字化系统控制,可在所有真空条件下对各种样品(包括导电样品、不导电样品、含水样品、生物样品等)进行二次电子、背散射电子的静态、动态观察和微观分析;EDS用于微区成分分析,元素分析范围是Be4~Pu94,并具备点、线、面分析功能;EBSD用于晶体取向、微织构分析、物相鉴定、应变和真实晶粒尺寸测量等。
该仪器设备广泛应用于地质、材料、冶金、化学、环境和生物等学科领域,同时实现高分辨形貌观察、微区成分测量和显微结构分析。
同时,由于该设备对于样品处理环节省略使样品可以保持原始状态,保证了数据的真实性,可重复性得到了最大限度的保证,真正实现了无损检测,是公安、医学、生物、材料和地球科学等领域重要基础测试分析仪器设备。
气相色谱-质谱联用仪主要应用范围:能对各种量级(超痕量、痕量、微量、常量等)有机化合物进行分析鉴定,并提供各种有机化合物的定性、定量数据及系列图谱(包括总离子流图、色谱图、质量色谱图、质谱图)。
与该仪器相配套的有机样品前处理系统也已建立,可以对岩石、矿石、矿物、沉积物、包裹体、土壤、黄土、水、雪、冰、大气、生物体、石油、化石等介质中的超痕量有机质进行富集、分离和纯化。
该仪器广泛应用于地质、石油化工、法医鉴定、质监、医药、环保、农业等行业。
热电离同位素质谱仪主要功能及应用领域:1) 地质事件的年代学研究,如岩浆作用、变质事件和矿床形成和构造活动等发生的时间的确定;2) 地质事件物质过程的示踪研究,如岩浆岩的地幔或地壳源区特征、壳幔物质交换性质和成矿物质来源等;3) 环境地质-地球化学研究,如水体系或沉积物质的各组成来源,人类活动对自然体系金属物质组成的影响等。
大地构造学若干常见问题答疑(1)胡经国一、大地构造学研究内容和方法1、变形研究变形研究,是指通过对构造运动所留下的形迹(如褶皱、断裂、面理、线理、变质构造、变质矿物)的研究,寻求地壳与岩石圈运动的力源问题。
2、地质体成因研究地质体成因研究,是指研究地层地质体、变质地质体、岩浆地质体、火山地质体等的形成、演化及构造就位过程。
3、壳幔构造和动力学研究关于壳幔构造和动力学研究,目前能够作为大地构造学理论立论基础的地球动力学理论主要是重力均衡和壳幔分异与对流。
4、地球演化史研究地球演化史研究,是指研究以前地球演化的发展历程与趋势,推断地球演化将来的发展方向。
二、大地构造学主要任务大地构造学当前的主要任务是:全球及大陆动力学研究,为矿产资源、地质灾害和环境评价建立动力学模型。
大陆动力学(Continental Dynamics)这一概念的提出,是基于已经获得的资料表明大陆与大洋岩石圈乃至上地幔的结构不同。
大陆岩石圈的生成、保存和消失过程,要比板块构造学说所阐明的大洋岩石圈的生长和消亡过程复杂得多。
因此,有必要针对大陆的独特情况和亟待解决的大陆基本科学问题开展研究,建立大陆动力学理论。
美国国家大陆动力学研究的科学目标有:大陆的成因与演化、大陆地幔、地震和板块边界的相互作用、岩浆和火山系统、大陆岩石圈的变形和活动性、气候和全球变化的地球系统的历史、沉积盆地、地壳与水圈的相互作用等。
一般认为,大陆动力学研究有两个支柱手段,即:野外实验室和大地测量与地球物理观测台网。
大陆动力学是地球动力学的构成部分。
地球动力学(Earth Dynamics)是地球构造演化过程的动力学机制的统称。
它是在文献中经常出现的一个名词,常常与某些代表特定地质过程的名词连用,例如,化学地球动力学、成矿作用地球动力学等等。
但是迄今为止,对地球动力学这一概念尚无一个明确而统一的定义。
根据不同学者引用这一名词的背景,似乎可以把地球动力学理解为地球上地质过程的动力学机制的统称。
地幔流体作用引发壳幔物质混染叠加成矿研究滇西三江地区构造-岩浆-流体活动强烈且频繁,具有长期活动性。
在晚古生代,区域构造运动主要表现为拉张与断陷;而从华力西晚期到印支期转为以挤压活动为主;进入燕山期,该区构造运动表现为先挤压后拉张;到喜山期则以推覆运动为主。
进入碰撞造山阶段,可分为3个碰撞期:主碰撞(65~41Ma)、晚碰撞(40~26Ma)和后碰撞(25~0Ma)三个阶段。
尤其是晚碰撞期成矿作用十分强烈,主要分布在青藏高原东缘构造转换带上,成矿高峰期集中于35±5Ma。
与此相关的4个重要成矿事件中,与大型剪切系统有关的剪切带型金成矿事件形成了著名的哀牢山大型金矿带。
其中,滇西老王寨金矿即发育在陆内转换造山环境,严格受大规模走滑-推覆-剪切作用控制,受控于统一的深部地质作用过程,与软流圈上涌导致的幔源或壳幔混源岩浆-流体活动关系密切。
滇西新生代老王寨金矿是哀牢山金成矿带上的大型金矿床之一,发育在印度板块与扬子板块的拼接部位,处于极不稳定的过渡型构造单元及深大断裂构造强烈活动地带,这种地带既有利于构造-岩浆-深部流体活动,提供成矿物质,又有利于构筑良好的赋矿环境,从而有利于成矿。
本文在已有研究基础上,结合现代成矿理论并运用现代分析测试技术和方法重点对滇西老王寨金矿开展深入研究和探讨,论证并提出了地幔流体作用引发壳幔物质混染叠加成矿机制,建立了地幔流体作用及其演化成矿模式。
取得了以下主要成果:(1)据滇西老王寨金矿区围岩、矿化岩、矿石和脉体的岩相学鉴定发现,伴随多种蚀变(硅化、碳酸盐化、硫化物化、硅灰石化、纤闪石化等)和多期蚀变叠加,岩矿石中发育沿矿物解理缝、裂隙、粒间贯入或穿插有黑色不透明物质;经扫描电镜、能谱及电子探针分析确认,该物质主要是一种由硅酸盐、石英与硫化物、碳酸盐不均匀混熔或分熔并富含白钨矿、金红石和镜铁矿(磁铁矿)的超显微隐晶集合体物质,这些不同微晶矿物在显示沉淀共晶结构的同时又表现出熔离交生关系。
天山造山带壳幔速度结构及深部构造过程综述崔冉;崔清辉;周元泽【期刊名称】《地球与行星物理论评(中英文)》【年(卷),期】2024(55)4【摘要】天山作为陆内造山带的典型地区,其深部构造一直是国内外地学界关注的热点问题.天山造山带下方速度异常结构的分布特征,是天山造山带深部构造过程响应的深刻体现,对深入理解其活化机制具有重要的指示作用.本文系统总结了天山不同区段的壳幔速度异常结构研究结果,讨论了天山造山带下方不同速度异常结构的形成机制以及天山隆升变形的动力学演化过程.天山造山带不同区段的层析成像结果以及接收函数图像等多种地震学探测与GPS观测研究成果显示,区域速度异常结构分布特征与天山造山带及周边地区的地质构造特点、动力学演化过程具有相关性:天山造山带下方高速异常结构的倾斜方向、形态、位置,凸显了天山地区独特的陆内俯冲机制;不同区域的低速异常结构表明,存在软流圈热物质上涌形成的小地幔柱或小尺度地幔对流,以及岩浆底侵作用导致壳内物质发生部分熔融.相关研究结果对进一步理解天山陆内俯冲、地壳缩短变形、岩石圈拆沉和软流圈热物质上涌等动力学过程具有重要意义,并对深入研究天山地区地震活动性分布规律提供有利的参考依据.【总页数】18页(P381-398)【作者】崔冉;崔清辉;周元泽【作者单位】中国科学院大学地球与行星科学学院中国科学院计算地球动力学重点实验室;中国地震局地震预测研究所地震预测重点实验室【正文语种】中文【中图分类】P315【相关文献】1.中亚造山带中新生代壳幔相互作用特征与过程——新疆北部幔源岩浆岩系对比研究2.秦岭造山带与邻域华北克拉通和扬子克拉通的壳、幔精细速度结构与深层过程3.大别造山带与郯庐断裂带壳、幔结构和陆内"俯冲"的耦合效应4.大同—阳高震区及其邻区壳幔速度结构与深部构造5.天山造山带壳幔结构与陆内变形机制研究进展因版权原因,仅展示原文概要,查看原文内容请购买。
大地电磁测深———探测地球深部电性和物质状态的一种有效手段陈乐寿教授,中国地质大学,北京100083关键词 大地电磁测深 地壳 地幔 良导低阻层 电阻率 作者全面综述了一种极具发展前景的探测地球深部结构和物质状态的手段,它是以天然大地电磁场为场源,以地球电磁感应效应为基础,可以面对多方面应用需求的一种方法,即大地电磁测深。
介绍了地球电磁场的特征和方法的基本原理,随后评述了大地电磁测深提出以来几项突破性的进展。
最后给出了大地电磁测深的几方面标志性应用。
1前 言早在19世纪初,人们就观测到,在固体地球表层,大气和海洋中,都有电流流动,这种天然的电场称为大地电场,它的方向和强度都是随时间变化的。
交变的电场总伴随有交变的磁场,这统称为地球的大地电磁场。
它是本文中介绍的大地电磁测深的天然场源[1]。
大地电磁场变化可分为日变化、湾扰和微变化,后者又含有高频大地电磁场变化和大地电磁脉动。
大地电磁测深作为场源,利用的主要是大地电磁脉动,它们的变化周期在0.1~1500s范围内。
大地电磁场的起因主要来自太阳辐射在高空形成的电离层,和其中产生的电磁扰动;只有高频大地电磁场变化部分除外,它是由位于赤道上空的一种称为雷暴系统的局部天气系统引发的,它是后面要提到的声频大地电磁法(AMT)的场源,周期小于1s[2]。
大地电磁测深(MT)是地球物理学中地球电磁感应学分支学科中的一种重要方法,是在20世纪50年代初由法国学者L·卡尼尔(L.Cagniard)[3]及前苏联学者A ·N·吉洪诺夫(A.N.Tikhonov)[4]几乎同时分别独立提出的。
这种方法是一种以前述天然存在于地球中的呈区域性分布的交变电磁场为场源的电磁测深方法。
如上所述,此大地电磁场具有很大的能量和极宽的频带范围,可以穿过巨厚的岩石圈,为研究几十乃至过百公里深的地壳与上地幔提供信息。
这种深测方法不需要大功率的供电设备,又有如此大的深测深度,自然受到人们的极度关注。
壳幔物质与深部过程的研究壳幔物质与深部过程的研究崔海峰壳幔物质与深部过程是大陆动力学研究的关键科学问题之一。
壳幔物质的组成与性质、化学与物理学控制深部过程及其动力学。
壳幔内物质的密度差异驱动物质对流,温度差异驱动热对流,两者常常相互伴生。
密度的大小既依赖于温度,又与物质组成、挥发份含量密切相关。
对流或流动尚需一定的粘度条件。
因此,壳幔物质在化学和物理学上的不均一性是对流的驱动力,又是壳幔内多种作用过程留下的记录。
化学与物理学的某些参数之间还有复杂的相互依赖关系。
地球化学研究主要揭示化学不均一性;岩石学手段除了主要揭示化学不均一性,还可反演某些物理学不均一性;地球物理方法则主要揭示物理学的不均一性;流体的种类与含量既影响化学不均一性,又对物理学不均一性产生重要制约。
下面从岩石学、地球化学和地球物理以及对流体的研究几个方面来介绍有关壳幔物质相互作用与岩石圈演化方面的研究热点(大陆岩石圈地幔结构组成特征与演化、地幔不均一性及其成因机制、地幔柱理论及应用、深部地质流体、动态条件下熔融和物性实验、Re-Os体系在地幔研究中应用等)的现状与进展。
1. 深部过程的研究途径与方法1.1 研究深部过程的新技术研究深部作用过程的新技术包括以下几个方面:(1)岩石学、地球化学与地球物理学的结合:①火山喷发可比喻为深达壳幔的巨型超深钻:上地幔与下地壳深源捕虏体或捕虏晶为天然样品;火成岩记录了源区物质的组成与温压等物理学信息,壳幔混合型岩浆的侵入或喷发记录了壳幔相互作用的各种信息。
②前寒武纪变质岩系常常是抬升地表的深部陆壳剖面,变质岩PTt轨迹记录了岩石圈形成与构造隆升的历史信息。
③痕量元素与同位素地球化学示踪深部物质与深部过程。
④各种地球物理场获得深部结构与物理过程:地学大断面与多种地球物理成果的再开发,热结构与壳幔地震层析成像。
⑤岩石学、地球化学与地球物理学的结合关键与纽带是深部岩石高温高压相平衡实验、岩石物理性质实验与热力学研究。
地质学中的壳幔相互作用地质学是一门研究地球物质、地球构造和地球历史的学科,而壳幔相互作用就是在这门学科里重要的一个概念。
壳幔相互作用是指地球外核以下的地球圆球上,岩石圈和上地幔之间的相互作用。
这个过程不仅对地球的构造和演化有着重要的影响,也对我们研究地球上的振荡、岩浆和火山等现象提供了重要的依据。
一、壳幔相互作用的定义壳幔相互作用所涉及的岩石圈是地球表面由岩石组成的薄层,而上地幔则是岩石圈下方井底下方达到660千米厚度的岩石层。
壳幔相互作用是指岩石圈和上地幔之间的相互作用,在这个交界处存在着一系列的物理和化学变化。
这个过程对地球的构造和演化有着重要的影响。
二、壳幔相互作用的基本过程壳幔相互作用是一个复杂的过程,它包括地球的内部物质流动、岩石的变形以及物质的交换等多个方面。
然而,基本的过程包括岩石的上升和下沉、岩浆的运动等。
地球内部物质的流动是动力学驱动的,也就是说,内部地球物质的热量和动量会导致物质的运动。
岩石的上升和下沉也是由于物理和化学因素的影响,例如,温度、压力、成分等,这些因素的变化可以导致岩石的流动。
此外,岩浆的运动也是壳幔相互作用的一种形式,岩浆的运动是由于地球内部物质的热量和压力的影响而产生的。
三、壳幔相互作用对地球的影响壳幔相互作用是地球内部物质流动和交换的基本过程之一,它不仅塑造了地球的演化历史,也对地表的构造和变化发挥了重要的影响。
例如,岩石圈的扰动和碎裂是由于上地幔物质的向上运动所导致的。
此外,岩浆的运动也是壳幔相互作用的一种形式,它是由于地球内部物质的热量和压力的影响而产生的。
四、结论壳幔相互作用是地球内部物质流动和交换的基本过程之一,它对地球的演化历史和地表构造的变化都有重要的影响。
通过研究壳幔相互作用的基本过程,我们可以更好地理解地球的内部结构和演化历史,对地球上的各种地质现象也能够得出更加合理的解释。
尽管研究壳幔相互作用是一项复杂而艰巨的任务,但如果我们能够深入地了解壳幔相互作用的本质,我们就能够更好地应对地球内部的挑战。
当代花岗岩研究的几个重要前沿肖庆辉1, 邢作云2, 张 昱3, 伍光英3, 童劲松3(1.国土资源部信息中心,北京100812;2.中国地质大学,湖北武汉430074;3.中国地质大学,北京100083)摘 要:近10多年来,人们已认识到大多数花岗岩浆的发育和演化受岩石圈上地幔作用过程的制约,开创了把壳幔相互作用研究与花岗岩形成演化紧密结合的新方向,这个新的研究方向的科学前沿主要是花岗岩形成与大陆生长和深部过程的关系;花岗岩形成的深熔作用和热源以及花岗岩的成因类型与构造环境。
这些前沿研究试图从大陆生长及大陆动力学的层次去认识花岗岩成因,以期能建立起一个它们之间相互关联的框架,并进一步通过这一框架追索它们形成时热能传递的机理及其体制。
因此,研究花岗岩不仅可以获得花岗岩物质来源和构造环境的信息,而且可以获得壳幔物质运动的状态、过程、动力学等问题的本质、深部能量(热能)的传导、转化的重要信息。
探索和解译这些信息,对于认识大陆生长具有/纲举目张0的作用,是解决当今大陆地质演化,建立大陆动力学关键问题之一,是继花岗岩物质来源、构造环境研究的花岗岩研究的第三个里程碑的开始,因而具有重要的战略意义。
关键词:花岗岩;大陆地壳生长;深熔作用;构造环境中图分类号:P588.12+1 文献标识码:A 文章编号:10052321(2003)03022109收稿日期:20030606;修订日期:20030728基金项目:中国地质调查局/中国花岗岩重大地质问题研究0项目(200113900018)作者简介:肖庆辉(1939) ),男,研究员,博士生导师,构造地质学专业,现从事花岗岩大地构造学和中国岩石圈三维结构研究。
20世纪70年代以来,地质学家在认识花岗岩成因方面先后经历了3个认识层次。
(1)1974年Chappell 和White 发现[1]花岗岩成因受成岩物质源岩控制,将花岗岩划分为I 型和S 型,在花岗岩研究中掀起了研究花岗岩源岩的思潮;(2)1979年Pitch -er [2]根据板块构造理论,把按源岩划分的不同成因类型花岗岩与不同构造环境结合,提出了花岗岩形成的构造环境分类,使花岗岩研究深入到探索构造环境的新阶段。
壳幔物质与深部过程的研究壳幔物质与深部过程的研究崔海峰壳幔物质与深部过程是大陆动力学研究的关键科学问题之一。
壳幔物质的组成与性质、化学与物理学控制深部过程及其动力学。
壳幔内物质的密度差异驱动物质对流,温度差异驱动热对流,两者常常相互伴生。
密度的大小既依赖于温度,又与物质组成、挥发份含量密切相关。
对流或流动尚需一定的粘度条件。
因此,壳幔物质在化学和物理学上的不均一性是对流的驱动力,又是壳幔内多种作用过程留下的记录。
化学与物理学的某些参数之间还有复杂的相互依赖关系。
地球化学研究主要揭示化学不均一性;岩石学手段除了主要揭示化学不均一性,还可反演某些物理学不均一性;地球物理方法则主要揭示物理学的不均一性;流体的种类与含量既影响化学不均一性,又对物理学不均一性产生重要制约。
下面从岩石学、地球化学和地球物理以及对流体的研究几个方面来介绍有关壳幔物质相互作用与岩石圈演化方面的研究热点(大陆岩石圈地幔结构组成特征与演化、地幔不均一性及其成因机制、地幔柱理论及应用、深部地质流体、动态条件下熔融和物性实验、Re-Os体系在地幔研究中应用等)的现状与进展。
1. 深部过程的研究途径与方法研究深部过程的新技术研究深部作用过程的新技术包括以下几个方面:(1)岩石学、地球化学与地球物理学的结合:①火山喷发可比喻为深达壳幔的巨型超深钻:上地幔与下地壳深源捕虏体或捕虏晶为天然样品;火成岩记录了源区物质的组成与温压等物理学信息,壳幔混合型岩浆的侵入或喷发记录了壳幔相互作用的各种信息。
②前寒武纪变质岩系常常是抬升地表的深部陆壳剖面,变质岩PTt轨迹记录了岩石圈形成与构造隆升的历史信息。
③痕量元素与同位素地球化学示踪深部物质与深部过程。
④各种地球物理场获得深部结构与物理过程:地学大断面与多种地球物理成果的再开发,热结构与壳幔地震层析成像。
⑤岩石学、地球化学与地球物理学的结合关键与纽带是深部岩石高温高压相平衡实验、岩石物理性质实验与热力学研究。
(2)岩石圈运动的主要要素的反演:岩石圈运动是深部过程的响应,主要包括岩浆作用、沉积与盆地形成、造山作用、构造变形、区域隆升、地震活动和成矿作用等。
(3)实验、理论与计算机数值模拟:①深部过程与动力学;②驱动力系统与岩石圈运动各要素之间的耦合关系。
岩石学途径的主要理论与实验依据(1)岩石物理化学与热力学理论,以及岩石高温高压实验提供地球物质相平衡、相转变与岩石物理性质的深度温度网格,以及岩浆源区物质的组成和性质。
(2)在上述深度温度网格中,矿物组成的变化确定地质温压计,它是岩石学途径推导壳幔热结构的主要基础。
(3)熔融反应研究提供理解火山作用与地球化学分异的基础,为软流圈的埋深与性质提供重要约束。
(4)低于固相线(subsolidus)的相平衡、相转变与物理性质提供理解壳幔岩石学结构(Petrological structure)的基础,它与地震学方法确定的壳-幔结构有好的可对比性。
(5)基于流体力学的原理发展起来的岩浆与流体动力学实验为理解深部过程提供了重要基础。
(6)深部过程诱发的壳幔物质在组成和性质上的转变,必然会导致壳幔物质在化学上的不平衡与物理学上的不稳定性,为理解岩石圈运动提供“钥匙”。
地球化学方面(1)同位素的研究一个简单的事实(部分熔融作用形成的岩浆将具有源区的同位素成份特点)引起了同位素地球化学两个方面的重要发展。
首先,特定的源区以其特征的同位素组成而能够被识别;其次,同位素组成各异的的源区间的混合作用亦能够被识别。
因此,同位素地质学的主要问题之一就是识别地壳和地幔中的不同源区,尽可能地突出其特征。
①放射性成因同位素可以用来识别一个特定岩浆岩套中的不同源区组分的贡献,同时可以限定岩浆岩源区演化的模型。
现代同位素地质学的主要成就之一就是建立了地壳和地幔储库相互作用以及它们如何获得其目前组分的岩石学模型,并把储库组成与控制板块构造过程联系起来。
例如,基于Pb同位素的模型,主要展示地壳储库的特征,对人们认识大陆地壳的演化起着重要作用。
这种模型化过程称为铅大地构造学(Plumbotectonics)(或者为地幔柱大地构造学)。
另外,同位素失踪剂之间的相关关系必然导致人们寻找解释这些现象的原因,从而产生了一系列关于地球化学的大地构造模型。
这些模型受到同位素资料及我们目前对大地构造过程的理解两个方面的制约。
②稳定同位素是研究轻的元素如H,C,O,N和S的一个强有力的手段。
这些元素通常是组成具有重要地质意义的流体的主要组分,因此可用于直接研究流体以及水-岩相互反映效应的一个重要途径。
另外,稳定同位素可以用来作为确定元素物质来源的示踪剂,也可以用作古温度计和研究地质过程中扩散和反应机制的手段。
稳定同位素研究的主要目的就是要把它作为研究地质过程的一个手段,以同位素的质量而非它们的化学成分为依据,讨论这些过程引起同位素之间的相互分馏。
这种作用称为同位素分馏。
(2)微量元素的反演技术微量元素在现代岩石学中的最重要的用途之一,就是进行地球化学过程的模拟。
微量元素的反演技术是利用一套同源火成岩石的元素浓度变化,来确定其源区的成份和矿物学特征、引起元素浓度变化的物理过程(如,分离结晶作用、部分熔融作用或者其它作用过程)及其进行的程度(如,分离结晶程度、部分熔融程度或者其它作用程度)等未知因素。
所以,反演方法强调由微量元素数据限定模型,提供解决地球化学问题的最大可能性的答案。
地球物理方面(1)地球深部物质电学性质实验研究全球性地球物理测量能提供地球深部从地幔到地核的物理参数,但对这些参数的解释最终还得依赖于对地球深部各圈层物质组成及其矿物学、地球物理、地球化学性质的了解。
然而,目前受取样深度的限制,对地球深部的大部分物质不可能进行直接研究,但浅部的信息又没有足够的理由向地球深部外推,因而开展高压超高压条件下的模拟实验研究以了解地球深部的物质成分、性质和状态显得非常重要。
高温高压下测定地球内部物质(岩石、矿物、流体等)的电学性质是其中最重要的内容之一。
高温高压下对地球内部物质电导率的实验室测定可以获得独立于地震观测的地球内部物质的许多传导信息,可与地震观测资料相互补充和限制。
此外,电导率测量还能提供地球内部相态变化、流体和熔体的形成与分布以及氧化状态等信息。
地球内部存在许多高导层(HCL),根据地球内部物质电导率测定结果及有关地球化学和地球物理观测资料解释高导层微观物理和化学性质、及产生的机理也是探讨地球内部结构和组成的重要内容之一。
(2)层析地震技术(CT)层析地震技术是借鉴医学上的CT技术,但用于地球则出现射线路径非直线性问题。
尽管许多理论问题尚待解决,但它仍是80年代地球科学引人注目的重要进展之一。
美国首次公布了全球三维速度结构、全球密度的三维分布、热流和大地水准面变化以及地幔对流模式等新信息。
最引人注目的是用CT技术对核幔边界起伏情况的了解,若放大比例尺,其起伏之峰,不亚于地表的起伏,其地震波垂直走时,低频峰值高达1s左右。
地震CT技术加深了人们对岩石圈厚度有明显变化、软流圈不具普遍性、大洋中脊下部在200~300Km以下并不一定存在上涌的热物质等岩石圈动力学问题的认识。
地震CT最新研究成果表明,位于2890Km深度的核幔边界地形有±5Km的起伏,在该界面上部的D"层,其厚度为280~300Km,存在明显的横向不均匀性,这些都已成为当今地球科学新的研究热点,有待于用地震CT技术作进一步的探索。
(3)大地电磁技术(MT)大地电磁技术是以天然电磁波作场源探测地球内部视电阻率分布的一种方法。
它的探测深度大,对高导层分辨率高,不受高阻层屏蔽的干扰,设备比地震仪器轻便,费用较低。
现多与地震法的结果综合使用,互相约制,以提高解释的水平,但在MT的解释中还存在不少问题有待解决。
(4)全球地震台网(GSN)由美国及多国参与共同投资,在全球共设置了上百台高精度、宽频带地震遥测仪,实行了标准地震台站系统和交换地震数据的统一格式。
地震遥感仪采用甚宽频带(VBB)三维分量传感器,具有反馈系统,以保障动态范围和线性。
这种台网的建成,可对全球地幔内的非均质进行三维填图,从而可判断岩石圈和软流圈的物理化学性质,对预报地震及地球深部研究提供重要信息。
据最新消息,在美国加州南部利用地震仪新网络———Trinet监测网,能够精确测量出震级大得多和小得多的地面运动。
研究人员金森说:“通过日常收集地面脉动,Trinet监测网将使地震工作能够通过累加小地震的地面运动而预测大地震的地面运动。
”(5)大陆反射地震剖面(COCORP)大陆反射地震剖面是在石油地震勘探基础上发展起来的,可以探测地壳的深部结构构造,解释地表地质构造形成的深部原因,进而揭示大地构造格架与单元的形成和发展特点搞清整个地壳构造的演化规律。
该技术在美国一些地区取得了轰动世界的成果,在老地层之下找到了石油,引起石油界的极大兴趣,从而推动了这一技术的发展。
西欧各国纷纷开展了这一简称为COCORP的探测技术,于是有了英国的BIRPS,德国的DEKORPS,法国的ECORS 及澳大利亚的ACORPS计划等。
我国有INDEPTH计划,是与美国合作的。
石油地震勘探记录时间一般为5~6s,其探测深度为10余公里,而大陆地震反射剖面的记录时间为10~15s,甚至可达50s,其探测深度可达整个地壳,甚至岩石圈地幔。
震源在海上多用气枪,在陆地用可控震源车,4~6台震源车同时震动,在我国除部分地区可用震源车外,因山地多,中、西部地壳厚,而改用爆炸震源(6)磁卫星(Magmat)美国首次发射了Magmat磁卫星,用它进行了全球磁力矢量测量,将整个地球磁场分为核心场、壳源场和外部场三部分。
采用调和样条函数建立模型,侧重于了解磁源的区域分布特征,建立不同地壳类型的岩石圈磁模型。
(7)卫星重力利用卫星轨道参数的变化,可获得多级大地水准面形态及地球南北半球非对称关系。
不同级次大地水准面,可能反映不同深度、不同尺度的地球密度的不均匀分布,并显示岩石圈的三维结构趋势。
多阶卫星重力资料可用于研究全球和区域重力场特征。
2. 大陆结构的多层性及偶合与非偶合性大量的地球物理、地球化学和岩石学资料表明,大陆岩石圈在垂向结构上存在着明显的流变分层性,特别是在中下地壳普遍具有一层或几层软弱层。
通常脆性行为出现在中、上地壳以及下地壳和上地幔的镁铁质和超镁铁质岩石中,而韧性行为发生在5~10Km之下(取决于地热梯度)的富石英岩石中。
异常热体制,如上升的地幔柱、逆掩断层造成的地壳双加厚或来自于地幔的岩浆贯入,都会大大增强地壳的整体韧性。
这样不同层次的脆性和韧性行为构成大陆岩石圈不同于大洋岩石圈的“三层”或“四层”流变学结构,或所谓多层软心结构(Blundell et al.,1992,NSF,1993)。