轴向拉压杆件(魏德敏)
- 格式:ppt
- 大小:895.50 KB
- 文档页数:20
轴向拉压杆件内力计算公式在工程力学中,轴向拉压杆件是一种常见的结构元件,它在工程实践中被广泛应用于各种机械设备和建筑结构中。
轴向拉压杆件内力计算公式是用来计算轴向拉压杆件在受力作用下内部产生的拉力或压力的公式,它是工程设计和分析中非常重要的一部分。
在本文中,我们将介绍轴向拉压杆件内力计算公式的推导和应用,希望能够帮助读者更好地理解和应用这一重要的工程知识。
一、轴向拉压杆件的受力分析。
轴向拉压杆件是一种受拉或受压的结构元件,它通常由材料制成,具有一定的截面形状和尺寸。
当轴向拉压杆件受到外部力的作用时,内部会产生拉力或压力,这种内力的大小和方向是由外部力和结构本身的特性共同决定的。
在进行轴向拉压杆件的内力计算时,需要先进行受力分析,确定受力情况和受力方向。
通常情况下,轴向拉压杆件受到的外部力可以分为两种情况,拉力和压力。
对于受拉的轴向拉压杆件,外部力的方向和内部拉力的方向相同;对于受压的轴向拉压杆件,外部力的方向和内部压力的方向相反。
在受力分析的基础上,可以得到轴向拉压杆件内力计算的基本公式:N = A σ。
其中,N为轴向拉压杆件的内力,A为截面积,σ为应力。
根据受力分析的结果,可以确定σ的正负号,从而确定N的正负号,进而确定内力的方向。
二、轴向拉压杆件内力计算公式的推导。
1. 受拉的轴向拉压杆件。
对于受拉的轴向拉压杆件,外部拉力的方向和内部拉力的方向相同,因此内力的大小可以直接由外部拉力计算得到。
假设外部拉力为P,截面积为A,根据胡克定律,可以得到应力σ=P/A,进而得到内力N=P。
因此,受拉的轴向拉压杆件内力计算公式为:N = P。
2. 受压的轴向拉压杆件。
对于受压的轴向拉压杆件,外部压力的方向和内部压力的方向相反,因此内力的大小需要考虑结构的稳定性。
假设外部压力为P,截面积为A,根据胡克定律,可以得到应力σ=P/A,进而得到内力N=P。
然而,受压的轴向拉压杆件在实际应用中往往需要考虑结构的稳定性,因此需要引入材料的材料的屈服强度和稳定性系数,从而得到更加精确的内力计算公式。
答疑构件中单位长度的变形量是平均线应变。
而线应变是构件内某点沿某方向的变形程度的度量。
10、"材料力学只限于研究等截面直杆。
"答案此说法错误答疑材料力学主要研究等截面直杆,也适当地讨论一些变截面直杆,等截面曲杆。
11、" 切应变是变形后构件内任意两根微线段夹角角度的变化量。
"答案此说法错误答疑切应变是某点处单元体的两正交线段的夹角的变化量。
12、" 杆件的基本变形是拉压、剪切、扭转、弯曲,如果还有另外的变形,必定是这四种变形的某种组合。
"答案此说法正确选择题绪论1、构件的强度、刚度、稳定性。
A:只与材料的力学性质有关B:只与构件的形状尺寸有关C:与二者都有关D:与二者无关答案正确选择C2、均匀性假设认为,材料内部各点的是相同的。
A:应力B:应变C:位移D:力学性质答案正确选择 D3、各向同性认为,材料沿各个方向具有相同的。
A:力学性质B:外力C:变形D:位移答案正确选择 A4、在下列四种材料中,不可以应用各向同性假设。
A:铸钢B:玻璃C:松木D:铸铁答案正确选择 C答疑只有松木材料是各向异性,在轴线方向和与轴线垂直的方向上力学性质不同5、根据小变形条件,可以认为:A:构件不变形B:构件不破坏C:构件仅发生弹性变形D:构件的变形远小于原始尺寸答案正确选择 D6、外力包括:A:集中力和均布力B:静载荷和动载荷C:所有作用在物体外部的力D:载荷与支反力答案正确选择 D7、在下列说法中,正确的是。
A:内力随外力的增大而增大; B:内力与外力无关;C:内力的单位是N或KN;D:内力沿杆轴是不变的;答案正确选择 A答疑内力与外载形成平衡力系,固内力随外力的增大而增大8、静定杆件的内力与其所在的截面的有关。
A:形状;B:大小;C:材料;D:位置答案正确选择D答疑杆件的内力只与外载的大小,外载的作用点位置有关,固与其所在的截面的形状、大小、材料均无关。
第4章轴向拉伸与压缩4.1 轴向拉伸与压缩的概念在建筑物和机械等工程结构中,经常使用受拉伸或压缩的构件。
例如图4.1所示液压传动中的活塞杆,工作时以拉伸和压缩变形为主。
图4.2所示拧紧的螺栓,螺栓杆以拉伸变形为主。
图4.1 图4.2图4.3所示拔桩机在工作时,油缸顶起吊臂将桩从地下拔起,油缸杆受压缩变形,桩在拔起时受拉伸变形,钢丝绳受拉伸变形。
图4.4所示桥墩承受桥面传来的载荷,以压缩变形为主。
图4.3 图4.4图4.5所示钢木组合桁架中的钢拉杆,以拉伸变形为主。
图4.6所示厂房用的混凝土立柱以压缩变形为主。
图4.5 图4.6 在工程中以拉伸或压缩为主要变形的构件,称为拉、压杆,若杆件所承受的外力或外力合力作用线与杆轴线重合,称为轴向拉伸或轴向压缩。
4.2 轴向拉(压)杆的内力与轴力图4.2.1 拉压杆的内力在轴向外力F 作用下的等直杆,如图4.7(a )所示,利用截面法,可以确定n m -横截面上的唯一内力分量为轴力N F ,其作用线垂直于横截面并通过形心,如图4.7(b )所示。
图4.7利用平衡方程 0=∑x F得 F F =N通常规定:轴力N F 使杆件受拉为正,受压为负。
4.2.2 轴力图为了表明轴力沿杆轴线变化的情况,用平行于轴线的坐标表示横截面的位置,垂直于杆轴线的坐标表示横截面上轴力的数值,以此表示轴力与横截面位置关系的几何图形,称为轴力图。
作轴力图时应注意以下几点:1、轴力图的位置应和杆件的位置相对应。
轴力的大小,按比例画在坐标上,并在图上标出代表点数值。
2、习惯上将正值(拉力)的轴力图画在坐标的正向;负值(压力)的轴力图画在坐标的负向。
例题4.1 一等直杆及受力情况如图(a )所示,试作杆的轴力图。
如何调整外力,使杆上轴力分布得比较合理。
例题4.1图解:(1)、求AB 段轴力用假设截面在1–1处截开,设轴力F N 为拉力,其指向背离横截面,由平衡方程得kN 5N1 F (图b )(2)、同理,求BC 段轴力kN 15kN 10kN 5N2=+=F (图c )(3)、求CD 段轴力,为简化计算,取右段为分离体kN 30N3=F (图d )(4)、按作轴力图的规则,作出轴力图,如图(e )所示。