煤矿开采学矿井开采设计
- 格式:pptx
- 大小:4.33 MB
- 文档页数:49
煤矿矿井开采的合理布置与设计煤矿矿井开采是煤炭资源的重要获取方式,对于确保煤炭的安全生产和高效利用具有至关重要的作用。
合理的布置与设计可最大程度地提高矿井开采效率,降低事故发生的风险。
本文将从矿井布置原则、巷道设计、设备配置、监测系统等方面探讨煤矿矿井开采的合理布置与设计。
一、矿井布置原则矿井布置应遵循以下原则:合理利用煤炭资源;尊重自然环境;确保安全生产;提高经济效益。
首先,在合理利用煤炭资源方面,需要根据矿井附近煤层的地质条件和煤炭储量进行调查与评估。
合理确定采区的覆盖面积与布局,确保充分开采煤炭资源的同时,最大限度地减少资源的浪费。
其次,在尊重自然环境方面,应考虑到煤矿开采对周边环境的影响,尽可能减少对地表地貌的破坏。
要合理规划矿井布置,减少土地占用量,保护土地资源,避免对生态环境造成不可逆转的影响。
再次,在确保安全生产方面,布置与设计应充分考虑矿井的排水、通风等工程措施,保证矿井稳定与安全。
同时,根据煤层地质条件及矿井周围地质构造,合理确定矿井开采方式、工作面布置以及支护措施,确保矿井的安全运行。
最后,布置与设计要追求经济效益最大化。
将节约能源、降低生产成本作为目标,充分利用现代先进技术手段,提高矿井设施的自动化、智能化水平,增强生产效率。
二、巷道设计巷道在矿井开采中起着重要的通风和运输作用。
合理的巷道设计可以提高矿井的通风效果,同时也方便了煤炭的运输。
在巷道的布置方面,应根据煤层的产状和倾角确定巷道的高度、宽度以及布置的方向。
巷道的高度要满足通风设备的要求,保证良好的空气环流。
宽度则根据巷道的用途来确定,可根据车辆尺寸、堆煤设备及人员行走的需求确定。
同时,巷道的布置方向要遵循矿层产状与走向的规律,以适应煤层的开采需求,并兼顾开采工作面的连接。
巷道的支护措施也是设计的重要部分。
根据巷道的用途和地质条件,采用适当的支护方式,如钢拱架、锚杆等,保证巷道的稳定性和安全性。
三、设备配置煤矿矿井中的设备配置直接影响到矿井开采的效率和安全性。
1采区概况及地质特征1.1采区概况本采区为某矿第二水平第五采区,采区上部标高-150m,下部标高为-450m,其中三采区已采,七采区未采。
年产量为120万t/a区内煤层埋藏稳定,构造简单,煤质中硬,自然发火期为6-12个月。
区内涌水较小,无大的含水层和地下水,开采条件好。
采区内有一层煤,煤层埋藏稳定,构造简单,属于厚煤层。
煤层无瓦斯突出,顶底板稳定。
煤岩爆炸指数为34%-70%。
煤层瓦斯含量小,采区所属矿井属于低瓦斯矿井。
区内地质构造简单,为单斜构造,无断层和褶曲。
煤层倾角约为21°,采区走向长为2180m,倾斜长度为830m。
运输大巷布置在-450水平,回风巷布置在-150水平。
2.采区储量及服务年限2.1采区储量2.1.1采区工业储量Zg=2180⨯830⨯5⨯1.35=12213450t 2.1.2采区设计储量Zs=Zg-P1(P1为永久煤柱损失) P1包括井田境界煤柱、采区边界煤柱。
式中:采区边界煤柱:20×830×5×1.35=112050t Zs=Zg-P1=12213450-112050=12101400t 2.1.3采区可采储量Zk=(Zs-P2)⨯75%(P2为暂时煤柱损失)P2包括上山保护煤柱、区段保护煤柱。
上山保护煤柱:(830-40)⨯60⨯5⨯1.35=321135t式中: 区段保护煤柱:2180⨯30⨯5⨯1.35=441450tZk=(Zs-P2)⨯75%=[12101400-(321135+441450)]⨯75%=11338815⨯75%=8504111.25t2.1.4采区采出率η=/K S Z Z=11338815/12213450⨯100%=92.83%>75%2.2采区生产能力及服务年限工作制度:根据《煤矿安全规程》设计的工作日为330天,采用“三八”工作制,其中两班生产,一班检修。
每班工作8小时,每日提升为16小时。
煤矿矿井开采设计原则与步骤煤矿矿井开采设计是指根据地质情况、开采技术、安全要求等因素,对煤矿矿井进行系统的分析、计算和优化设计,确定开采方法、采煤工艺、支护方式等,以保证煤炭资源的高效开采和矿井的安全稳定运营。
煤矿矿井开采设计的原则和步骤如下:一、设计原则:1.系统性与整体性原则:开采设计必须体现矿山的系统性和整体性,即将整个矿山作为一个整体而设计,确保开采方案的科学性和可行性。
3.经济性原则:在保证安全的前提下,煤矿矿井开采设计必须注重经济效益,通过合理配置资源和优化设施,降低开采成本,提高开采效益。
4.可持续性原则:煤矿矿井开采设计必须注重环境保护,减少矿井对环境的影响,提高资源利用效率,实现可持续开发。
二、设计步骤:1.地质勘探:进行详细的地质调查和勘探工作,获取煤层的分布、厚度、倾角等地质信息,为后续的设计提供依据。
2.矿山规模确定:根据矿山的地质条件和可采储量,确定矿井的规模,包括开采深度、采场面积、巷道数量等。
3.开采方法选择:根据地质条件和矿山规模,选择合适的开采方法,如传统的直接采煤法、液化采煤法、短壁工作面法等。
4.采煤工艺确定:根据煤层的特点和开采方法,选择适当的采煤工艺,如顺槽放顶煤、双墩煤墙回采等。
5.支护方式确定:根据煤层的稳定性和采煤工艺,确定支护方式,如采用锚杆支护、预应力锚索支护等。
6.开孔网络设计:设计巷道的分布和布设,确定主巷道、副巷道和技术巷道等的位置和尺寸,保证工作面的顺利开采。
7.通风系统设计:设计矿井的通风系统,包括主风机的选型和布置、风道的设计和布置等,保证矿井内空气的流通和人员的安全。
8.输送系统设计:设计矿井的输送系统,包括皮带机、提升机、风机等,保证煤炭和人员的安全快速运输。
9.水源与排水系统设计:设计矿井的水源供给和排水系统,保证矿井内的供水和排水畅通,防止水灾事故的发生。
10.废弃物处理系统设计:设计矿井的废弃物处理系统,包括煤矸石的处理和储存,保护环境和资源利用。
《煤矿开采学》课程设计说明书第一章矿井开拓1 矿井的储量、生产能力、服务年限一.井田概况:井田境界:上自风化带(—30m),下至—660m,左右均为人为界线,走向长约为8490m,地面标高+50m。
井田内有两个可采煤层,自上而下为K1、K2,煤层倾角为15°,各煤层厚度,间距及顶板情况见综合柱状图。
各煤层成层平稳,地质构造简单,无断层,K1煤层较软f=1.1,但粘顶,K2煤层属于中硬,f=1.8。
各煤层煤的容重r=1.3t/m3,低瓦斯,煤层无自燃倾向,表土内有流沙。
矿井正常涌水量150m3/h。
矿井设计生产能力已给出A=150万吨/a。
二.矿井工业储量、可采储量的计算公式:Z g=S· M ·r S = L走向· L倾斜L倾斜=(660 -30)/sin15°Z k=(Z g-Z S) · CZ g:工业储量 Z k:可采储量 S:面积 M:煤层厚度r:煤容重 C:回采率 Z s:永损储量,按工业储量的5%计算。
三.计算结果:根据表中K1煤层厚度为2.2米属于中厚煤层,K2 煤层厚度为米属于厚煤层。
由于后煤层的采出率、不小于75%,所以K2煤层的采出率取78%,中厚煤层的采率不小于80%,所以K1煤层的采出率取82%。
算得结果如下表:四.服务年限验算:根据公式: T=Z K/AKK:矿井储量备用系数,矿井设计一般取1.3~1.5。
这里取1.5。
又A=150万吨/a。
可算出服务年限:T= 81.5 年。
A=150万吨/a属于大型矿井,根据大型矿井的服务年限要大于50年,所以此矿井的设计生产能力合理。
2确定井筒形式、数目、位置及布置:由于该井田地形平坦,不存在平硐开拓条件,表土内有流沙层斜井施工困难,所以,确定采用立井开拓(主井装备箕斗),并按流沙层较薄、井下生产费用费用较低的原则,确定井筒位于井田走向中部流沙层较薄处。
为避免采用箕斗井回风时封闭井塔等困难和减少穿越流沙层开凿风井的数目,决定采用中央分列式通风,回风井布置在井田上部边界的走向中部。