八年级数学下册_变量与函数同步练习_
- 格式:doc
- 大小:150.00 KB
- 文档页数:4
变量与函数1.一个长方形的面积是10 cm2,其长是a cm,宽是b cm,下列判断错误的是()A.10是常B.10是变量C.b是变量D.a是变量2.圆的面积公式为s=πr2,其中变量是()A.s B.πC.r D.s和rA.仅有一个,是时间(年份)B.仅有一个,是人口数C.有两个,一个是人口数,另一个是时间(年份)D.一个也没有4.下列各曲线中表示y是x的函数的是()A.B.C.D.下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0 cmC.物体质量每增加1 kg,弹簧长度y增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为13.5 cm6.据测试,拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小明洗手后没有把水龙头拧紧,水龙头以测试速度滴水,当小明离开x分钟后,水龙头滴水y毫升水,则y与x之间的函数关系式是()A.y=0.05x B.y=5x C.y=100x D.y=0.05x+1007.某种签字笔的单价为2元,购买这种签字笔x支的总价为y元.则y与x之间的函数关系式为()A.y=12xB.y=12x C.y=-2x D.y=2x8.一个蓄水池有15 m3的水,以每分钟0.5 m3的速度向池中注水,蓄水池中的水量Q (m3)与注水时间t(分)间的函数表达式为()A.Q=0.5t B.Q=15t C.Q=15+0.5t D.Q=15-0.5t 9.2B铅笔每枝0.5元,买n枝需W元,其中常量是_________,变量是_________.10.由实验测得某一弹簧的长度y(cm)与悬挂物体的质量x(kg)之间有如下关系:y=16+0.5x.这里的常量是_________,变量是_________.11.某市居民用电价格是0.53元/千瓦时,居民生活用电x(千瓦时)与应付电费y(元)之间满足y=0.53x,则其中的常量为,变量是.12.等腰三角形的顶角y与底角x之间是函数关系吗?___________ (是或不是中选择)13.某商店进了一批货,每件进价为4元,售价为每件6元,如果售出x件,售出x件的总利润为y元,则y与x的函数关系式为.14.某水库的水位持续上涨,初始水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位y与上涨时间x之间的函数关系式是_________.15.三角形的一个内角的度数为x,与它相邻的外角的度数为y,则y与x的函数关系式是.16.下列各式①y=0.5x-2;②y=|2x|;③3y+5=x;④y2=2x+8中,y是x的函数的有__________(只填序号)(1)表中有几个变量?(2)如果要用x表示年份,用y表示世界人口总数,那么随着x的变化,y的变化趋势是怎样的?(1)表中反映了哪些变量之间的关系?哪个是自变量?哪个是因变量?(2)当物体的质量为3 kg时,弹簧的长度为多少?(3)如果物体的质量为x kg,弹簧的长度为y cm,根据上表写出y与x的关系式;(4)当物体的质量为2.5 kg时,根据(3)的关系式,求弹簧的长度.19.写出下列各问题中的关系式中的常量与变量:(1)时针旋转一周内,旋转的角度n(度)与旋转所需要的时间t(分)之间的关系式n=6t;(1)上表反映了温度与长度两个变量之间的关系,其中__________是自变量,__________是函数.(2)当温度是10℃时,合金棒的长度是__________cm.(3)如果合金棒的长度大于10.05 cm小于10.15 cm,根据表中的数据推测,此时的温度应在_________℃~__________℃的范围内.(4)假设温度为x℃时,合金棒的长度为y cm,根据表中数据写出y与x之间的关系式__________.(5)当温度为-20℃或100℃,合金棒的长度分别为__________cm或__________cm.。
八年级数学一次函数自变量和因变量专项训练一、选择题1.半径是R的圆的周长,下列说法正确的是( )A. C、、R是变量B. C是变量,2、、R是常量C. R是变量,2、、C是常量D. C、R是变量,2、是常量2.对于圆的面积公式,下列说法中,正确的为( )A. 是自变量B. R是常量C. R是自变量D. 和R是都是常量3.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据如下表:下列说法错误的是( )A. 在这个变化中自变量是温度因变量是声速B. 温度越高声速越快C. 当温度每升高,声速增加D. 当空气温度为,声音为5s,可以传播1740m4.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据如下表:下列说法错误的是( )A. 在这个变化中,自变量是温度,因变量是声速B. 温度越高,声速越快C. 当空气温度为时,声音5s可以传播1740mD. 当温度每升高,声速增加5.笔记本每本a元,买3本笔记本共支出y元,在这个问题中:是常量时,y是变量;是变量时,y是常量;是变量时,y也是变量;,y 可以都是变量.上述判断正确的有( )A. 1个B. 2个C. 3个D. 4个6.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是( )A. 太阳光强弱B. 水的温度C. 所晒时间D. 热水器7.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化在这一问题中,自变量是( )A. 时间B. 骆驼C. 沙漠D. 体温二、填空题8.在圆的周长公式中,变量是______,______,常量是______.9.长方形相邻两边长分别为x,y,面积为30,则用含x的式子表示y为________,在这个问题中,________是常量,________是自变量,________是因变量.10.某商店对某种商品进行降价促销,该商品的原价为每件560元,随着不同幅度的降价,日销量单位:件发生相应的变化如下表:这个表反映了两个变量之间的关系,降价是自变量,________是因变量从表中可以看出每降价5元,日销量增加________件,从而可以估计降价之前的日销量为________件,如果售价为500元,那么日销量为________件.11.直角三角形两锐角的度数分别为x,y,其关系式为,其中变量为________,常量为________.12.函数定义:在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是_________,y是x的_________.13.圆的周长C随着r的变化而变化.圆的周长C与半径r的关系式为;这里的变量是_________,常量是_________,_________是_________的函数;当时,圆的周长_________;当时,圆的周长_________.14.如图,向平静的水面投入一枚石子,在水面上会激起一圈圈圆形涟漪,当半径从2 cm变成5 cm时,圆形的面积从变成,在这一变化过程中,______是自变量,________是因变量.15.在的圆周长公式中, 是常量, 是变量, 是自变量。
新人教版八年级下数学《函数》练习题新人教版八年级下数学《函数》练题19.1 函数19.1.1 变量与函数课前预要点感知1:在一个变化过程中,数值发生的量叫做变量,数值始终不变的量叫做常量。
预练1-1:如果直角三角形两锐角的度数分别为x、y,其关系式为y=90-x,其中变量为x,常量为90.要点感知2:在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有确定的值与其对应,那么我们就说x是自变量,y是x的函数。
如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
预练2-1:如果球的体积为V,半径为R,则V=πR^3.其中自变量是R,函数是V。
要点感知3:函数自变量的取值范围既要满足函数关系式,又要满足实际问题。
预练3-1:甲乙两地相距100km,一辆汽车以每小时40km的速度从甲地开往乙地,t小时与乙地相距s km,s与t的函数解析式是s=40t,自变量t的取值范围是0≤t≤2.5.当堂训练知识点1:变量与常量1.圆周长公式C=2πR中,下列说法正确的是(B)R是变量,2、π、C为常量。
2.写出下列各问题中的数量关系,并指出各个关系式中,哪些是常量?哪些是变量?1)购买单价为5元的钢笔n支,共花去y元;变量是n,常量是5.2)全班50名同学,有a名男同学,b名女同学;变量是a、b,常量是50.3)汽车以60km/h的速度行驶了t h,所走过的路程为s km;变量是t,常量是60.知识点2:函数的有关概念3.下列关系式中,一定能称y是x的函数的是(B)y=3x-1.4.若93号汽油售价7.85元/升,则付款金额y(元)与购买数量x(升)之间的函数关系式为y=7.85x,其中x是自变量,y是的函数。
5.当x=2和x=-3时,分别求下列函数的函数值。
1)y=(x+1)(x-2);当x=2时,y=0;当x=-3时,y=20.2)y=2x^2-3x+2;当x=2时,y=8;当x=-3时,y=29.知识点3:函数的解析式及自变量的取值范围6.(云南中考)函数y=(x-2)/x的自变量x的取值范围为(x≠2)。
初中数学八年级下册函数同步专项练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 已知,圆的周长公式为C=2πR,下列说法正确的是( )A.2是常量,C,π,R是变量B.2和π是常量,C,R是变量C.2,C是常量,R是变量D.2是常量,π是变量2. 一辆轿车在公路上行驶,先加速,再匀速,又遇到情况而减速,过后再加速,然后匀速,下公路、上小路,到达目的地.下列图象中,可近似地描述上述情况的是()A. B.C. D.3. 骆驼它的体温随时间的变化而变化.在这一关系中,自变量是()A.沙漠B.体温C.时间D.骆驼4. 如图1是一座立交桥的示意图(道路宽度忽略不计),A为入口,F,G为出口,其中̂,CD̂,直行道为AB,CG,EF,且AB=CG=EF;弯道为以点O为圆心的一段弧,且BCDÊ所对的圆心角均为90∘.甲、乙两车由A口同时驶入立交桥,均以10m/s的速度行驶,从不同出口驶出.其间两车到点O的距离y(m)与时间x(s)的对应关系如图2所示.结合题目信息,下列说法错误的是()A.甲车在立交桥上共行驶8sB.从F口出比从G口出多行驶40mC.甲车从F口出,乙车从G口出D.立交桥总长为150m5. 已知函数y=|x−b|,当x=1或3时,对应的两个函数值相等,则实数b的值是()A.1B.−1C.2D.−26. 1−6个月的婴儿生长发育得非常快,出生体重为4000克的婴儿,他们的体重y(克)和月龄x(月)之间的关系如表所示,则6个月大的婴儿的体重为()A.7600克B.7800克C.8200克D.8500克7. 下列关于变量,的关系,其中不是的函数的是()A. B.C. D.8. 下表是我国从1949年到1999年的人口统计数据(精确到0.01亿)从表中获取的信息:(1)人口随时间的变化而变化,时间是自变量,人口是因变量;(2)1979−1989年10年间人口增长最慢;(3)1949−1979这30年的增长逐渐加大,1979−1999这20年的增长先减小后增大;(4)人口增长速度最大的十年达到约20%,其中正确的有()A.4个B.3个C.2个D.1个9. 某电影院共有25排座位,第一排有20个座位,后面每一排都比前一排多1个座位.那么,每排的座位数m与这排的排数n(1≤n≤25)的函数关系式为()A.m=n+25B.m=n+19C.m=n+18D.m=n+20.10. 一蓄水池中有水40m3,如果每分钟放出2m3的水,水池里的水量与放水时间有如下关系:下列数据中满足此表格的是( )A.放水时间8分钟,水池中水量25m3B.放水时间20分钟,水池中水量4m3C.放水时间26分钟,水池中水量14m3D.放水时间18分钟,水池中水量4m3二、填空题(本题共计 10 小题,每题 3 分,共计30分,)+√3−x的自变量x的取值范围是________.11. 函数y=1x−2−2x,则f(1)=________.12. 已知函数f(x)=32x−113. 火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,隧道长度为________米.14. 矩形的面积为S,则长a和宽b之间的关系为S=________,当长一定时,________是常量,________是变量.15. 如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC 的面积是________.16. 若一盒圆珠笔共12支,售价18元,用x表示圆珠笔的支数,y(元)表示圆珠笔的售价,则y与x之间的表达式是________.17. 随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势:(1)表中________是自变量,________是因变量;(2)你预计该地区从________年起入学儿童的人数不超过1000人.中,自变量x的取值范围是________.18. 函数y=√2−3xx19. 下表是小华做观察水的沸腾实验时所记录的数据:(1)时间是8分钟时,水的温度为________;(2)此表反映了变量________和________之间的关系,其中________是自变量,________是因变量;(3)在________时间内,温度随时间增加而增加;________时间内,水的温度不再变化.20. 小华从家里出发,到超市购物,然后回家,回家时比去时每分钟慢10米,如图是他离家的距离y(米)关于离家的时间x(分钟)的函数图象.那么C处的值是________.三、解答题(本题共计 20 小题,每题 10 分,共计200分,)21. 已知动点P以2cm/s的速度沿如图甲所示的边框按B→C→D→E→F→A的路径匀速移动,相应的三角形ABP的面积S关于时间t的图象,如图乙所示,若AB=6cm,试回答下列问题:(1)求出图甲中BC的长和多边形ABCDEF的面积;(2)直接写出图乙中a和b的值.22. 如图,已知△ABC中,∠B=90∘,AB=8cm,BC=6cm.(1)若P、Q是△ABC边上的两个动点,其中点P从A沿A→B方向运动,速度为每秒1cm,点Q从B沿B→C方向运动,速度为每秒2cm,两点同时出发,设出发时间为t秒.①当t=1秒时,求PQ的长;②从出发几秒钟后,△PQB是等腰三角形?(2)若M在△ABC边上沿B→A→C方向以每秒3cm的速度运动,则当点M在边CA上运动时,求△BCM成为等腰三角形时M运动的时间.23. 求下列函数自变量的取值范围.(1)y=√x+2;x−1(2)y=√x+(x+1)0.x−224. 如图,根据汽车行驶情况的图象回答下列问题:(1)图中反映了哪两个变量之间的关系?(2)A、B、C三点分别代表了什么?(3)汽车在哪些时段内保持匀速行驶?时速分别是多少?(4)汽车行驶了多长时间?它的最大速度是多少?(5)用自己的语言大致描述这辆汽车的行驶情况.25. 在一次实验中,小华把一根弹簧上端固定,在其下端悬挂物体,弹簧挂上物体后的长度l(cm)与所挂物体的质量m(kg)之间的关系如下表:(1)用关系式表示出弹簧的长度l(cm)与所挂物体的质量m(kg)之间的关系.(2)当所挂物体质量为3千克时弹簧的长度为多少cm?没挂物体时呢?(3)如果在允许范围内,弹簧的长度为36cm时,所挂物体的质量应为多少kg?26. 某电动车厂2014年各月份生产电动车的数量情况如下表:(1)为什么称电动车的月产量y为因变量?它是谁的因变量?(2)哪个月份电动车的产量最高?哪个月份电动车的产量最低?(3)哪两个月份之间产量相差最大?根据这两个月的产量,电动车厂的厂长应该怎么做?27. 如图是江津区某一天的气温随时间变化的图象,根据图象回答:在这一天中:(1)气温T(∘C)是不是时间t(时)的函数.(2)12时的气温是多少?(3)什么时候气温最高,最高时多少?什么时候气温最低,最低是多少?(4)什么时候气温是4∘C?28. 如图,已知等腰直角三角形ABC的直角边长与正方形DEFG的边长都是4cm,AC与DG在同一直线上,开始时点A与点D重合,△ABC以1cm/s的速度向右移动,最终点A 与点G重合,设重合部分(阴影部分)的面积为y(cm2),移动的时间为x(s).(1)求出y与x的函数关系式;(2)画出(1)中所写出的函数关系式的图象.①完成下表:②画出图象.29. 已知y是x的函数,该函数的图象经过A(1, 6),B(3, 2)两点.(1)请写出一个符合要求的函数表达式________;(2)若该函数的图象还经过点C(4, 3),自变量x的取值范围是x≥0,该函数无最小值.①如图,在给定的坐标系xOy中,画出一个符合条件的函数的图象;②根据①中画出的函数图象,写出x=6对应的函数值y约为________;(3)写出(2)中函数的一条性质(题目中已给出的除外).30. 在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?(3)若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?31. 如图所示,正方形ABCD的边长为4,动点P由B点出发,沿边BC、CD移动,设动点P移动的路程为x,△ABP的面积为y,求y与x的函数关系式.32. 在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y与所挂物体的质量x的几组对应值.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂物体重量为3kg时,弹簧的长度是多少?不挂重物呢?(3)若所挂重物为7kg时(在允许范围内),你能说出此时的弹簧长度吗?33. 有一根弹簧原长10厘米,挂重物后(不超过50克),它的长度会改变,请根据下面表格中的一些数据回答下列问题:(1)要想使弹簧伸长5厘米,应挂重物多少克?(2)当所挂重物为x克时,用ℎ表示总长度,请写出此时弹簧的总长度的函数的表达式.(3)当弹簧的总长度为25厘米时,求此时所挂重物的质量为多少克.34. 物体从高处自由下落的高度ℎ(m)与物体下落的时间t(s)之间的函数关系式是:ℎ=1gt2(g表示重力加速度,g取9.8m/s2).某人发现头顶上空490m处有一炸弹自由下落,2其地面杀伤半径为50m,此人发现后,立即以6m/s的速度逃离,那么此人有无危险?35. 下表是小莉给外婆打电话的收费记录.上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?如果用x表示时间,y表示电话费,那么随着x的变化,y的变化趋势是怎样的?小莉打了5min电话,那么需要付多少元电话费?x每增加1min,y的变化情况相同吗?请你估计一下,如果打10min的电话,需付多少元话费?你是怎样估计的?36. 求下列函数的定义域:(1)y=x2+x;;(2)y=2+x2−x(3)y=√3−2x;(4)y=.√2+3x37. 小明骑电动车从甲地去乙地,而小刚骑自行车从乙地去甲地,两人同时出发走相同的路线;设小刚行驶的时间为x(ℎ),两人之间的距离为y(km),图中的折线表示y与x, 0).根据图象进行探究:之间的函数关系,点B的坐标为(13(1)两地之间的距离为________km;(2)请解释图中点B的实际意义;(3)求两人的速度分别是每分钟多少km?(4)求线段BC所表示的y与x之间的函数关系式;并写出自变量x的取值范围.38. 科学家研究发现,声音在空气中传播的速度y(米/秒)与气温x(∘C)有关,当气温是0∘C时,音速是331米/秒;当气温是5∘C时,音速是334米/秒;当气温是10∘C时,音速是337米/秒;气温是15∘C时,音速是340米/秒;气温是20∘C时,音速是343米、秒;气温是25∘C时,音速是346米/秒;气温是30∘C时,音速是349米/秒.(1)请你用表格表示气温与音速之间的关系;(2)表格反映了哪两个变量之间的关系?哪个是自变量?哪一个是因变量?(3)当气温是35∘C时,估计音速y可能是多少?(4)能否用一个式子来表示两个变量之间的关系?39. 同学们用气象探测气球探究气温与海拔高度的关系,1号气球从海拔5米处出发,以1米/分的速度匀速上升,以此同时,2号气球从海拔15米处出发,以0.5米/分的速度匀速上升.设1号、2号气球在上升过程中的海拔分别为y1(米)、y2(米),它们上升的时间为x(分),其中0≤x≤60.(1)填空:y1,y2与x之间的函数关系式分别为:y1________,y2________;(2)当1号气球位于2号气球的下方5米时,求x的值;(3)当1号气球位于2号气球的上方时,求x的取值范围.40. 某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用-支出费用)y(元)的变化关系如表所示(每位乘客的公交票价是固定不变的):(1)在这个变化过程中,________是自变量,________是因变量;(2)观察表中数据,每月乘客量达到________人以上时,该公交车才不会亏损?(3)请求出y与x的关系式.参考答案与试题解析初中数学八年级下册函数同步专项练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】常量与变量【解析】根据变量和常量的概念解答即可.【解答】解:在某一个变化过程中可以取不同数值的量叫变量,数值始终不变的量叫常量.故由常量与变量的定义可得,在圆的周长公式C=2πR中,2,π是常量,C,R是变量.故选B.2.【答案】A【考点】函数的图象【解析】此题暂无解析【解答】解:A、随着时间的变化,速度在变快,速度不变,速度变慢,速度在变快,速度不变,速度变慢,故A符合题意B、C、D,随着时间的变化,没有出现加速、匀速、减速、加速、匀速、减速的变化,故B、C、D不符合题意.故选A.3.【答案】C【考点】自变量与因变量【解析】因为骆驼的体温随时间的变化而变化,符合“对于一个变化过程中的两个量x和y,对于每一个x的值,y都有唯一的值和它相对应”的函数定义,自变量是时间,因变量是体温.【解答】解:∵骆驼的体温随时间的变化而变化,∴自变量是时间,因变量是体温.故选C.4.【答案】C动点问题的解决方法函数的图象【解析】根据题意、结合图象问题可得.【解答】̂,CD̂,DÊ弧时每段所用时间均为2s,解:由图象可知,两车通过BC通过直行道AB,CG,EF时,每段用时为3s.因此,甲车所用时间为3+2+3=8s,故A正确;̂,DÊ弧长之和,用时为4s,则走40m,根据两车运行路线,从F口驶出比从G口多走CD故B正确;根据两车运行时间,可知甲先驶出,应从G口驶出,故C错误;根据题意立交桥总长为(3×2+3×3)×10=150m,故D正确.故选C.5.【答案】C【考点】函数值【解析】将x=1和x=3分别代入,然后解方程即可得出b的值.【解答】解:由题意得:|1−b|=|3−b|,∴可得:1−b=3−b(舍去)或1−b=b−3,解得b=2.故选C.6.【答案】C【考点】函数的表示方法【解析】婴儿出生体重为4000克,从表格上看:1月体重为4700克,所以每月增长的体重为700克,再由表格依次计算其他月份的体重得出结论.【解答】解:∵婴儿每月增长的体重相同为700克,∴6个月大的婴儿的体重为:700+7500=8200,故选C.7.【答案】B【考点】函数的概念【解析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.解:A、C、D当x取值时,y有唯一的值对应,故选B.8.【答案】C【考点】函数的表示方法常量与变量【解析】由常量与变量的定义可判断(1),再求出每十年的增长率即可判断(2)(3)(4).【解答】解:由表可知,时间和人口总数都在变化,它们都是变量,其中我国人口总数是随时间的变化而变化,时间是自变量,人口是因变量,(1)正确;∵1949∼1959年人口增长率为6.72−5.42×100%≈23.99%,1959∼1969年人口增长5.42×100%≈20.09%,率为8.07−6.726.72×100%≈20.82%,1979∼1989年人口增长率1969∼1979年人口增长率为9.75−8.078.07×100%≈13.54%,为11.07−9.759.75×100%≈13.73%,1989∼1999年人口增长率为12.59−11.0711.07∴1979−1989年10年间人口增长最慢,故(2)正确;1949−1979这30年的增长先减小再增大,故(3)错误;人口增长速度最大的十年达到约24%,故(4)错误;故选:C.9.【答案】B【考点】函数关系式【解析】根据后面每一排都比前一排多1个座位表示出前几排的座位数,即可得出规律,然后求解即可.【解答】解:第一排有20个座位,第二排有21个座位,第三排有22个座位,…,第n排有m=n+19个座位.故选B.10.【答案】D自变量与因变量【解析】此题暂无解析【解答】解:设蓄水池中剩余的水量为y,放水时间为x,x≤40÷2=20,根据题意可列出y与x的关系式为y=40−2x.A,当x=8时,y=40−2×8=24≠25,故A错误;B,当x=20时,y=40−2×20=0≠4,故B错误;C,当x=26时,26>20,故C错误;D,当x=18时,y=40−2×18=4,故D正确.故选D.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】x≤3且x≠2【考点】函数自变量的取值范围【解析】根据分母不能为零且被开方数是非负数,可得答案.【解答】由题意,得3−x>0且x−2≠0,解得x≤3且x≠2,12.【答案】1【考点】函数值【解析】将x=1代入已知函数求解即可.【解答】故答案为1.13.【答案】900【考点】函数的图象【解析】根据折线统计图可知,火车的长度为150米,火车的速度可用火车的长度除以火车本身出(或进)隧道内所用的时间即35−30=5秒,列式计算即可得到火车行驶的速度;隧道的长度等于火车走过的总路程减去火车的长度,可列式为35×30−150,列式计算即可得到答案.【解答】解:由折线图可直接得到火车的长度为150米,火车的速度是:150÷(35−30)=30(米/秒),隧道的长度:35×30−150,=1050−150,=900(米),故答案为:900.14.【答案】ab,a,S,b【考点】函数的概念【解析】根据题意先列出函数关系式,再根据函数的意义可知:变量是改变的量,常量是不变的量,据此即可确定变量与常量.【解答】解:由题意得:S=ab,在该关系式中,当长一定时,a是常量,S,b是变量.故答案为:ab;a;S,b.15.【答案】12【考点】函数的图象动点问题的解决方法【解析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:12×4×6=12.故答案为:12.16.【答案】y=3 2 x【考点】【解析】根据总价=单价×数量列出函数解析式.【解答】解:∵每盒圆珠笔有12支,售价18元,∴每只平均售价为:18=1.5(元),12∴y与x之间的关系是:y=3x.2x.故答案为:y=3217.【答案】年份,入学儿童人数2008【考点】函数的表示方法【解析】(1)因为该表格中的数据近似地呈现了某地区入学儿童人数随年份的变化趋势,所以年份是自变量,入学儿童人数是因变量;(2)由表中的数据可知,每年的入学儿童人数都比上一年减少190人,由题意可列式子(2520−1000)÷190=8,进而可求出答案.【解答】解:(1)年份是自变量,入学儿童人数是因变量;(2)因为每年的入学儿童人数都比上一年减少190人,∴(2520−1000)÷190=8,所以2008年起入学儿童的人数不超过1000人.18.【答案】x≤2且x≠03【考点】函数自变量的取值范围【解析】根据被开方数大于等于0,分母不等于0列式求解即可.【解答】解:由题意得,2−3x≥0且x≠0,且x≠0.解得,x≤23且x≠0.故答案为:x≤2319.【答案】100∘C温度,时间,时间,温度0至8分钟,8至12分钟【考点】常量与变量【解析】(1)表格中上面一行表示的是时间,下面一行表示的是温度,直接读出来即可;(2)反映的温度随着时间的变化而变化的,时间是自变量,温度是因变量;(3)观察表格即可发现哪一个时间段温度上升,哪个时间温度不变.【解答】解:(1)第8分钟时水的温度为100∘C;(2)反映的温度随着时间的变化而变化的,时间是自变量,温度是因变量;(3)观察表格发现在0至8分钟时间内,温度随时间增加而增加;8至12分钟时间内,水的温度不再变化.20.【答案】182 3【考点】函数的图象【解析】应先算出去时的速度:200÷5=40米/分,因为回家时比去时每分钟慢10米,所以可求出回家时的速度,C处的值应是回到家的时间.【解答】解:出去时的速度:200÷5=40米/分,回家时比去时每分钟慢10米,所以回家时的速度为:40−10=30米/分,所以回家需要的时间为:200÷30=623,C处的值是:12+623=1823.故答案为:1823.三、解答题(本题共计 20 小题,每题 10 分,共计200分)21.【答案】解:(1)由图象可得,点P从点B到点C运动的时间是4s,运动的速度是每秒2cm,故BC=4×2=8cm,同理CD=(6−4)×2=4cm,DE=(9−6)×2=6cm,∴AF=BC+DE=14cm,∵AB=6cm,∴图甲的面积是:AB⋅AF−CD⋅DE=6×14−4×6=84−24=60cm2.(2)由图得,a是点P运行4秒时△ABP的面积,∴S△ABP=12×6×8=24,b为点P走完全程的时间为:t=9+1+7=17s,∴a=24b=17.【考点】用图象表示的变量间关系自变量与因变量【解析】此题暂无解析【解答】解:(1)由图象可得,点P从点B到点C运动的时间是4s,运动的速度是每秒2cm,故BC=4×2=8cm,同理CD=(6−4)×2=4cm,DE=(9−6)×2=6cm,∴AF=BC+DE=14cm,∵AB=6cm,∴图甲的面积是:AB⋅AF−CD⋅DE=6×14−4×6=84−24=60cm2.(2)由图得,a是点P运行4秒时△ABP的面积,∴S△ABP=1×6×8=24,2b为点P走完全程的时间为:t=9+1+7=17s,∴a=24b=17.22.【答案】解:(1)如图1,∵当t=1时,AP=1,BP=7,BQ=2∴PQ=√PB2+QB2=√53;(2)∵△PQB是等腰三角形,∠B=90∘,∴BP=BQ,BP=8−t,BQ=2t,∴8−t=2t,;解得t=83(3)当BC=BM时,t=2,当MC=MB时,t=133当CB=CM时,t=4.解:(1)如图1,∵当t=1时,AP=1,BP=7,BQ=2∴PQ=√PB2+QB2=√53;(2)∵△PQB是等腰三角形,∠B=90∘,∴BP=BQ,BP=8−t,BQ=2t,∴8−t=2t,;解得t=83(3)当BC=BM时,t=2,当MC=MB时,t=133当CB=CM时,t=4.【考点】动点问题的解决方法【解析】(1)根据勾股定理解答即可;(2)△PQB是等腰三角形,∠B=90∘,可知BP=BQ,用t表示出BP、BQ的长,列出等式即可解答;(3)分三种情况讨论:当BC=BM时;当MC=MB时;当CB=CM时;列出方程解答即可.(1)根据勾股定理解答即可;(2)△PQB是等腰三角形,∠B=90∘,可知BP=BQ,用t表示出BP、BQ的长,列出等式即可解答;(3)分三种情况讨论:当BC=BM时;当MC=MB时;当CB=CM时;列出方程解答即可.【解答】解:(1)如图1,∵当t=1时,AP=1,BP=7,BQ=2∴PQ=√PB2+QB2=√53;(2)∵△PQB是等腰三角形,∠B=90∘,∴BP=BQ,BP=8−t,BQ=2t,∴8−t=2t,;解得t=83(3)当BC=BM时,t=2当MC=MB时,t=13,3当CB =CM 时,t =4.解:(1)如图1,∵ 当t =1时,AP =1,BP =7,BQ =2∴ PQ =√PB 2+QB 2=√53;(2)∵ △PQB 是等腰三角形,∠B =90∘,∴ BP =BQ ,BP =8−t ,BQ =2t ,∴ 8−t =2t ,解得t =83;(3)当BC =BM 时,t =2当MC =MB 时,t =133,当CB =CM 时,t =4.23.【答案】解:(1)由题意得{x +2≥0,x −1≠0,即{x ≥−2,x ≠1,则x ≥−2且x ≠1.(2)由题意得:{x ≥0,x −2≠0,x +1≠0,即{x ≥0,x ≠2,x ≠−1,则x ≥0且x ≠2.【考点】函数自变量的取值范围【解析】根据分母不等于0,二次根式的被开方数大于等于0,即可得出答案。
(新课标)华东师大版八年级下册17.1.2函数自变量的取值范围.函数值一.选择题(共8小题)1.函数y=中自变量x的取值范围为()A.x>2 B.x≥2 C.x<2 D.x≤22.函数y=中的自变量x的取值范围是()A.x≥0 B.x≠﹣1 C.x>0 D.x≥0且x≠﹣13.在函数y=中,自变量x的取值范围是()A.x>1 B.x<1 C.x≠1 D.x=14.根据如图所示程序计算函数值,若输入的x的值为﹣1,则输出的函数值为()A.1 B.﹣2 C.D.35.下面说法中正确的是()A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的数量关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对6.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:鸭的质量/千克0.5 1 1.5 2 2.5 3 烤制时间/分40 60 80 100 120140 160 180设鸭的质量为x千克,烤制时间为t,估计当x=3.2千克时,t的值为()A.140 B.138 C.148 D.1607.如图,根据流程图中的程序,当输出数值y为1时,输入数值x为()A.﹣8 B.8 C.﹣8或8 D.﹣48.在函数y=中,自变量x的取值范围是()A.x≤1 B.x≥1 C.x<1 D.x>1二.填空题(共6小题)9.函数中,自变量x的取值范围是_________ .10.函数y=中,自变量x的取值范围是_________ .11.函数,当x=3时,y= _________ .12.函数的主要表示方法有_________ 、_________ 、_________ 三种.13.邓教师设计一个计算程序,输入和输出的数据如下表所示:那么当输入数据是正整数n时,输出的数据是_________ .输入数据 1 2 3 4 5 6 …输出数据…14.已知方程x﹣3y=12,用含x的代数式表示y是_________ .三.解答题(共6小题)15.求函数y=的自变量x的取值范围.16.求下列函数的自变量的取值范围.(1)y=x2+5;(2)y=;(3)y=.17.已知函数y=2x﹣3.(1)分别求当x=﹣,x=4时函数y的值;(2)求当y=﹣5时x的值.18.当自变量x取何值时,函数y=x+1与y=5x+17的值相等?这个函数值是多少?19.父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了下面的表格.距离地面高度(千米)0 1 2 3 4 5温度(℃)20 14 8 2 ﹣4 ﹣10根据上表,父亲还给小明出了下面几个问题,你和小明一起回答.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你能猜出距离地面6千米的高空温度是多少吗?20.地壳的厚度约为8到40km,在地表以下不太深的地方,温度可按y=3.5x+t 计算,其中x是深度,t是地球表面温度,y是所达深度的温度.(1)在这个变化过程中,自变量和因变量分别是什么?(2)如果地表温度为2℃,计算当x为5km时地壳的温度.17.1.2函数自变量的取值范围.函数值参考答案与试题解析一.选择题(共8小题)1.函数y=中自变量x的取值范围为()A. x>2 B.x≥2 C.x<2 D.x≤2考点:函数自变量的取值范围.菁优网版权所有专题:函数思想.分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数即可求解.解答:解:根据题意,得x﹣2≥0,解得x≥2.故选:B.点评:考查了函数自变量的范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.2.函数y=中的自变量x的取值范围是()A. x≥0 B.x≠﹣1 C.x>0 D.x≥0且x≠﹣1考点:函数自变量的取值范围.菁优网版权所有专题:计算题.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:x≥0且x+1≠0,解得x≥0,故选:A.点评:本题考查了自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.3.在函数y=中,自变量x的取值范围是()A. x>1 B.x<1 C.x≠1 D.x=1考点:函数自变量的取值范围.菁优网版权所有分析:根据分母不等于0列式计算即可得解.解答:解:由题意得,x﹣1≠0,解得x≠1.故选:C.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.根据如图所示程序计算函数值,若输入的x的值为﹣1,则输出的函数值为()A. 1 B.﹣2 C.D. 3考点:函数值.菁优网版权所有专题:图表型.分析:先根据x的值确定出符合的函数解析式,然后进行计算即可得解.解答:解:x=﹣1时,y=x2=(﹣1)2=1.故选A.点评:本题考查了函数值的求解,根据自变量的取值范围准确确定出相应的函数解析式是解题的关键.5.下面说法中正确的是()A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的数量关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对考点:函数的表示方法.菁优网版权所有分析:表示函数的方法有三种:解析法、列表法和图象法.解答:解:A、两个变量间的关系只能用关系式表示,还能用列表法和图象法表示,故错误;B、图象能直观的表示两个变量间的数量关系,故错误;C、借助表格可以表示出因变量随自变量的变化情况,正确;D、以上说法都不对,错误;故选C.点评:本题考查了函数的三种表示方法:解析法、列表法和图象法.要熟练掌握.6.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:鸭的质量/千克0.5 1 1.5 2 2.5 3 烤制时间/分40 60 80 100 120140 160 180设鸭的质量为x千克,烤制时间为t,估计当x=3.2千克时,t的值为()A. 140 B.138 C.148 D.160考点:函数的表示方法.菁优网版权所有分析:观察表格可知,烤鸭的质量每增加0.5千克,烤制时间增加20分钟,由此可判断烤制时间是烤鸭质量的一次函数,设烤制时间为t分钟,烤鸭的质量为x千克,t与x的一次函数关系式为:t=kx+b,取(1,60),(2,100)代入,运用待定系数法求出函数关系式,再将x=3.2千克代入即可求出烤制时间t.解答:解:从表中可以看出,烤鸭的质量每增加0.5千克,烤制的时间增加20分钟,由此可知烤制时间是烤鸭质量的一次函数.设烤制时间为t分钟,烤鸭的质量为x千克,t与x的一次函数关系式为:t=kx+b,,解得所以t=40x+20.当x=3.2千克时,t=40×3.2+20=148.故选C.点评:本题考查了一次函数的运用.关键是根据题目的已知及图表条件得到相关的信息.7.如图,根据流程图中的程序,当输出数值y为1时,输入数值x为()A.﹣8 B.8 C.﹣8或8 D.﹣4考点:函数值.菁优网版权所有专题:图表型.分析:根据流程,把输出的函数值分别代入函数解析式求出输入的x的值即可.解答:解:∵输出数值y为1,∴①当x≤1时,0.5x+5=1,解得x=﹣8,符合,②当x>1时,﹣0.5x+5=1,解得x=8,符合,所以,输入数值x为﹣8或8.故选C.点评:本题考查了函数值求解,比较简单,注意分两种情况代入求解.8.在函数y=中,自变量x的取值范围是()A. x≤1 B.x≥1 C.x<1 D.x>1考点:函数自变量的取值范围.菁优网版权所有分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,x﹣1≥0,解得x≥1.故选B.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.二.填空题(共6小题)9.函数中,自变量x的取值范围是x≥﹣2且x≠1 .考点:函数自变量的取值范围.菁优网版权所有分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解解答:解:根据题意得:,解得:x≥﹣2且x≠1.故答案是:x≥﹣2且x≠1.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.10.函数y=中,自变量x的取值范围是x≠2 .考点:函数自变量的取值范围;分式有意义的条件.菁优网版权所有专题:计算题.分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不为0.解答:解:要使分式有意义,即:x﹣2≠0,解得:x≠2.故答案为:x≠2.点评:本题主要考查函数自变量的取值范围,考查的知识点为:分式有意义,分母不为0.11.函数,当x=3时,y= ﹣3 .考点:函数值.菁优网版权所有分析:把自变量的值代入函数解析式进行计算即可求解.解答:解:当x=3时,y==﹣3.故答案为:﹣3.点评:本题考查了函数值的求解,把自变量的值代入函数解析式进行计算即可求解,是基础题,比较简单.12.函数的主要表示方法有列表法、图象法、解析式法三种.考点:函数的表示方法.菁优网版权所有专题:推理填空题.分析:根据函数的三种表示法解答即可.解答:解:函数表示两个变量的变化关系,有三种方式:列表法、图象法、解析式法.故答案为列表法、图象法、解析式法.点评:本题考查了函数的表示方法,不论何种形式,符合函数定义即可,函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x).13.邓教师设计一个计算程序,输入和输出的数据如下表所示:那么当输入数据是正整数n时,输出的数据是.输入数据 1 2 3 4 5 6 …输出数据…考点:函数的表示方法.菁优网版权所有专题:计算题;规律型.分析:分析可得:各个式子分子是输入的数字,分母是其3倍减1,故当输入数据是正整数n时,即可求得输出的值.解答:解:∵各个式子分子是输入的数字,分母是其3倍减1,∴当输入数据是正整数n时,输出的数据是.点评:本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.14.已知方程x﹣3y=12,用含x的代数式表示y是y=x﹣4 .考点:函数的表示方法.菁优网版权所有分析:要用含x的代数式表示y,就要将二元一次方程变形,用一个未知数表示另一个未知数.先移项,再将系数化为1即可.解答:解:移项得:﹣3y=12﹣x,系数化为1得:y=x﹣4.故答案为:y=x﹣4.点评:考查了函数的表示方法,解题时可以参照一元一次方程的解法,利用等式的性质解题,可以把一个未知数当做已知数来处理.三.解答题(共6小题)15.求函数y=的自变量x的取值范围.考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.菁优网版权所有专题:计算题.分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数>等于0,分母不等于0,就可以求解.解答:解:根据二次根式的意义,被开方数4+2x≥0,解得x≥﹣2;根据分式有意义的条件,x﹣1≠0,解得x≠1,因为x≥﹣2的数中包含1这个数,所以自变量的范围是x≥﹣2且x≠1.点评:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.16.求下列函数的自变量的取值范围.(1)y=x2+5;(2)y=;(3)y=.考点:函数自变量的取值范围.菁优网版权所有分析:(1)根据对任意实数,多项式都有意义,即可求解;(2)根据分母不等于0,即可求解;(3)根据任意数的平方都是非负数即可求解.解答:解:(1)x是任意实数;(2)根据题意得:x+4≠0,则x≠﹣4;(3)x是任意实数.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.17.已知函数y=2x﹣3.(1)分别求当x=﹣,x=4时函数y的值;(2)求当y=﹣5时x的值.考点:函数值.菁优网版权所有分析:(1)把x的值分别代入函数关系式计算即可得解;(2)把函数值代入函数关系式,解关于x的一元一次方程即可.解答:解:(1)x=﹣时,y=2×(﹣)﹣3=﹣1﹣3=﹣4,x=4时,y=2×4﹣3=8﹣3=5;(2)y=﹣5时,2x﹣3=﹣5,解得x=﹣1.点评:本题考查了函数值求解,已知函数值求自变量,是基础题,准确计算是解题的关键.18.当自变量x取何值时,函数y=x+1与y=5x+17的值相等?这个函数值是多少?考点:函数值.菁优网版权所有分析:根据函数值相等,自变量相等,可得方程组,根据解方程组,可得答案.解答:解:由题意得,解得,当x=﹣时,函数y=x+1与y=5x+17的值相等,这个函数值是﹣15.点评:本题考查了函数值,利用了函数值相等,自变量相等得出方程组是解题关键.19.父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了下面的表格.距离地面高度(千米)0 1 2 3 4 5温度(℃)20 14 8 2 ﹣4 ﹣10根据上表,父亲还给小明出了下面几个问题,你和小明一起回答.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你能猜出距离地面6千米的高空温度是多少吗?考点:函数的表示方法.菁优网版权所有专题:应用题.分析:(1)根据图表,反映的是距离地面的高度和温度两个量,所以温度和高度是两个变化的量,温度随高度的变化而变化;(2)根据表格数据,高度越大,时间越低,所以随着高度的h的增大,温度t 在减小;(3)求出当h=6时温度t的值即可.解答:解:(1)上表反映了温度和高度两个变量之间.高度是自变量,温度是因变量.(2)如果用h表示距离地面的高度,用t表示温度,那么随着高度h的增大,温度t逐渐减小(或降低).(3)距离地面6千米的高空温度是﹣16℃.点评:本题是对函数定义的考查和图表的识别,自变量、因变量的区分对初学函数的同学来说比较困难,需要在学习上多下功夫.20.地壳的厚度约为8到40km,在地表以下不太深的地方,温度可按y=3.5x+t 计算,其中x是深度,t是地球表面温度,y是所达深度的温度.(1)在这个变化过程中,自变量和因变量分别是什么?(2)如果地表温度为2℃,计算当x为5km时地壳的温度.考点:函数值;常量与变量.菁优网版权所有专题:应用题.分析:(1)因为温度可按y=3.5x+t计算,其中x是深度,t是地球表面温度,y是所达深度的温度,所以自变量是x,因变量是y.(2)令t=2,x=5,代入函数解析式,即可求解.解答:(1)解:自变量是地表以下的深度x,因变量是所达深度的温度y;(2)解:当t=2,x=5时,y=3.5×5+2=19.5;所以此时地壳的温度是19.5℃.点评:本题只需利用函数的概念即可解决问题.。
2019年八年级数学下册变量与函数课后练习一、选择题:1、变量x,y有如下关系:①x+y=10;②y=;③y=|x-3;④y2=8x.其中y是x的函数的是( ).A.①②②③④B.①②③C.①②D.①2、在圆的周长C=2πr中,常量与变量分别是( ).A.2是常量,C、π、r是变量B.2是常量,C、r是变量C.C、2是常量,r是变量D.2是常量,C、r是变量3、小明在书上看到了一个实验:如右图,一个盛了水的圆柱形容器内,有一个顶端拴了一根细绳的实心铁球,将铁球从水面下沿竖直方向慢慢地匀速向上拉动.小明将此实验进行了改进,他把实心铁球换成了材质相同的别的物体,记录实验时间t以及容器内水面的高度h,并画出表示h与t的函数关系的大致图象.如图所示.小明选择的物体可能是()4、下列曲线中,不能表示y是x的函数的是( )5、下列四幅图像近似刻画了两个变量之间的关系,图像与下列四种情景对应排序正确的是( )①一辆汽车在公路上匀速行驶 (汽车行驶的路程与时间的关系);②向锥形瓶中匀速注水 (水面的高度与注水时间的关系);③将常温下的温度计插入一杯热水中 (温度计的读数与时间的关系);④一杯越来越凉的水 (水温与时间的关系).A.①②④③B.③④②①C.①④②③D.③②④①6、根据如图的程序,计算当输入值x=-2时,输出结果y为()A.1;B.5;C.7;D.以上都有可能;7、小明同学准备从家打车去南坪,出门后发现到了拥堵使得车辆停滞不前,等了几分钟后他决定步行前往地铁站乘地铁直达南坪站(忽略中途等站和停靠站的时间),在此过程中,他离南坪站的距离y(km)与时间x(h)的函数关系的大致图象是()8、小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿,接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会儿,小华继续录入并加快了录入速度,直至录入完成,设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x 之间的关系的大致图象是()9、小丽的父亲饭后去散步,从家中走20分钟到离家1000米的报亭看了10分钟的报纸后,用15分钟返回家里,下列各图中表示小丽父亲离家的时间与距离之间的关系是()10、清清从家步行到公交车站台,等公交车去学校.下公交车后又步行了一段路程才到学校.图中的折线表示清清的行程s(米)与所花时间t (分)之间的函数关系.下列说法错误的是()A.清清等公交车时间为3分钟B.清清步行的速度是80米/分C.公交车的速度是500米/分D.清清全程的平均速度为290米/分二、填空题:11、在函数y=中,自变量x的取值范围是.12、小明根据某个一次函数关系式填写了下面的这张表, 其中有一格不慎被墨迹遮住了,想想看,表中空格原来填的数是 .13、一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧剩下的高度h(cm)随燃烧时间t(时)变化,请写出函数关系式14、明星中学计划投资8万元购买学生用电脑,则所购电脑的台数n(台)与单价x(万元)之间的关系是,其中________是常量,_______是变量.15、随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势:(1)上表中_____是自变量,_____是因变量.(2)你预计该地区从_____年起入学儿童的人数不超过1 000人.16、如图所示表示“龟兔赛跑”时路程与时间的关系,已知龟、兔上午8:00从同一地点出发,请你根据图中给出的信息,算出乌龟在点追上兔子.三、解答题:17、科学家研究发现,声音在空气中传播的速度y(米/秒)与气温x(℃)有关,当气温是0 ℃时,音速是331米/秒;当气温是5 ℃时,音速是334米/秒;当气温是10 ℃时,音速是337米/秒;当气温是15 ℃时,音速是340米/秒;当气温是20 ℃时,音速是343米/秒;当气温是25 ℃时,音速是346米/秒;当气温是30 ℃时,音速是349米/秒.(1)请你用表格表示气温与音速之间的关系;(2)表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(3)当气温是35 ℃时,估计音速y可能是多少?(4)能否用一个式子来表示两个变量之间的关系?18、写出下列各问题中的关系式中的常量与变量:(1)分针旋转一周内,旋转的角度n(度)与旋转所需要的时间t(分)之间的关系式n=6t;(2)某市居民用电价格是0.58元/度,居民生活应付电费y(元)与用电量x(度)之间满足y=0.58x.19、在一次实验中,小明把一根弹簧的上端固定.在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?(3)若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?20、已知如图,一天上午6点钟,言老师从学校出发,乘车上市里开会,8点准时到会场,中午12点钟回到学校,他这一段时间内的行程s(km)(即离开学校的距离)与时间(时)的关系可用图中的折线表示,根据图中提供的有关信息,解答下列问题:(1)开会地点离学校多远?(2)请你用一段简短的话,对言老师从上午6点到中午12点的活动情况进行描述.21、周六上午8:00小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动2.2小时后,因家里有急事,他立即按原路以4千米/时的平均速度步行返回.同时爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇。
八年级数学19.1.1《变量与函数》课时练习一、选择题:1、函数y=x2+2x+2中自变量的取值范围为():A.全体实数B.正数C. 非负数D.x>12、已知等腰三角形的周长为20,腰为x,底边为y,请写出y与x之间的函数关系式为()A. y=20-2xB. y=20+2xC. y=10-2xD. y=10+2x3、判断下列各点中是在函数y=x+0.5的图象上的是( )A.(-4,-4.5)B.(4,4.5)C. (4,3.5)D. (-4,4.5)4、甲、乙两地相距S千米,某人行完全程所用的时间t(时)与他的速度v(千米/时)满足vt=S,在这个变化过程中,下列判断中错误的是()A.S是变量 B.t是变量 C.v是变量 D.S是常量5、一辆汽车的油箱中现有汽油30L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减少,平均耗油量为0.2L/km。
表示y与x的函数关系的式子为()A.y = 30-0.2xB. y = 30+0.2xC. y = 20-0.2xD. y = 30-0.3x6、一个正方形的边长为3cm,它的各边长减少x cm后,得到的新正方形周长为ycm。
求y 和x间的关系式为()A. y=4(3-x)B. y=4(x-3)C. y=2(3-x)D. y=4(3+x)7、小军用100元钱去买单价是6元的笔记本,则他剩余的钱Q•(元)与他买这种笔记本的本数x之间的关系是()A.Q=6x B.Q=6x-100 C.Q=100-6x D.Q=6x+1008、函数y=3x-12-x+21-x中,自变量x的取值范围是()A.x≤2 B.x≤2且x≠1C.x<2且x≠1 D.x≠19、若点p在第二象限,且p点到x轴的距离为3,到y轴的距离为1,则p点的坐标是()A.(-1,3)B.(-,1)C.(,-1)D.(1,-3)10、一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:千米)的增加而减少,平均耗油量为0.1L/千米。
变量与函数 水平测试
一、试试你的身手(每小题3分,共24分)
1.矩形的面积为S ,则长a 和宽b 之间的关系为S = ,当长一定时, 是常量, 是变量.
2.飞船每分钟转30转,用函数解析式表示转数n 和时间t 之间的关系式是 .
3.函数y =
x 的取值范围是 .
4.函数21y x =-中,当4x =-时,y = ,当4y =时,x = .
5.点(1
)A m ,在函数2y x =的图象上,则点A 的坐标是 . 6.函数2237y x x =++中自变量的取值范围为 .
7.下列:①2y x =;②21y x =+;③22(0)y x x =≥;④0)y x =≥,具有函数关系(自变量为x )的是 .
8.圆的面积2
S r =π中,自变量r 的取值范围是 . 二、相信你的选择(每小题3分,共24分)
1.在圆的周长公式2C r =π中,下列说法错误的是( ) A .C r π,,是变量,2是常量 B .C r ,是变量,2π是常量 C .r 是自变量,C 是r 的函数
D .将2C r =π写成2C
r =
π
,则可看作C 是自变量,r 是C 的函数 2.在下表中,设x 表示乘公共汽车的站数,y 表示应付的票价(元)
根据此表,下列说法正确的是( ) A .y 是x 的函数 B .y 不是x 的函数 C .x 是y 的函数
D .以上说法都不对
3.n 边形的内角和(2)180s n =-
,其中自变量n 的取值范围是( ) A .全体实数
B .全体整数
C .3n ≥
D .大于或等于3的整数
4.油箱中有油20升,油从管道中匀速流出,100分钟流成.油箱中剩油量Q (升)与流出的时间t (分)间的函数关系式是( ) A .205Q t =-
B .1
205
Q t =
+ C .1205
Q t =-
D .15
Q t =
5.根据下表写出函数解析式( )
A .3y x =+
B .3y x =
C .0.51y x =+
D .0.13y x =+
6.如果每盒圆珠笔有12支,售价为18元,那么圆珠笔的售价y (元)与支数x 之间的函数关系式为( ) A .3
2
y x =
B .2
3
y x =
C .12y x =
D .18y x =
7.设等腰三角形(两底角相等的三角形)顶角的度数为y ,底角的度数为x ,则有( ) A .1802y x =-(x 为全体实数) B .1802(090)y x x =-≤≤ C .1802(090)y x x =-<<
D .1
180(090)2
y x x =-
<< 8.下列有序实数对中,是函数21y x =-中自变量x 与函数值y 的一对对应值的是( )
A .( 2.54)-,
B .(0.250.5)-,
C .(13),
D .(2.54),
三、挑战你的技能(共40分)
1.(10分)如图1是襄樊地区一天的气温随时间变化的图象,根据图象回答:在这一天中:
(1)气温T (℃) (填“是”或“不是”)时间t (时)的函数.
(2) 时气温最高, 时气温最低,最高汽温是 ℃,最低气温是 ℃. (3)10时的气温是 ℃. (4) 时气温是4℃.
(5) 时间内,气温不断上升. (6) 时间内,气温持续不变.
2.(10分)按图2方式摆放餐桌和椅子.若用x 来表示餐桌的张数,y 来表示可坐人数,则随着餐桌数的增加:
(1)题中有几个变量?
(2)你能将其中的一个变量看成是另一个变量的函数吗?如果是,写出函数解析式.
3.(10分)已知水池中有800立方米的水,每小时抽50立方米.
(1)写出剩余水的体积Q立方米与时间t(时)之间的函数关系式.
(2)写出自变量t的取值范围.
(3)10小时后,池中还有多少水?
(4)几小时后,池中还有100立方米的水?
4.(10分)某市第五中学校办工厂今年产值是15万元,计划今后每年增加2万元.(1)写出年产值y(万元)与今后年数x之间的函数关系式.
(2)画出函数图象.
(3)求5年后的年产值.
四、拓广探索(本题12分)
如图3所示,结合表格中的数据回答问题:
(1)设图形的周长为l ,梯形的个数为n ,试写出l 与n 的函数解析式. (2)求当11n =时的图形的周长.
参考答案:
一、1.ab ,a ,S ,b
2.30n t = 3.2x ≥
4.9-,
52
5.(12),
6.全体实数
7.①②
8.0r >
二、1~4.AADC 5~8.DACD
三、1.(1)是;(2)16,2,10,2-; (3)5;
(4)9时和22时;
(5)2时至12时及14时到16时. 2.(1)有2个变量;
(2)能,函数关系式可以为42y x =+(答案不惟一) 3.(1)80050Q t =-; (2)016t ≤≤; (3)300立方米; (4)14小时后 4.(1)215y x =+; (2)图略;
(3)5年后年产值为25万元 四、(1)32l n =+;
(2)11n =时,图形周长为35。