高中物理竞赛教程(超详细)第十八讲原子物理
- 格式:doc
- 大小:290.00 KB
- 文档页数:17
准兑市爱憎阳光实验学校高三物理第十八章原子结构第1~4节【本讲信息】一. 教学内容:3—5第十八章原子结构第一节电子的发现第二节原子的核式结构模型第三节氢原子光谱第四节玻尔的原子模型二. 知识内容〔一〕1. 阴极射线:阴极射线的本质是带负电的粒子流,后来,组成阴极射线的粒子被称为电子。
2. 电子的发现:1897年英国的物理学家汤姆孙发现了电子,并求出了这种粒子的比荷。
〔二〕1. 汤姆孙的原子模型:原子是一个球体,正电荷弥漫性地均匀分布在整个球体内,电子镶嵌其中,有人形象地把汤姆孙模型称为“西瓜模型〞或“枣糕模型〞。
2. a粒子散射:〔1〕a粒子:a粒子是从放射性物质中发射出来的快速运动的粒子,带有两个单位的正电荷,质量为氢原子质量的4倍。
〔2〕现象:绝大多数a粒子穿过金箔后,根本上仍沿原来的方向,但有少数a粒子〔约占八千分之一〕发生了大角度偏转,偏转的角度甚至大于900,也就是说它们几乎被“撞了回来〞。
〔3〕卢瑟福核式结构模型:原子中带正电的体积很小,但几乎占有质量,电子在正电体的外面运动。
按照卢瑟福的理论,正电体被称为原子核,卢瑟福的原子模型因而被称为核式结构模型。
3. 原子核的电荷与尺度:〔1〕电荷:原子核是由质子和中子组成的,原子核的电荷数就是核中的质子数。
〔2〕尺度:对于一般的原子核,核半径的数量级为10-16m,而整个原子半径的数量级是10-10m,两者相差十万倍之多,可见原子内部是十分“空旷〞的。
〔三〕1. 光谱:〔1〕义:把光按波长的大小分开,获得光的波长〔频率〕成分和强度分布的记录。
即光谱。
〔2〕分类:光谱分为线状谱和连续谱。
〔3〕特征:线状谱是一条条分立的亮线;连续谱是一条连续的光带。
2. 原子光谱:〔1〕义:各种原子的发射光谱都是线状谱,不同原子的亮线位置不同,把这些亮线称为原子的特征谱线。
〔2〕光谱分析:每种原子都有自己的特征谱线,我们可以用它来鉴别物质和确物质的组分,这种方法称为光谱分析。
高中物理竞赛原子物理教案教学内容:原子物理
教学目标:
1. 理解原子结构和原子核的基本概念;
2. 掌握原子核的组成和性质;
3. 熟练掌握原子核的稳定性和放射性研究方法;
4. 了解核反应和核能的应用。
教学重点:
1. 原子结构和原子核的组成;
2. 原子核的稳定性和放射性;
3. 核反应和核能的应用。
教学难点:
1. 掌握原子核的结构和性质;
2. 理解核反应的基本原理。
教学过程:
一、导入:介绍原子结构和原子核的基本概念。
二、讲解:原子核的组成和性质。
1. 原子核的结构和组成:质子、中子和电子;
2. 原子核的性质:电荷数、质量数、核反应等。
三、探究:原子核的稳定性和放射性。
1. 原子核的稳定性:结合能、核力等因素;
2. 放射性的种类和性质:α、β、γ辐射。
四、活动:实验测定原子核的放射性活度。
五、拓展:核反应和核能的应用。
1. 核反应的原理和种类;
2. 核能在能源领域的应用。
六、总结:回顾本节课的重点内容,核实学生的学习情况。
教学资源:
1. 教材:高中物理教科书;
2. 实验器材:放射性测量仪器;
3. 图表资料:有关原子物理的图片和实验数据。
教学评估:
1. 课堂随堂测试;
2. 学生课后练习;
3. 实验报告和讨论。
以上是关于高中物理竞赛原子物理教案范本,希望可以帮助到您的教学工作。
祝教学顺利!。
高中物理第十八章(原子结构)教案设计与知识点解析18.1 电子的发现三维教学目标1、知识与技能(1)了解阴极射线及电子发现的过程;(2)知道汤姆孙研究阴极射线发现电子的实验及理论推导。
2、过程与方法:培养学生对问题的分析和解决能力,初步了解原子不是最小不可分割的粒子。
3、情感、态度与价值观:理解人类对原子的认识和研究经历了一个十分漫长的过程,这一过程也是辩证发展的过程,根据事实建立学说,发展学说,或是决定学说的取舍,发现新的事实,再建立新的学说。
人类就是这样通过光的行为,经过分析和研究,逐渐认识原子的。
教学重点:阴极射线的研究。
教学难点:汤姆孙发现电子的理论推导。
教学方法:实验演示和启发式综合教学法。
教学用具:投影片,多媒体辅助教学设备。
教学过程:第一节电子的发现(一)引入新课很早以来,人们一直认为构成物质的最小粒子是原子,原子是一种不可再分割的粒子。
这种认识一直统治了人类思想近两千年。
直到19世纪末,科学家对实验中的阴极射线深入研究时,发现了电子,使人类对微观世界有了新的认识。
电子的发现是19世纪末、20世纪初物理学三大发现之一。
(二)进行新课1、阴极射线气体分子在高压电场下可以发生电离,使本来不带电的空气分子变成具有等量正、负电荷的带电粒子,使不导电的空气变成导体。
问题:是什么原因让空气分子变成带电粒子的?带电粒子从何而来的?史料:科学家在研究气体导电时发现了辉光放电现象。
1858年德国物理学家普吕克尔较早发现了气体导电时的辉光放电现象。
德国物理学家戈德斯坦研究辉光放电现象时认为这是从阴极发出的某种射线引起的。
所以他把这种未知射线称之为阴极射线。
对于阴极射线的本质,有大量的科学家作出大量的科学研究,主要形成了两种观点。
(1)电磁波说:代表人物,赫兹。
认为这种射线的本质是一种电磁波的传播过程。
(2)粒子说:代表人物,汤姆孙。
认为这种射线的本质是一种高速粒子流。
思考:你能否设计一个实验来进行阴极射线的研究,能通过实验现象来说明这种射线是一种电磁波还是一种高速粒子流。
学习好资料 欢迎下载第一讲原子物理自1897年发现电子并确认电子是原子的组成粒子以后,物理学的中心问题就是探索原子内部的奥秘,经过众多科学家的努力,逐步弄清了原子结构及其运动变化的规律并建立了描述分子、原子等微观系统运动规律的理论体系——量子力学。
本章简单介绍一些关于原子和原子核的基本知识。
§1.1 原子1.1.1、原子的核式结构1897年,汤姆生通过对阴极射线的分析研究发现了电子,由此认识到原子也应该具有内部结构,而不是不可分的。
1909年,卢瑟福和他的同事以α粒子轰击重金属箔,即α粒子的散射实验,发现绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数发生偏转,并且有极少数偏转角超过了90°,有的甚至被弹回,偏转几乎达到180°。
1911年,卢瑟福为解释上述实验结果而提出了原子的核式结构学说,这个学说的内容是:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外的空间里软核旋转,根据α粒子散射的实验数据可估计出原子核的大小应在10-14nm 以下。
1、1.2、氢原子的玻尔理论 1、核式结论模型的局限性通过实验建立起来的卢瑟福原子模型无疑是正确的,但它与经典论发生了严重的分歧。
电子与核运动会产生与轨道旋转频率相同的电磁辐射,运动不停,辐射不止,原子能量单调减少,轨道半径缩短,旋转频率加快。
由此可得两点结论:①电子最终将落入核内,这表明原子是一个不稳定的系统; ②电子落入核内辐射频率连续变化的电磁波。
原子是一个不稳定的系统显然与事实不符,实验所得原子光谱又为波长不连续分布的离散光谱。
如此尖锐的矛盾,揭示着原子的运动不服从经典理论所表述的规律。
为解释原子的稳定性和原子光谱的离经叛道的离散性,玻尔于1913年以氢原子为研究对象提出了他的原子理论,虽然这是一个过渡性的理论,但为建立近代量子理论迈出了意义重大的一步。
2、玻尔理论的内容:一、原子只能处于一条列不连续的能量状态中,在这些状态中原子是稳定的,电子虽做加速运动,但并不向外辐射能量,这些状态叫定态。
第4节玻尔的原子模型1.丹麦物理学家玻尔提出玻尔原子理论的基本假设。
(1)定态假设:原子只能处于一系列不连续的能量状态之中,这些状态中能量是稳定的。
(2)跃迁假设:原子从一个定态跃迁到另一个定态,辐射或吸收一定频率的光子。
hν=Em-En。
(3)轨道假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。
2.氢原子的轨道半径rn=n2r1,n=1,2,3,…氢原子的能量:En=1n2E1,n=1,2,3,…一、玻尔原子理论的基本假设1.玻尔原子模型(1)原子中的电子在库仑力的作用下,绕原子核做圆周运动。
(2)电子绕核运动的轨道是量子化的。
(3)电子在这些轨道上绕核的转动是稳定的,且不产生电磁辐射。
2.定态(1)当电子在不同轨道上运动时,原子处于不同的状态,原子在不同的状态中具有不同的能量,即原子的能量是量子化的,这些量子化的能量值叫作能级。
(2)原子中这些具有确定能量的稳定状态,称为定态。
能量最低的状态叫作基态,其他的状态叫作激发态。
3.跃迁(1)当电子从能量较高的定态轨道(其能量记为E m)跃迁到能量较低的定态轨道(能量记为E n,m>n)时,会放出能量为hν的光子,这个光子的能量由前、后两个能级的能量差决定,即hν=E m-E n,该式被称为频率条件,又称辐射条件。
(2)反之,当电子吸收光子时会从较低的能量态跃迁到较高的能量态,吸收的光子的能量同样由频率条件决定。
二、玻尔理论对氢光谱的解释1.解释巴耳末公式(1)按照玻尔理论,从高能级跃迁到低能级时辐射的光子的能量为hν=E m-E n。
(2)巴耳末公式中的正整数n和2正好代表能级跃迁之前和之后所处的定态轨道的量子数n和2。
并且理论上的计算和实验测量的里德伯常量符合得很好。
2.解释氢原子光谱的不连续性原子从较高能级向低能级跃迁时放出光子的能量等于前后两个能级差,由于原子的能级是分立的,所以放出的光子的能量也是分立的,因此原子的发射光谱只有一些分立的亮线。
4 玻尔的原子模型互动课堂疏导引导1.玻尔原子模型的主要物理思想(1)轨道量子化:轨道半径只能够是一些不连续的、某些分立的数值.模型中保留了卢瑟福的核式结构.但他认为核外电子的轨道是不连续的,它们只能在某些可能的、分立的轨道上运动,而不是像行星或卫星那样,能量大小可以是任意的数值.例如,氢原子的电子最小轨道半径为r 1=0.053 nm ,其余可能的轨道半径还有0.212 nm 、0.477 nm 、…不可能出现介于这些轨道之间的其他值.这样的轨道形式称为轨道量子化.(2)能量量子化:与轨道量子化对应的能量不连续的现象.电子在可能轨道上运动时,尽管是变速运动,但它并不释放能量,原子是稳定的,这样的状态也称之为定态.由于原子的可能状态(定态)是不连续的,具有的能量也是不连续的,这样的能量形式称为能量量子化.(3)跃迁:原子从一种定态(设能量为E 2)跃迁到另一种定态(设能量为E 1)时,它辐射或吸收一定频率的光子,光子的能量由这两种定态的能量差决定,即hν=E 2-E 1.可见,电子如果从一个轨道到另一个轨道,不是以螺旋线的形式改变半径大小的,而是从一个轨道上“跳迁”到另一个轨道上.玻尔将这种现象称作电子的跃迁.总而言之:根据玻尔的原子理论假设,电子只能在某些可能轨道上运动,电子在这些轨道上运动时不辐射能量,处于定态.只有电子从一条轨道跃迁到另一条轨道上时才辐射能量,辐射的能量是一份一份的,等于这两个定态的能量差.这就是玻尔理论的主要内容.2.氢原子的能级 丹麦物理学家玻尔提出了能级的理论,他认为氢原子的能级满足2n Rhc E n =,n=1,2,3,…式中R 为里德伯常数,h 为普朗克常量,c 为光速,n 为正整数,或121E nE n =,n=1,2,3,….其中E 1=-13.6 eV. 根据玻尔理论,当氢原子从高能级跃迁到低能级时以光子的形式放出能量.原子在始、末两个能级E m 和E n (m >n )间跃迁时,辐射光子的能量等于前后两个能级能量之差(hν=E m -E n ),由于原子的能级不连续,所以辐射的光子的能量也不连续,因此产生的光谱是分立的线状光谱.(如图1841)图18-4-1同样原子也只能吸收一些特定频率的光子,但是,当光子能量足够大时,如光子能量E≥13.6 eV 时,则氢原子仍能吸收此光子并发生电离.当电子从一激发态向任意一低能级跃迁时放出光子;当电子从一低能级向高能级跃迁时吸收光子.3.夫兰克—赫兹实验(1)实验方法:使电子通过低压汞蒸气,测量电子与汞原子碰撞前后损失的能量,同时测定汞原子在这些碰撞中获得的能量.(2)实验现象:当电子以很小的动能碰撞汞原子时,电子通过汞蒸气后能量几乎不变.这是因为汞原子质量是电子的几十万倍,当电子动能较小时,汞原子只吸收很少一部分动能,当电子的动能增加到5eV 时,这时电子和汞原子碰撞时,几乎准确地损失4.9eV 的能量.当电子动能增加到6 eV 时,电子与汞原子碰撞也仍然只损失4.9 eV 的能量.这表明,汞原子不能吸收小于4.9 eV 的能量;当提供的能量比4.9 eV 稍微多一点时,它也仍然只接受4.9 eV.由此可以认为,汞原子有一个比它的最低能级大4.9eV 能量的定态,在这个能级和其他能级之间不存在其他的能级.4.电子云描写原子或分子中电子在原子核外围各区域出现的几率的状况时,为直观起见,把电子的这种几率分布状况用图象表示时,以不同的浓淡程度代表几率的大小,这种图象所显示的结果,如电子在原子核周围形成云雾,故称“电子云”.在距原子核很远的地方,电子出现的几率几乎等于零,意味着不可能在那里发现电子;有些非常靠近核的区域,其几率也是零,也是无法发现电子的区域.活学巧用【例1】氢原子从处于n=a 的激发态自发地直接跃迁到n=b 的激发态,已知a >b ,在此过程中( )A.原子要发出一系列频率的光子B.原子要吸收一系列频率的光子C.原子要发出某一频率的光子D.原子要吸收某一频率的光子思路解析:氢原子从高能级向低能级跃迁,而且直接跃迁,故原子要发出某一频率的光子,故仅C 正确. 答案:C【例2】试计算处于基态的氢原子吸收波长为多少的光子,电子可以跃迁到n=2的轨道上.思路解析:氢原子基态对应的能量E 1=-13.6 eV,电子在n=2轨道上时,氢原子的能量为E 2=E 1/22=-3.4 eV.氢原子核外电子从第一轨道跃迁到第二轨道需要的能量:ΔE=E 2-E 1=10.2 eV=1.632×10-18J由玻尔氢原子理论有:hν=ΔE,又ν=c/λ,所以E ch ∆=λ1834810632.11063.6103--⨯⨯⨯⨯=∆=E ch λm=1.22×10-7m. 答案:1.22×10-7m【例3】有一群氢原子处于n=4的能级上,已知氢原子的基态能量E 1=-13.6eV,普朗克常量h=6.63×10-34J·s,求:(1)这群氢原子的光谱共有几条谱线?(2)这群氢原子发出的光子的最大频率是多少?思路解析:(1)这群氢原子的能级如图18-4-2所示,由图可以判断,这群氢原子可能发生的跃迁共有6种,所以它们的谱线共有6条.图18-4-2(2)频率最大的光子能量最大,对应的跃迁能级差也最大,即从n=4跃迁到n=1发出的光子能量最大,根据玻尔第二假设,发出光子的能量:)4111(221--=E hv代入数据,解得:ν=3.1×1015Hz.答案:(1)6 (2)3.1×1015Hz【例4】氢原子的基态能量是E1=-13.6 eV,当电子在第3条轨道上运动时,用它跃迁回基态时辐射的光子去照射极限频率为6.0×1014 Hz的金属钠,是否会发生光电效应?思路解析:E3=-1.51 eV,hν=E3-E1,代入数值可求得ν=2.92×1015Hz,大于金属钠的极限频率为6.0×1014Hz,所以会发生光电效应现象.答案:会发生光电效应现象【例5】对于基态氢原子,下列说法中正确的是()A.它能吸收10.2 eV的光子B.它能吸收11 eV的光子C.它能吸收14 eV的光子D.它能吸收具有11 eV动能的电子的部分动能思路解析:氢原子与光子和实物粒子的作用是不同的,对于能量小于氢原子电离能(13.6 eV)的光子,只有其能量刚好能使氢原子向高能级跃迁的光子才能被基态氢原子吸收,否则不能吸收;对于能量等于或大于氢原子电离能的光子,则能被氢原子吸收而使氢原子电离,多余的能量变为自由电子的动能.对于实物粒子,只要其动能满足使氢原子向高能级跃迁,使能被氢原子吸收全部或部分动能而使氢原子向高能级跃迁,多余的能量仍为实物粒子的动能.总之,氢原子只能吸收整个光子,而却能吸收实物粒子的部分动能.10.2 eV刚好是氢原子n=1和n=2两能级能量之差,而11eV则不是氢原子基态和任一激发态间的能量之差,因而A正确B错误.基态氢原子能吸收14eV的光子而被电离,且电离后的自由电子获得0.4 eV的动能,故C正确.基态氢原子也能吸收具有11 eV动能的电子一部分动能(10.2 eV)而跃迁到n=2的定态,使与之作用的电子剩余0.8 eV的动能,可见应选A、C、D.答案:ACD【例6】说一说你对“电子云”的理解.思路解析:电子云是一种形象化的比喻.电子在原子核外空间的某区域内出现,好像带负电荷的云笼罩在原子核的周围,人们形象地称它为电子云.电子是一种微观粒子,在原子如此小的空间(直径约10-10m)内做高速运动.核外电子的运动与宏观物体运动不同,没有确定的方向和轨迹,只能用电子云描述它在原子核外空间某处出现几率的大小.答案:见“思路解析”.高考理综物理模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
第一讲 原 子 物 理自1897年发现电子并确认电子是原子的组成粒子以后,物理学的中心问题就是探索原子内部的奥秘,经过众多科学家的努力,逐步弄清了原子结构及其运动变化的规律并建立了描述分子、原子等微观系统运动规律的理论体系——量子力学。
本章简单介绍一些关于原子和原子核的基本知识。
§1.1 原子1.1.1、原子的核式结构1897年,汤姆生通过对阴极射线的分析研究发现了电子,由此认识到原子也应该具有内部结构,而不是不可分的。
1909年,卢瑟福和他的同事以α粒子轰击重金属箔,即α粒子的散射实验,发现绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数发生偏转,并且有极少数偏转角超过了90°,有的甚至被弹回,偏转几乎达到180°。
1911年,卢瑟福为解释上述实验结果而提出了原子的核式结构学说,这个学说的内容是:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外的空间里软核旋转,根据α粒子散射的实验数据可估计出原子核的大小应在10-14nm 以下。
1、1.2、氢原子的玻尔理论 1、核式结论模型的局限性通过实验建立起来的卢瑟福原子模型无疑是正确的,但它与经典论发生了严重的分歧。
电子与核运动会产生与轨道旋转频率相同的电磁辐射,运动不停,辐射不止,原子能量单调减少,轨道半径缩短,旋转频率加快。
由此可得两点结论:①电子最终将落入核内,这表明原子是一个不稳定的系统; ②电子落入核内辐射频率连续变化的电磁波。
原子是一个不稳定的系统显然与事实不符,实验所得原子光谱又为波长不连续分布的离散光谱。
如此尖锐的矛盾,揭示着原子的运动不服从经典理论所表述的规律。
为解释原子的稳定性和原子光谱的离经叛道的离散性,玻尔于1913年以氢原子为研究对象提出了他的原子理论,虽然这是一个过渡性的理论,但为建立近代量子理论迈出了意义重大的一步。
2、玻尔理论的内容:一、原子只能处于一条列不连续的能量状态中,在这些状态中原子是稳定的,电子虽做加速运动,但并不向外辐射能量,这些状态叫定态。
二、原子从一种定态(设能量为E 2)跃迁到另一种定态(设能量为E 1)时,它辐射或吸收一定频率的光子,光子的能量由这种定态的能量差决定,即γh =E 2-E 1三、氢原子中电子轨道量子优化条件:氢原子中,电子运动轨道的圆半径r 和运动初速率v 需满足下述关系:π2hnrmv =,n=1、2……其中m 为电子质量,h 为普朗克常量,这一条件表明,电子绕核的轨道半径是不连续的,或者说轨道是量子化的,每一可取的轨道对应一个能级。
定态假设意味着原子是稳定的系统,跃迁假设解释了原子光谱的离散性,最后由氢原子中电子轨道量子化条件,可导出氢原子能级和氢原子的光谱结构。
氢原子的轨道能量即原子能量,为r e kmv E 2221-= 因圆运动而有222r e k r v m = 由此可得r e kE 22-= 根据轨道量子化条件可得:mr hnv π2=,n=1,2……因22mv e k r =,便有 2222224h n r m m ke r π⋅= 得量子化轨道半径为:22224kme h n r n π=,n=1,2……式中已将r 改记为r n 对应的量子化能量可表述为:224222h n e mk E n π-=,n=1,2……n=1对应基态,基态轨道半径为22214kme h r π=计算可得: m r 1111029.5-⨯==0.529οAr 1也称为氢原子的玻尔半径基态能量为 242212h e mk E π-=计算可得: E 1=6.13-eV 。
对激发态,有:2112,n E E r n r n n ==,n=1,2…n 越大,r n 越大,E n 也越大,电子离核无穷远时,对应0=∞E ,因此氢原子的电离能为:eVE E E E 6.1311=-=-=∞电离电子从高能态E n 跃迁到低能态E m 辐射光子的能量为:m n E E hv -=光子频率为)11(221m n h E h E E v m n -=-=,m n >因此氢原子光谱中离散的谱线波长可表述为:1111)1(22--⋅==m n E hc r c λ,m n >试求氢原子中的电子从第n 轨道迁跃到n-1第轨道时辐射的光波频率,进而证明当n 很大时这一频率近似等于电子在第n 轨道上的转动频率。
辐射的光波频率即为辐射的光子频率γ,应有)(11--=n n E E hν将224222h n e mk E n π-= 代入可得223422223422)1(1221)1(12--⋅=⎥⎦⎤⎢⎣⎡--⋅=n n n h me k n n h me k ππν 当n 很大时,这一频率近似为 334224h n me k πν=电子在第n 轨道上的转动频率为:222n nn n n n r m r mv r U f ⋅⋅==ππ将π2hn r mv n n ⋅= 代入得 νπ==334224h n me k f n因此,n 很大时电子从n 第轨道跃迁到第n-1轨道所辐射的光波频率,近似等于电子在第n 轨道上的转动频率,这与经典理论所得结要一致,据此,玻尔认为,经典辐射是量子辐射在∞→n 时的极限情形。
1、1.3、氢原子光谱规律 1、巴耳末公式研究原子的结构及其规律的一条重要途径就是对光谱的研究。
19世纪末,许多科学家对原子光谱已经做了大量的实验工作。
第一个发现氢原子线光谱可组成线系的是瑞士的中学教师巴耳末,他于1885年发现氢原子的线光谱在可见光部分的谱线,可归纳为如下的经验公式⎪⎭⎫⎝⎛-=221211n R λ,n=3,4,5,…式中的λ为波长,R 是一个常数,叫做里德伯恒量,实验测得R 的值为1.096776⨯1071-m 。
上面的公式叫做巴耳末公式。
当n=3,4,5,6时,用该式计算出来的四条光谱线的波长跟从实验测得的αH 、βH 、γH、δH 四条谱线的波长符合得很好。
氢光谱的这一系列谱线叫做巴耳末系。
2、里德伯公式1896年,瑞典的里德伯把氢原子光谱的所有谱线的波长用一个普遍的经验公式表示出来,即⎪⎪⎭⎫⎝⎛-=2221111n n R λn=1,2,3…112+=n n ,21+n ,31+n …上式称为里德伯公式。
对每一个1n ,上是可构成一个谱线系:11=n ,22=n ,3,4… 莱曼系(紫外区) 21=n ,32=n ,4,5… 巴耳末系(可见光区) 31=n ,42=n ,5,6… 帕邢系(红外区) 41=n ,52=n ,6,7…布拉开系(远红外区)51=n ,62=n ,7,8…普丰德系(远红外区)以上是氢原子光谱的规律,通过进一步的研究,里德伯等人又证明在其他元素的原子光谱中,光谱线也具有如氢原子光谱相类似的规律性。
这种规律性为原子结构理论的建立提供了条件。
1、1.4、玻尔理论的局限性:玻尔原子理论满意地解释了氢原子和类氢原子的光谱;从理论上算出了里德伯恒量;但是也有一些缺陷。
对于解释具有两个以上电子的比较复杂的原子光谱时却遇到了困难,理论推导出来的结论与实验事实出入很大。
此外,对谱线的强度、宽度也无能为力;也不能说明原子是如何组成分子、构成液体个固体的。
玻尔理论还存在逻辑上的缺点,他把微观粒子看成是遵守经典力学的质点,同时,又给予它们量子化的观念,失败之处在于偶保留了过多的经典物理理论。
到本世纪20年代,薛定谔等物理学家在量子观念的基础上建立了量子力学。
彻底摒弃了轨道概念,而代之以几率和电子云概念。
例题1:设质子的半径为m 1510-,求质子的密度。
如果在宇宙间有一个恒定的密度等于质子的密度。
如不从相对论考虑,假定它表面的“第一宇宙速度”达到光速,试计算它的半径是多少。
它表面上的“重力加速度”等于多少?(1mol 气体的分子数是23106⨯个;光速s m /1038⨯=);万有引力常数G 取为2211/106kg Nm -⨯。
只取一位数做近似计算。
解:2H 的摩尔质量为2g/mol ,2H 分子的质量为 kg g 262310621062⨯=⨯∴质子的质量近似为 kg 261062⨯质子的密度 ρ=()315261034/10625-⨯π=()3194516/102411010641m kg ⨯=⨯⨯⨯-设该星体表面的第一宇宙速度为v ,由万引力定律,得22r mM G r mv =,r GM v =2而 ρπ334r M = ∴ρρπ23434Gr r r G v ==γ2=v Gp()m G v r 4191181031024110621032⨯=⨯⨯⨯⨯==-ρ由于“重力速度”ρρπyG y y G y GM g 4/34/232≈==∴()21219114/103102411061034s m g ⨯=⨯⨯⨯⨯⨯⨯=-【注】万有引力恒量一般取=G 6.67211/10kg m N ⋅⨯-例题2:与氢原子相似,可以假设氦的一价正离子(He +)与锂的二价正离子(L++)核外的那一个电子也是绕核作圆周运动。
试估算(1)He +、L ++的第一轨道半径; (2)电离能量、第一激发能量;(3)赖曼系第一条谱线波长分别与氢原子的上述物理量之比值。
解:在估算时,不考虑原子核的运动所产生的影响,原子核可视为不动,其带电量用+Ze 表示,可列出下面的方程组:20224n n n y Ze r mv πε=,①n n n r Ze mv E 022421πε-=,② π2hn r mv n n ⋅=,n=1,2,3,…③ 12En En hv -=,④由此解得n r ,n E ,并可得出λ1的表达式:Z n r Z me n h r n 212220==πε,⑤其中10220110530-⨯⋅==me h r πε米,为氢原子中电子的第度轨道半径,对于He +,Z=2,对于Li++,Z=3.2212222028n Z E n Z h me E n =-=ε,⑥其中-=-=220418h me E ε13.6电子伏特为氢原子的基态能. ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=22212222122204111181n n R Z n n Z c h me ελ.⑦11=n ,2,3,…,112+=n n 21+n ,31+n ,…R 是里德伯常数。
(1)由半径公式⑤,可得到类氢离子与氢原子的第一轨道半径之比:21==++H H HHe Z Z r r ,31==++++Li H H Li Z Z rr .(2)由能量公式⑥,可得到类氢离子与氢原子的电离能和第一激发能(即电子从第一轨道激发到第二轨道所需的能量)之比:电离能: 41200221111==--=--++HHe H He Z E Z E E E ,91300221111==--=--++++HLi HLi Z E Z E EE第一激发能:4433112112222212212212211212=--=--=--++E E E E E E E E HH He He ,943427112113232212212212211212=--=--=--++++E E E E E E E E HH LiLi 。