直线标准参数方程
- 格式:doc
- 大小:12.25 KB
- 文档页数:2
直线的参数方程及应用直线的参数方程及应用直线参数方程的标准式过点P(x,y),倾斜角为α的直线l的参数方程是x = x + tcosαy = y + tsinα其中t为参数,表示有向线段PP的数量,P(x,y)为直线上的任意一点。
直线l上的点与对应的参数t是一一对应关系。
若P1、P2是直线上两点,所对应的参数分别为t1、t2,则P1P2 = t2 - t1,|P1P2| = |t2 - t1|。
若P1、P2、P3是直线上的点,所对应的参数分别为t1、t2、t3,则P1P2中点P3的参数为t3 = (t1 + t2)/2,|PP3| = |(t1 + t2)/2|。
若P为P1P2的中点,则t1 + t2 = 0,t1·t2 < 0.直线参数方程的一般式过点P(xb,y),斜率为k = a的直线的参数方程是x = x + aty = y + bt其中t为参数,表示有向线段PP的数量,P(xb,y)为直线上的任意一点。
直线的参数方程给定点P(xl,y),倾斜角为α,求经过该点的直线l的参数方程。
直线l的参数方程为x = x + tcosαy = y + tsinα其中t为参数,表示有向线段PP的数量,P(xl,y)为直线上的任意一点。
特别地,若直线l的倾斜角α = 90°,直线l的参数方程为x = x + ty = y其中t为参数,表示有向线段PP的数量,P(xl,y)为直线上的任意一点。
2、直线的参数方程与标准形式如果直线的方向已知,那么可以使用参数方程来表示直线。
对于倾斜角为 $\alpha$,过点 $M(x,y)$ 的直线 $l$,其参数方程一般式为:begin{cases}x=x_M+t\cos\alpha \\y=y_M+t\sin\alphaend{cases}其中 $t$ 是参数,表示从点 $M$ 沿着直线 $l$ 方向前进的距离。
如果要将参数方程转化为标准形式,可以通过以下步骤:1.消去参数 $t$,得到 $y-y_M=\dfrac{\sin\alpha}{\cos\alpha}(x-x_M)$。
直线的参数方程知识精讲:1.直线参数方程的标准式:(1)过点()000,P x y ,倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数).t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,)为直线上任意一点.(2)若12P P 、是直线上两点,所对应的参数分别为12t t 、,则122112P P t t P P t t==-∣,∣∣-∣. (3)若123P P P 、、是直线上的点,所对应的参数分别为123t t t 、、,则P 1P 2中点P 3的参数为1232t t t +=,12032t t P P +=∣∣. (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0.2.直线参数方程的一般式: 过点P 0(00,y x ),斜率为a b k =的直线的参数方程是⎩⎨⎧+=+=bty y at x x 00(t 为参数).一、参数的几何意义323.()______.112x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩(二星)直线为参数的倾斜角是31:()1x t y t⎧=⎪⎨=-⎪⎩变改为直线为参数呢?答案:6π;变式:56π321.()(3,1)2_______.112x t M y t ⎧=-⎪⎪⎨⎪=+⎪⎩(二星)直线为参数上到点距离为的点的坐标是3()(3,1)2_______.1x t M y t⎧=+⎪⎨=-⎪⎩变式:直线为参数上到点距离为的点的坐标是答案:()()3;3;变式:()()3;31.(三星)已知直线l的参数方程为112x y t ⎧=--⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin()6πρθ=-.(1)求圆C 的直角坐标方程;(2)若P (x ,y )是直线l 与圆面4sin()6πρθ≤-y +的取值范围.备注:直线的参数方程的典型使用解:(1)因为圆C 的极坐标方程为ρ=4sin (θ﹣),所以ρ2=4ρ(sin θ﹣cos θ),所以圆C 的直角坐标方程为:x 2+y 2+2x ﹣2y=0.(2)方法一:直接使用直线的参数方程: 设z=x+y由圆C 的方程x 2+y 2+2x ﹣2y=0,可得(x+1)2+(y ﹣)2=4所以圆C 的圆心是(﹣1,),半径是2将代入z=x+y 得z=﹣t又直线l 过C (﹣1,),圆C 的半径是2, 由题意有:﹣2≤t ≤2 所以﹣2≤t ≤2即x+y 的取值范围是[﹣2,2].方法二:完全化为直角坐标方程来做,运算比较麻烦。
直线的参数方程(1)直线的标准参数方程:经过定点,倾斜角为的直线的参数方程为:(为参数);性质:(2)直线的一般参数方程:过定点,且其斜率为的直线的参数方程为: 性质:(为参数,为为常数,)例1.把y=2x+3化为参数方程。
变式:直线l 的方程:1sin 252cos 25x t y t ì=-ïí=+ïî(t 为参数),那么直线l 的倾斜角( ) A 65° B 25° C 155° D 115°例2. 已知直线l:15x t y ì=+ïíï=-î (t 为参数)与直线m:0x y --=交于P 点, 求点M(1,-5)到点P 的距离.例3:已知直线L过点M(1,1),且倾斜角的余弦值为35,L与圆229x y+=交与A,B,且AB中点为C(1)求L的参数方程(2)求中点C所对应的参数t及C点坐标(3)求|CM|(4)求|AM|(5)求|AB|(6)求|MA|+|MB|(7)求|MA||MB|二、根据t的式子求解1.在平面直角坐标系中,圆的参数方程为(为参数),直线经过点,倾斜角.(Ⅰ)写出圆的标准方程和直线的参数方程;(Ⅱ)设与圆相交于、两点,求的值.2.在直角坐标系xOy中,直线的参数方程为(为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以轴正半轴为极轴)中,圆C的方程为ρ=2sinθ.(1)求圆C的直角坐标方程;(2)设圆C与直线交于点.若点的坐标为(3,),求.3.在直角坐标系中,以原点为极点,以轴正半轴为极轴,圆的极坐标方程为(Ⅰ)将圆的极坐标方程化为直角坐标方程;(Ⅱ)过点作斜率为1直线与圆交于两点,试求的值.4.在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线,过点的直线的参数方程为 (为参数),与分别交于. (Ⅰ)写出的平面直角坐标系方程和的普通方程; (Ⅱ)若成等比数列,求的值.5.已知圆锥曲线(为参数)和定点,、是此圆锥曲线的左、右焦点,以原点为极点,以轴的正半轴为极轴建立极坐标系.(1)求直线的直角坐标方程; (2)经过点且与直线垂直的直线交此圆锥曲线于、两点,求的值.6.在直角坐标系xOy 中,圆C 的方程为22(+6)+=25x y .(Ⅰ)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是(t 为参数),l 与C 交于A ,B 两点,AB =求l 的斜率.圆的参数方程已知圆心为,半径为的圆的参数方程为:(是参数,);1.在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos r q =,0,2p q 轾Î犏臌. (Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.椭圆的参数方程椭圆()的参数方程(为参数)。
直线参数方程1、直线参数方程的标准式(1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,)P 0P=t ∣P 0P ∣=t 为直线上任意一点. (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2,则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣(3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3则P 1P 2中点P 3的参数为t 3=221tt +,∣P 0P 3∣=221t t +(4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<02、直线参数方程的一般式过点P 0(00,y x ),斜率为abk =的直线的参数方程是⎩⎨⎧+=+=bt y y atx x 00 (t 为参数)一、直线的参数方程问题1:(直线由点和方向确定)求经过点P 0(00,y x ),倾斜角为α的直线l设点P(y x ,)是直线l 上任意一点,(规定向上的 方向为直线L 的正方向)过点P 作y 轴的平行线,过 P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时,P 0P =|P 0P | 则P 0Q =P 0Pcos α Q P =P 0Psin α 2)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P | P 0Q =P 0Pcos α Q P =P 0Psin α 仍成立 设P 0P =t ,t 为参数,又∵P 0Q =0x x -, 0x x -=tcos α Q P =0y y - ∴ 0y y -=t sin α即⎩⎨⎧+=+=ααsin cos 00t y y t x x 是所求的直线l 的参数方程∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点P(y x ,)的有向线段的数量,且|P 0P |=|t|x①当t>0时,点P 在点P 0的上方; ②当t =0时,点P 与点P 0重合; ③当t<0时,点P 在点P 0的下方;特别地,若直线l 的倾斜角α=0时,直线⎧+=0tx x ④当t>0时,点P 在点P 0的右侧; ⑤当t =0时,点P 与点P 0重合;⑥当t<0时,点P 在点P 0的左侧; 问题2:直线l 上的点与对应的参数t 是不是一对应关系?我们把直线l 看作是实数轴,以直线l 向上的方向为正方向,以定点 这样参数t 便和这条实数轴上的点P 一一对应关系.问题3:P 1、P 2为直线l 则P 1P 2=?,∣P 1P 2∣=?P 1P 2=P 1P 0+P 0P 2=-t 1+t 2=t 2-t 1,∣P 1P 2问题4:若P 0为直线l 上两点P 1、P 2的中点,P 1、P 2 参数分别为t 1、t 2 ,则t 1、t 2之间有何关系? 根据直线l 参数方程t 的几何意义, P 1P =t 1,P 2P =t 2,∵P 0为直线l 上两点P 1、P 2的中点,∴|P 1P |=|P 2P |P 1P =-P 2P ,即t 1=-t 2, t 1t 2<0一般地,若P 1、P 2、P 3是直线l 上的点, 所对应的参数分别为t 1、t 2、t 3,P 3为P 1、P 2 则t 3=221t t + (∵P 1P 3=-P 2P 3, 根据直线l 参数方程t 的几何意义,∴P 1P 3= t 3-t 1, P 2P 3= t 3-t 2, ∴t 3-t 1=-(t 3-t 2,) )性质一:A 、B 两点之间的距离为||||21t t AB -=,特别地,A 、B 两点到0M 的距离分别为.|||,|21t t性质二:A 、B 两点的中点所对应的参数为221t t +,若0M 是线段AB 的中点,则 021=+t t ,反之亦然。
直线的参数方程1.直线的参数方程经过点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数).2.直线的参数方程中参数t 的几何意义(1)参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离.(2)当M 0M →与e (直线的单位方向向量)同向时,t 取正数.当M 0M →与e 反向时,t 取负数,当M 与M 0重合时,t =0.3.直线参数方程的其他形式对于同一条直线的普通方程,选取的参数不同,会得到不同的参数方程.我们把过点M 0(x 0,y 0),倾斜角为α的直线,选取参数t =M 0M 得到的参数方程⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数)称为直线参数方程的标准形式,此时的参数t 有明确的几何意义.一般地,过点M 0(x 0,y 0),斜率k =ba (a ,b 为常数)的直线,参数方程为⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt (t为参数),称为直线参数方程的一般形式,此时的参数t 不具有标准式中参数的几何意义.1.已知直线l 的方程⎩⎪⎨⎪⎧x =1-t sin 25°,y =2+t cos 25°(t 为参数),则直线l 的倾斜角为( )A .65°B .25°C .155°D .115°解析:选D.方程⎩⎪⎨⎪⎧x =1-t sin 25°,y =2+t cos 25°(t 为参数),化为标准形式⎩⎪⎨⎪⎧x =1+t cos 115°,y =2+t sin 115°(t为参数),倾斜角为115°.故选D.2.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1-22t ,y =2+22t (t 为参数),则直线l 的斜率为( )A .1B .-1 C.22D .-22解析:选B.直线l 的普通方程为x +y -1=0,斜率为-1.故选B.3.以t 为参数的方程⎩⎪⎨⎪⎧x =1-12t ,y =-2+32t表示( )A .过点(1,-2)且倾斜角为π3的直线B .过点(-1,2)且倾斜角为π3的直线C .过点(1,-2)且倾斜角为2π3的直线D .过点(-1,2)且倾斜角为2π3的直线解析:选C.化参数方程⎩⎪⎨⎪⎧x =1-12t ,y =-2+32t (t 为参数)为普通方程得y +2=-3(x -1).直线过定点(1,-2),斜率为-3,倾斜角为2π3,故选C.4.过抛物线y 2=4x 的焦点F 作倾斜角为π3的弦AB ,则弦AB 的长是________.解析:由已知焦点F (1,0),又倾斜角为π3,cos π3=12,sin π3=32.所以弦AB 所在直线的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t (t 为参数),代入抛物线的方程y 2=4x ,得⎝ ⎛⎭⎪⎫32t 2=4⎝ ⎛⎭⎪⎫1+12t .整理得3t 2-8t -16=0.设方程两根分别为t 1,t 2,则有⎩⎪⎨⎪⎧t 1+t 2=83,t 1·t 2=-163.由参数t 的几何意义得|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=⎝ ⎛⎭⎪⎫832+643=163.答案:163根据直线的参数方程求直线的倾斜角、斜率已知直线l 的参数方程是⎩⎪⎨⎪⎧x =1+t sin αy =-2+t cos α,(t 为参数),其中实数α的取值范围是⎝ ⎛⎭⎪⎫π2,π.求直线l 的倾斜角. [解] 设直线l 的倾斜角为θ,则由题意知tan θ=cos αsin α=1tan α=tan ⎝ ⎛⎭⎪⎫3π2-α,所以θ=3π2-α.所以直线l 的倾斜角为3π2-α.由直线的参数方程求倾斜角与斜率的方法已知直线l 的参数方程(1)若是标准式⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数),则可直接得出倾斜角即方程中的α,否则需化成标准式再求α.(2)若是一般式⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt ,则当a ≠0时,斜率k =b a ,再由tan α=ba 及0≤α<π求出α,当a =0时,显然直线与x 轴垂直,倾斜角为α=π2.(3)若是其他形式,则通过消参化成普通方程,再求斜率及倾斜角.1.若直线的参数方程为⎩⎪⎨⎪⎧x =3+12t y =3-32t,(t为参数),则此直线的斜率为( )A. 3 B .- 3 C .33D .-33解析:选B.直线的参数方程⎩⎪⎨⎪⎧x =3+12t y =3-32t,(t为参数)可化为标准形式⎩⎪⎨⎪⎧x =3+⎝ ⎛⎭⎪⎫-12(-t )y =3+32(-t ),(-t 为参数). 所以直线的斜率为- 3.2.若直线的参数方程为⎩⎪⎨⎪⎧x =2-3ty =1+t ,(t 为参数),求直线的斜率.解:法一:把直线的参数方程⎩⎪⎨⎪⎧x =2-3ty =1+t ,消去参数t 得x +3y -5=0, 所以其斜率k =-13.法二:由⎩⎪⎨⎪⎧x =2-3t y =1+t ,得⎩⎪⎨⎪⎧x -2=-3ty -1=t ,所以k =y -1x -2=t -3t =-13. 直线参数方程中参数几何意义的应用已知过点M (2,-1)的直线l :⎩⎪⎨⎪⎧x =2-t2,y =-1+t2(t 为参数),与圆x 2+y 2=4交于A ,B 两点,求|AB |及|AM |·|BM |.[解] l 的参数方程为⎩⎪⎨⎪⎧x =2-22⎝ ⎛⎭⎪⎫t 2,y =-1+22⎝ ⎛⎭⎪⎫t 2(t 为参数).令t ′=t2,则有⎩⎪⎨⎪⎧x =2-22t ′,y =-1+22t ′(t ′为参数).其中t ′是点M (2,-1)到直线l 上的一点P (x ,y )的有向线段的数量,代入圆的方程x 2+y 2=4,化简得t ′2-32t ′+1=0.因为Δ>0,可设t 1′,t 2′是方程的两根,由根与系数的关系得t 1′+t 2′=32,t 1′t 2′=1.由参数t ′的几何意义得|MA |=|t 1′|,|MB |=|t 2′|,所以|MA |·|MB |=|t 1′·t 2′|=1,|AB |=|t 1′-t 2′|=(t 1′+t 2′)2-4t 1′t 2′=14.(1)在直线参数方程的标准形式下,直线上两点之间的距离可用|t 1-t 2|来求.本题易错的地方是:将题目所给参数方程直接代入圆的方程求解,忽视了参数t 的几何意义.(2)根据直线的参数方程的标准式中t 的几何意义,有如下常用结论: ①直线与圆锥曲线相交,交点对应的参数分别为t 1,t 2,则弦长l =|t 1-t 2|; ②定点M 0是弦M 1M 2的中点⇒t 1+t 2=0;③设弦M 1M 2中点为M ,则点M 对应的参数值t M =t 1+t 22(由此可求|M 1M 2|及中点坐标).在极坐标系中,已知圆心C ⎝⎛⎭⎪⎫3,π6,半径r =1.(1)求圆的直角坐标方程;(2)若直线⎩⎪⎨⎪⎧x =-1+32t ,y =12t(t 为参数)与圆交于A ,B 两点,求弦AB 的长.解:(1)由已知得圆心C ⎝ ⎛⎭⎪⎫332,32,半径为1,圆的方程为⎝⎛⎭⎪⎫x -3322+⎝ ⎛⎭⎪⎫y -322=1,即x 2+y 2-33x -3y +8=0.(2)由⎩⎪⎨⎪⎧x =-1+32t ,y =12t (t 为参数)得直线的直角坐标方程x -3y +1=0,圆心到直线的距离d =⎪⎪⎪⎪⎪⎪332-332+12=12,所以⎝ ⎛⎭⎪⎫|AB |22+d 2=1,解得|AB |= 3. 直线参数方程的综合应用已知直线l 过定点P (3,2)且与x 轴和y 轴的正半轴分别交于A ,B 两点,求|PA |·|PB |的值为最小时的直线l 的方程.[解] 设直线的倾斜角为α,则它的方程为⎩⎪⎨⎪⎧x =3+t cos α,y =2+t sin α(t 为参数).由A ,B 是坐标轴上的点知y A =0,x B =0,所以0=2+t sin α, 即|PA |=|t |=2sin α,0=3+t cos α,即|PB |=|t |=-3cos α,故|PA |·|PB |=2sin α·⎝ ⎛⎭⎪⎫-3cos α=-12sin 2α. 因为90°<α<180°,所以当2α=270°,即α=135°时, |PA |·|PB |有最小值.所以直线方程为⎩⎪⎨⎪⎧x =3-22t ,y =2+22t (t 为参数),化为普通方程为x +y -5=0.利用直线的参数方程,可以求一些距离问题,特别是求直线上某一定点与曲线交点距离时使用参数的几何意义更为方便.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t (t 为参数).在极坐标系(与直角坐标系xOy 取相同长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B .若点P 的坐标为(3,5),求|PA |+|PB |. 解:(1)由ρ=25sin θ,得ρ2=25ρsin θ. 所以x 2+y 2-25y =0,即x 2+(y -5)2=5. (2)法一:直线l 的普通方程为y =-x +3+5,与圆C :x 2+(y -5)2=5联立,消去y ,得x 2-3x +2=0,解之得⎩⎨⎧x =1y =2+5或⎩⎨⎧x =2,y =1+ 5.不妨设A (1,2+5),B (2,1+5). 又点P 的坐标为(3,5), 故|PA |+|PB |=8+2=3 2.法二:将l 的参数方程代入x 2+(y -5)2=5,得⎝⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0,① 由于Δ=(32)2-4×4=2>0. 故可设t 1,t 2是①式的两个实根. 所以t 1+t 2=32,且t 1t 2=4. 所以t 1>0,t 2>0.又直线l 过点P (3,5),所以由t 的几何意义,得|PA |+|PB |=|t 1|+|t 2|=3 2.1.对直线参数方程标准形式中参数t 的理解从参数方程推导的过程中可知参数t 应理解为直线l 上有向线段M 0M →的数量,它的几何意义可以与数轴上点A 的坐标的几何意义作类比,|t |=|M 0M →|代表有向线段M 0M →的长度.另外,将直线的点斜式方程y -y 0=k (x -x 0)改写成y -y 0sin α=x -x 0cos α,其中k =tan α,α为直线倾斜角,则t =y -y 0sin α=x -x 0cos α,则有⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α,从中不难看出直线的普通方程(点斜式)与参数方程(标准式)的联系.2.化直线的参数方程一般式⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt (t 为参数)为标准式⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数),由⎩⎪⎨⎪⎧x =x 0+aty =y 0+bt 变形为⎩⎪⎨⎪⎧x =x 0+a a 2+b 2·a 2+b 2ty =y 0+b a 2+b2·a 2+b 2t,令cos α=aa 2+b2,sin α=b a 2+b2,t ′=a 2+b 2 t ,则可得标准式⎩⎪⎨⎪⎧x =x 0+t ′cos αy =y 0+t ′sin α(t ′为参数),其中α为直线的倾斜角,k =tan α=ba 为直线的斜率.1.直线⎩⎪⎨⎪⎧x =1+t cos αy =-2+t sin α,(α为参数,0≤α<π)必过点( )A .(1,-2)B .(-1,2)C .(-2,1)D .(2,-1)解析:选A.由参数方程可知该直线是过定点(1,-2),倾斜角为α的直线.2.已知直线l 1:⎩⎪⎨⎪⎧x =1+3ty =2-4t ,(t 为参数)与直线l 2:2x -4y =5相交于点B ,且点A (1,2),则|AB |=________.解析:将⎩⎪⎨⎪⎧x =1+3t y =2-4t,代入2x -4y =5,得t =12,则B ⎝ ⎛⎭⎪⎫52,0.而A (1,2),得|AB |=52.答案:523.已知曲线C 的极坐标方程为ρ=1,以极点为平面直角坐标系的原点,极轴为x 轴正半轴,建立平面直角坐标系,直线l的参数方程是⎩⎪⎨⎪⎧x =-1+4ty =3t ,(t 为参数),则直线l与曲线C 相交所截得的弦长为________.解析:曲线C的直角坐标方程为x 2+y 2=1,将⎩⎪⎨⎪⎧x =-1+4ty =3t ,代入x 2+y 2=1中得25t 2-8t =0,解得t 1=0,t 2=825.故直线l 与曲线C 相交所截得的弦长l =42+32·|t 2-t 1|=5×825=85.答案:85[A 基础达标]1.直线⎩⎪⎨⎪⎧x =2+3ty =-1+t ,(t 为参数)上对应t =0,t =1两点间的距离是( )A .1B .10C .10D .2 2解析:选B.将t =0,t =1代入参数方程可得两点坐标为(2,-1)和(5,0), 所以d =(2-5)2+(-1-0)2=10.2.若⎩⎪⎨⎪⎧x =x 0-3λ,y =y 0+4λ(λ为参数)与⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)表示同一条直线,则λ与t 的关系是( )A .λ=5tB .λ=-5tC .t =5λD .t =-5λ解析:选C.由x -x 0,得-3λ=t cos α,由y -y 0,得4λ=t sin α,消去α的三角函数,得25λ2=t 2,得t =±5λ,借助于直线的斜率,可排除t =-5λ,所以t =5λ.3.经过点M (1,5)且倾斜角为π3的直线,以定点M 到动点P 的位移t 为参数的参数方程是( )A.⎩⎪⎨⎪⎧x =1+12t ,y =5-32t(t 为参数)B .⎩⎪⎨⎪⎧x =1-12t ,y =5+32t (t 为参数)C.⎩⎪⎨⎪⎧x =1-12t ,y =5-32t(t 为参数)D .⎩⎪⎨⎪⎧x =1+12t ,y =5+32t(t 为参数)解析:选D.该直线的参数方程为⎩⎪⎨⎪⎧x =1+t cos π3,y =5+t sin π3(t 为参数),即⎩⎪⎨⎪⎧x =1+12t ,y =5+32t(t 为参数),选D.4.若直线⎩⎪⎨⎪⎧x =-2t ,y =-12+at (t 为参数)与直线⎩⎪⎨⎪⎧x =1-s ,y =1+s (s 为参数)互相垂直,那么a 的值等于( )A .1B .-13C .-23D .-2解析:选D.直线⎩⎪⎨⎪⎧x =-2t ,y =-12+at (t 为参数)的斜率为y +12x =-a2,直线⎩⎪⎨⎪⎧x =1-s ,y =1+s (s 为参数)的斜率为y -1x -1=-1,由两直线垂直得-a2×(-1)=-1得a =-2.故选D. 5.对于参数方程⎩⎪⎨⎪⎧x =1-t cos 30°y =2+t sin 30°和⎩⎪⎨⎪⎧x =1+t cos 30°y =2-t sin 30°,下列结论正确的是( )A .是倾斜角为30°的两平行直线B .是倾斜角为150°的两重合直线C .是两条垂直相交于点(1,2)的直线D .是两条不垂直相交于点(1,2)的直线 解析:选B.因为参数方程⎩⎪⎨⎪⎧x =1-t cos 30°,y =2+t sin 30°可化为标准形式⎩⎪⎨⎪⎧x =1+t cos 150°,y =2+t sin 150°,所以其倾斜角为150°.同理,参数方程⎩⎪⎨⎪⎧x =1+t cos 30°,y =2-t sin 30°,可化为标准形式⎩⎪⎨⎪⎧x =1+(-t )cos 150°,y =2+(-t )sin 150°,所以其倾斜角也为150°.又因为两直线都过点(1,2),故两直线重合.6.若直线⎩⎪⎨⎪⎧x =1-2ty =2+3t ,(t 为参数)与直线4x +ky =1垂直,则常数k =________.解析:由直线的参数方程可得直线的斜率为-32,由题意得直线4x +ky =1的斜率为-4k ,故-32×⎝ ⎛⎭⎪⎫-4k =-1,解得k =-6.答案:-67.已知直线l 的斜率k =-1,经过点M 0(2,-1).点M 在直线上,以M 0M →的数量t 为参数,则直线l 的参数方程为____________.解析:因为直线的斜率为-1, 所以直线的倾斜角α=135°. 所以cos α=-22,sin α=22. 所以直线l 的参数方程为⎩⎪⎨⎪⎧x =2-22t y =-1+22t ,(t 为参数).答案:⎩⎪⎨⎪⎧x =2-22t y =-1+22t ,(t 为参数)8.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =1+t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ=4⎝ ⎛⎭⎪⎫ρ>0,3π4<θ<5π4,则直线l 与曲线C 的交点的极坐标为________.解析:直线l 的普通方程为y =x +2,曲线C 的直角坐标方程为x 2-y 2=4(x ≤-2),故直线l 与曲线C 的交点为(-2,0),对应极坐标为(2,π).答案:(2,π)9.已知曲线C :ρ=2cos θ,直线l :⎩⎪⎨⎪⎧x =2-t ,y =32+34t ,(t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任一点P 作与l 夹角为45°的直线,交l 于点A ,求|PA |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α,(α是参数).直线l 的普通方程为3x +4y -12=0.(2)曲线C 上任意一点P (1+cos α,sin α)到l 的距离为d =15|3cos α+4sin α-9|,则|PA |=d sin 45°=2⎪⎪⎪⎪⎪⎪sin(α+φ)-95,且tan φ=34. 当sin(α+φ)=-1时,|PA |取得最大值1425; 当sin(α+φ)=1时,|PA |取得最小值425. 10.(2016·高考全国卷甲)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44. 由|AB |=10得cos 2α=38,tan α=±153. 所以l 的斜率为153或-153. [B 能力提升]11.在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为( )A .1B .2C .3D .4 解析:选C.直线l :⎩⎪⎨⎪⎧x =t ,y =t -a消去参数t 后得y =x -a . 椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ消去参数φ后得x 29+y 24=1. 又椭圆C 的右顶点为(3,0),代入y =x -a 得a =3.12.给出两条直线l 1和l 2,斜率存在且不为0,如果满足斜率互为相反数,且在y 轴上的截距相等,那么直线l 1和l 2叫做“孪生直线”.现在给出4条直线的参数方程如下:l 1:⎩⎪⎨⎪⎧x =2+2t ,y =-4-2t (t 为参数); l 2:⎩⎪⎨⎪⎧x =3-22t ,y =4-22t (t 为参数); l 3:⎩⎪⎨⎪⎧x =1+t ,y =1-t (t 为参数); l 4:⎩⎪⎨⎪⎧x =6+22t ,y =8+22t (t 为参数). 其中能构成“孪生直线”的是________.解析:根据条件,两条直线构成“孪生直线”意味着它们的斜率存在且不为0,且互为相反数,且在y 轴上的截距相等,也就是在y 轴上交于同一点.对于本题,首先可以判断出其斜率分别为-1,1,-1,1,斜率互为相反数条件很明显.再判断在y 轴上的截距,令x =0得出相应的t 值,代入y 可得只有直线l 3和直线l 4在y 轴上的截距相等,而其斜率又恰好互为相反数,可以构成“孪生直线”.答案:直线l 3和直线l 413.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :ρsin 2θ=2a cos θ(a >0),过点P (-2,-4)的直线l 的参数方程为:⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,(t 为参数),直线l 与曲线C 分别交于M ,N 两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)若|PM |,|MN |,|PN |成等比数列,求a 的值.解:(1)曲线的极坐标方程变为ρ2sin 2θ=2aρcos θ,化为直角坐标方程为y 2=2ax ;直线⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,(t 为参数)化为普通方程为y =x -2. (2)将⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,代入y 2=2ax 得 t 2-22(4+a )t +8(4+a )=0.则有t 1+t 2=22(4+a ),t 1t 2=8(4+a ),因为|MN |2=|PM |·|PN |,所以(t 1-t 2)2=t 1·t 2,即(t 1+t 2)2-4t 1t 2=t 1t 2,(t 1+t 2)2-5t 1t 2=0,故8(4+a )2-40(4+a )=0,解得a =1或a =-4(舍去).故所求a 的值为1.14.(选做题)以直角坐标系原点O 为极点,x 轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =12+t cos αy =t sin α,(t 为参数,0<α<π),曲线C的极坐标方程ρ=2cos θsin 2θ. (1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于A ,B 两点,当α变化时,求|AB |的最小值.解:(1)由ρ=2cos θsin 2θ得ρ2sin 2θ=2ρcos θ,所以曲线C 的直角坐标方程为y 2=2x . (2)将直线l 的参数方程代入y 2=2x ,得t 2sin 2α-2t cos α-1=0,设A ,B 两点对应的参数分别为t 1,t 2,则t 1+t 2=2cos αsin 2α,t 1·t 2=-1sin 2α, 所以|AB |=|t 1-t 2| =(t 1+t 2)2-4t 1t 2 =4cos 2αsin 4α+4sin 2α=2sin 2α, 当α=π2时,|AB |取得最小值2.。
直线的参数方程:过定点倾斜角为α的直线的参数方程为(t为参数)。
过定点倾斜角为α的直线的参数方程为(t为参数)。
直线的参数方程及其推导过程:设e是与直线l平行且方向向上(l的倾斜角不为0)或向右(l的倾斜角为0)的单位方向向量(单位长度与坐标轴的单位长度相同).直线l的倾斜角为α,定点M0、动点M的坐标分别为直线的参数方程中参数t的几何意义是:表示参数t对应的点M 到定点Mo的距离,当同向时,t取正数;当异向时,t取负数;当点M与Mo重合时,t=0.直线参数方程何时必须化为标准形式在求解直线与圆相交得到的弦的长度问题时,可以采用的思路很多:①利用几何方法,即利用弦心距、半弦长、半径组成的Rt△Rt△来求解决;②弦长公式,即|AB|=1+k2−−−−−√⋅|x1−x2||AB|=1+k2⋅|x1−x2|来求解;③利用直线的参数方程的参数的几何意义来求解;从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。
求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,两直线平行;有无穷多解时,两直线重合;只有一解时,两直线相交于一点。
常用直线向上方向与 X 轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。
可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。
直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。
直线在平面上的位置,由它的斜率和一个截距完全确定。
在空间,两个平面相交时,交线为一条直线。
因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。
三维空间中直线的方程式在三维空间中,直线的方程可以用参数方程和一般方程两种形式表示。
参数方程是将直线上的每一个点都表示为一个参数所确定的向量,而一般方程则是通过直线上两个点的坐标来表示的。
1.参数方程:直线的参数方程可以表示为:x = x0 + aty = y0 + btz = z0 + ct其中(x0,y0,z0)为直线上的已知点,而(a,b,c)为直线的方向向量,t为参数。
2.一般方程:首先,我们需要确定直线的方向向量。
假设直线上的两个点分别为P(x1,y1,z1)和Q(x2,y2,z2),则直线的方向向量可以表示为V=PQ=(x2-x1,y2-y1,z2-z1)。
然后,我们可以通过点P的坐标和方向向量V来推导直线的一般方程。
2.1.点向式:直线的一般方程可以表示为:(x-x1)/a=(y-y1)/b=(z-z1)/c其中(a,b,c)为方向向量V的分量。
2.2.对称式:直线的一般方程也可以表示为:(x-x1)/a=(y-y1)/b=(z-z1)/c=t这里的t为参数。
2.3.常法式:直线的一般方程还可以表示为:Ax+By+Cz+D=0其中A,B,C为方向向量V的分量,而D为常数。
对于两个不平行的直线,我们可以通过将它们的方向向量进行叉乘来求得它们的交点。
除了参数方程和一般方程,还有其他表示直线的方法,比如点法式、斜截式等。
这些方法都根据直线上已知点和方向向量的不同形式而有所不同。
需要注意的是,在使用直线的方程时,我们需要根据实际情况选择最适合的表达形式。
有时候参数方程更方便,可以直接通过改变参数t来表示直线上的任意一点;而一般方程则适合于求直线与其他平面或直线的交点等问题。
直线的参数方程及其应用举例一条直线的参数方程由以下形式给出:x = x₀ + aty = y₀ + bt其中,(x₀,y₀)是直线上的一点,a和b是常数,t是参数。
在这个参数方程中,通过改变参数t的值,我们可以得到直线上的每一个点的坐标。
例如,考虑一个小车在直线上做匀速运动的例子。
假设小车的初始位置为(x₀,y₀),它向右移动,速度为v。
那么小车的位置可以用参数方程来描述:x = x₀ + vty=y₀对于给定的t值,我们可以根据这个参数方程计算小车在其中一时刻的位置。
通过改变参数t的值,我们可以得到小车在线上的每一个点的坐标。
这个参数方程可以帮助我们分析小车的运动过程,比如计算其中一点的速度、加速度等。
x = r*cos(θ)y = r*sin(θ)其中,r是点到原点的距离。
这个参数方程描述了点在以原点为中心的圆上运动的轨迹。
通过改变参数θ的值,我们可以得到圆上的每一个点的坐标。
这个参数方程可以帮助我们分析旋转体的运动规律,比如计算旋转角速度、加速度等。
此外,直线的参数方程还可以用于表示平面内的曲线。
例如,椭圆的参数方程可以表示为:x = a*cos(t)y = b*sin(t)其中,a和b分别是椭圆主轴和副轴的长度,t是参数。
通过改变参数t的值,我们可以得到椭圆上的每一个点的坐标。
这个参数方程描述了椭圆的形状和位置。
总结起来,直线的参数方程在几何学和物理学中有广泛的应用。
它可以用于描述物体的运动轨迹、旋转体的轨迹以及平面内的曲线等。
直线的参数方程可以帮助我们分析和理解各种物理现象和几何问题,从而推导出更多的结论和结果。
直线的参数方程怎么化成标准的参数方程直线在数学中是一种基本的几何图形,它具有方向和无限延伸性质。
直线的参数方程是一种表示直线的方程形式,它可以通过给定的参数值来确定直线上的点。
但在某些情况下,我们需要将直线的参数方程转化为标准的参数方程,以便更方便地进行计算和分析。
直线的参数方程一般形式为:x = x₀ + aty = y₀ + bt其中x₀和y₀为直线上的一个已知点的坐标,a和b为参数,t为参数值。
要将直线的参数方程化成标准的参数方程,我们需要以下步骤:步骤1:确定直线上的两个点要确定直线上的两个点,我们需要知道直线上的一个已知点和一个与之不重合的点。
这两个点将作为直线的参考点,使我们能够建立方程。
步骤2:计算方向向量方向向量是直线上两个点之间的差向量,表示直线的方向。
我们可以通过直线上的两个点的坐标来计算方向向量。
假设已知两个点的坐标分别为(x₁, y₁)和(x₂, y₂),则方向向量可以表示为:v = (x₂ - x₁, y₂ - y₁)步骤3:计算参数a和b参数a和b表示方向向量的分量,它们与参数t的关系将决定直线的参数方程的形式。
我们可以通过方向向量的分量来求解参数a和b。
步骤4:转化为标准的参数方程在求解得到参数a和b之后,我们可以将直线的参数方程转化为标准的参数方程。
标准的参数方程形式为:x = x₀ + aty = y₀ + bt其中x₀和y₀为直线上的已知点的坐标,a和b为参数。
通过上述步骤,我们可以将直线的参数方程化成标准的参数方程,并进一步进行计算和分析。
这样的转化使得我们可以更方便地求解直线与其他几何图形的交点、计算直线的斜率等。
需要注意的是,在转化过程中,我们需要确保直线的参数方程和标准的参数方程表示的是同一条直线。
可以通过验证直线上的任意一点,当t取不同值时是否满足两个方程,来判断参数方程的正确性。
总结起来,直线的参数方程可以通过确定直线上的两个点、计算方向向量、求解参数a和b,并将其转化为标准的参数方程的形式。
直线的参数方程及其应用x = x0 + aty = y0 + btz = z0 + ct其中(x0,y0,z0)是直线上的一点,a、b、c是直线的方向向量的分量,t是参数。
这样,通过调整参数t的值,就可以得到直线上的所有点。
一、几何中直线的参数方程的应用:1.直线的方向向量:2.直线的长度:直线的长度可以通过参数方程中的两点之间的距离公式来计算。
假设起始点为(x0,y0,z0),终止点为(x1,y1,z1),直线的长度为L,则公式为L=√((x1-x0)^2+(y1-y0)^2+(z1-z0)^2)3.直线与平面的交点:如果有一个平面的参数方程a1x + b1y + c1z + d1 = 0,直线的参数方程为x = x0 + at,y = y0 + bt,z = z0 + ct。
将直线的参数方程代入平面方程,解方程组可以求得直线与平面的交点坐标。
二、物理中直线的参数方程的应用:1.运动学中的直线运动:物体在直线上进行匀速直线运动时,可以通过参数方程来描述物体的位置。
其中(t)表示时间,直线的方向向量(a,b,c)表示物体的运动方向和速度。
2.振动运动的直线模型:在物理的振动运动中,例如简谐振动,可以使用直线的参数方程来表示振动的轨迹。
参数t可以表示时间,(x0,y0,z0)表示振动的平衡位置,(a,b,c)表示振动的幅度和方向。
三、计算机图形学中直线的参数方程的应用:1.直线的绘制:在计算机图形学中,直线常常使用参数方程来绘制。
通过给定起点和终点的坐标,使用参数方程可以描绘出直线的轨迹。
2.直线的旋转:在计算机图形学的3D建模中,直线可以经过旋转来创建复杂的几何体。
旋转直线可以使用参数方程中的旋转矩阵来实现。
3.直线的相交:在计算机图形学中,判断两条直线是否相交是一个常见的需求。
可以通过比较两条直线的参数方程来判断它们是否相交。
4.直线的裁剪:在计算机图形学中,通过直线的参数方程可以实现直线的裁剪。
直线标准参数方程直线是平面几何中最基本的几何图形之一,而直线标准参数方程是描述直线的一种常用方式。
在数学中,直线标准参数方程的形式为:x = x1 + at。
y = y1 + bt。
其中(x1, y1)是直线上的一点,a和b是实数参数,t是参数。
直线标准参数方程的优点之一是可以方便地表示直线在平面上的方向和位置。
在实际问题中,我们经常需要描述直线的位置和方向,直线标准参数方程可以直接给出直线的参数方程,而无需通过斜率和截距等方式来描述。
另一个优点是直线标准参数方程可以方便地表示直线上的任意一点。
通过参数t的变化,我们可以得到直线上的各个点的坐标,这对于直线上点的运动和轨迹的描述非常有用。
接下来,我们来看一个具体的例子。
假设有一条直线,过点A(1,2),且与向量v(3,4)平行。
我们可以使用直线标准参数方程来描述这条直线。
首先,我们知道直线上的一点A(1,2),可以将其坐标代入直线标准参数方程中,得到:x1 = 1。
y1 = 2。
然后,由于直线与向量v(3,4)平行,我们可以取直线的参数方向向量为v(3,4),即a=3,b=4。
这样,直线的标准参数方程为:x = 1 + 3t。
y = 2 + 4t。
通过这个参数方程,我们可以方便地得到直线上任意一点的坐标,也可以直观地看出直线的方向和位置。
在实际问题中,直线标准参数方程可以帮助我们更方便地描述直线的性质和特点,也可以方便地进行直线上点的运动和轨迹的分析。
总之,直线标准参数方程是描述直线的一种常用方式,它可以方便地表示直线的方向和位置,也可以方便地表示直线上任意一点。
在实际问题中,直线标准参数方程有着广泛的应用价值,可以帮助我们更好地理解和应用直线的性质和特点。
直线标准参数方程
x
《直线标准参数方程》
直线的标准参数方程是一种几何形式,用于描述直线的性质,表示直线的位置,方向,长度,以及与其他直线之间的关系。
它可以用一个公式表示,为:
Ax + By + C = 0
其中,A,B和C是实数,A和B不能同时为零。
当A和B都不为0时,以A和B确定直线的斜率,C确定直线与原点的距离。
在这里,A,B,C的取值受到斜率和距离的限制,且有一定的规律:
(1)当A,B和C都不为0时,C的符号取决于斜率是否小于1,即:
①当斜率小于1时,C为正;
②当斜率大于1时,C为负。
(2)当A或B不为0时,当斜率大于或小于1时,A,B及C的符号可能不一定;
(3)当A不为0而B为0时,A为正,C,B及C不一定。
符号及规律只影响参数A,B,C的取值,不影响直线的位置,方向和长度。
因此,直线的标准参数方程可以表示为:Ax + By + C = 0,它
与斜率和距离之间有着紧密的联系,且可根据斜率及距离的不同来决定A,B和C的取值。