解(1)若方程不能表示直线,则 m2+5m+6=0 且 m2+3m=0.
解方程组
m 2+5m+6=0,得 m 2+3m=0,
m=-3
(2)由已知 m2m2-2+mm≠-0,3=-(m2-m),解由得已m知=-24mm12- .+1m=-2m3≠2+ 0,m-3,
例4(一般式下直线的平行与垂直问题)
BB
当B=0时, A≠0, 方程Ax+By+C=0可变形为 x C . A
由上可知, 关于x,y的二元一次方程Ax+By+C=0都表示一条直线.
综上可知, 在平面直角坐标系中, 任何关于x, y的二元一次方程Ax+By +C=0都表 示一条直线.
我们把关于x, y的二元一次方程Ax+By+C=0 (其中A, B不同时为0)叫做直线的 一般式方程, 简称一般式. 探究 在方程Ax+By +C=0中, A,B,C为何值时, 方程表示的直线:
两点式
过点P1(x1,y1), P2(x2,y2) (其中x1 ≠ x2, y1 ≠ y2)
直线方程 y y0 k( x x0 )
y kx b y y1 x x1 y2 y1 x2 x1
应用范围
不含与x轴垂
直的直线
不含与x轴垂
直的直线
不含与x, y轴
垂直的直线
截距式
过点P1(a,0), P2(0,b) (其中a≠0, b≠0)
已知A(2,2)和直线l:3x+4y-20=0.求: (1)过点A和直线l平行的直线方程;(2)过点A 和直线l垂直的直线方程.
解 (1)将与直线 l 平行的方程设为 3x+4y+C1=0,
又过点 A(2,2),所以 3×2+4×2+C1=0,所以 C1=-14.