三年级数学和差问题应用题
- 格式:doc
- 大小:97.85 KB
- 文档页数:4
和差、和倍、差倍【和差问题】1.甲乙两队合挖长48千米的水渠,甲队比乙队多挖6千米,求甲、乙两队各挖了多少千米?2.甲、乙两个仓库共运进货物1260吨,如果从甲仓库调出120吨货物到乙仓库,则两个仓库的货物一样多,求甲乙两仓库原来运进货物各多少吨?3.甲、乙两堆货物共180吨,甲堆运走30吨仍比乙堆多12吨,求甲乙两堆货物各多少吨?应用题专项练习4.甲乙两个学校共有学生1245人,如果从甲校调20人去乙校后,甲校比乙校还多5人,两校原有学生多少人?5.电视机厂一、二、三车间共有工人360人,第一车间比第二车间多12人,第三车间比第二车间少18人,三个车间各有工人多少人?6.养兔场共养兔8800只,有白兔、黑兔和灰兔三品种,白兔比黑兔多600只,黑兔比灰兔少400只,求白兔、黑兔、灰兔各有多少只?7.三块小麦试验地里共收小麦9800千克。
第一块试验地比其余两块试验地少收1400千克,第二块试验地比第三块试验地多收200千克小麦,求三块小麦试验地各收小麦多少千克?8.用80米长的铁丝网靠墙围一个长方形的场地(靠墙的一面不用铁丝网),对着墙的一面是长,长比宽多20米,求这块长方形场地的面积是多少?9.甲、乙两个工程队共1980人,甲队为了支援乙队,抽出285人调入乙队,这时乙队人数还比甲队少24人,求甲乙两队原有工人多少人?10.学校图书室的书有520本不是故事书,有500本不是科技书,已知故事书和科技书一共有700本,问图书室里一共有多少本书?【和倍问题】1.小卫家里养了20只兔子,其中大兔只数是小兔的4倍,问小卫家养的小兔和大兔各有多少只?2.被除数、除数、商三个数的和是212,已知商是2,被除数和除数各是多少?3.某校四、五年级共有学生218人,五年级学生人数比四年级的2倍少22人。
问四、五年级各有学生多少人?4.两数相除,商3余4,如果被除数、除数、商及余数相加,和是43,求被除数和除数。
5.姐姐有连环画38本,妹妹有连环画52本,姐姐要给妹妹多少本连环画,才能使妹妹的本数是姐姐的2倍?6.两箱茶叶共176千克,从甲箱取出30千克放乙箱,乙箱的千克数就是甲箱的3倍。
三年级数学《和、差、倍》练习题和差问题:已知两数的和与两数的差,求两个数各是多少的应用题,叫和差问题应用公式:大数=(和+差) ÷2小数=(和-差) ÷2和倍问题:已知两个数的和与这两个数的倍数关系,求这两个数各是多少的应用题,我们通常把它叫做和倍问题。
公式:小数=两数和÷(倍数+1)大数=小数x倍数大数=两数和-小数注:小数为1倍量,大数为多倍量。
差倍问题:已知两数的差和它们之间的倍数关系,要求出这两个数各是多少的应用题叫差倍问题。
公式:小数=差÷(倍数-1)大数=小数x倍数大数=小数+差注:小数为1倍量,大数为多倍量。
练习题1.柴老师和乐乐一共有42张明信片,柴老师比乐乐多8张,请问柴老师和乐乐各自有多少张明信片?2.舞蹈社共有32名同学.其中女同学的人数是男同学的3倍,男、女同学各有多少人?3.A、B、C三个人的年龄和是60岁,A的年龄是B的2倍,C的年龄是B的3倍.三个人各自多少岁?4.体育老师买了一些足球和篮球,足球比篮球多28个.若足球的个数是篮球的3倍,请问足球和篮球各买了多少个?5.箱子里面有红球、绿球、白球三种球。
红球比绿球多20个,绿球比白球多30个,红球的个数是白球的3倍,这三种球各有多少个?6.两筐水果共重150千克,甲筐比乙筐少10千克,两筐水果各多少千克?7.大小两个桶共有油16千克,大桶的油是小桶的油的3倍,大小两桶各有多少千克?8.鸡比鸭多24只,鸡的只数是鸭的3倍,鸡鸭各有多少只?9.甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?10.甲班和乙班一起上体育课,甲班和乙班一共63人,如果甲班分5人到乙班,甲班还比乙班多3人,这两班分别有多少人?11.小春和弟弟两人今年的年龄和是24岁,四年后,小春比弟弟大12岁。
小春和弟弟四年后各多少岁?12.两熊一共吃了36个包子,熊大吃的包子是熊二的3倍,熊大、熊二各吃多少个?13.马路边种了些杨树与柳树,一共有100棵树,杨树的数量比柳树的2倍多10棵,那么杨树、柳树各多少棵?14.光头强一共砍了37棵杨树和柳树,其中杨树的棵树比柳树的4倍少3棵,杨树和柳树分别被砍了多少棵?15.两篮苹果共99各,如果从甲篮取出8各放进乙篮,则甲篮还比乙篮多3个,两篮中原来各有多少个?16.小明语文和数学平均93分,数学比语文高6分,语文、数学各多少分?17.甲乙两个仓库有大米共15吨,甲仓里新运进4吨,乙仓库里运出2吨。
小学三年级数学:和差、和倍与差倍问题详解(附例题)和差问题已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
其实,解和差问题,还有一段顺口溜:和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。
和差问题的解题公式:大数=(和+差)÷2小数=(和-差)÷2例1、甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。
例2、长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。
解长=(18+2)÷2=10(厘米)宽=(18-2)÷2=8(厘米)长方形的面积=10×8=80(平方厘米)答:长方形的面积为80平方厘米。
和倍问题已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。
总和÷(几倍+1)=较小的数总和-较小的数=较大的数较小的数×几倍=较大的数为了帮助我们理解题意,弄清两种量彼此间的关系,常采纳画线段图的方法来表示两种量间的这种关系,以便于找到解题的途径。
例1、果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?解(1)杏树有多少棵?248÷(3+1)=62(棵)(2)桃树有多少棵?62×3=186(棵)答:杏树有62棵,桃树有186棵。
例2、东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?解(1)西库存粮数=480÷(1.4+1)=200(吨)(2)东库存粮数=480-200=280(吨)答:东库存粮280吨,西库存粮200吨。
例3、甲班和乙班共有图书160本.甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?解:160÷(3+1)=40本乙40×3=120本甲答:甲班120本,已班40本。
一、和差问题解答方法是:(和+差)÷2=大数(和- 差)÷2=小数1.果园里有桃树和梨树共150棵,桃树比梨树多20棵,两种果树各有多少棵?2.用锡和铝制成500千克的合金,铝的重量比锡多100千克,锡和铝各是多少千克?3.某工厂去年与今年的平均产值为96万元,今年比去年多10万元,今年与去年的产值各是多少万元?4.两筐水果共重150千克,第一筐比第二筐多8千克,两筐水果各多少千克?5.今年小强7岁,爸爸35岁,当两人年龄和是58岁时,两人年龄各多少岁?6.小明期末考试时语文和数学的平均分数是94分,数学比语文多8分,问语文和数学各得了几分?7.姐妹二人将自己平时积蓄的零用钱共450元存入银行。
已知姐姐存款比妹妹多50元,姐妹二人各存款多少元?二、和倍问题已知两个数的和与两个数的倍数关系,求这两个数分别是多少,像这样的应用题,通常叫做“和倍问题”。
两数和÷(倍数+1)=小数(1倍数)小数×倍数=大数(几倍数)两数和—小数=大数1、学校将360本书分给二、三两个年级,已知三年级所分得的本数是二年级的2倍,问二、三两年级各分得多少本图书?2、小红和小明共有压岁钱800元,小红的钱数是小明的3倍,小红和小明分别有压岁钱多少元?3、学校将360本图书分给二、三年级,已知三年级所得本数比二年级的2倍还多60本,二、三年级各得图书多少本?4、小宁有圆珠笔芯30枝,小青有圆珠笔芯15枝,问小青给多少支小宁后,小宁的圆珠笔芯支数是小青的8倍?5、甲书架有图书18本,乙书架有图书8本,班级图书管理员又买来图书16本,怎么分配才能使甲书架图书的本数是乙书架的2倍?6、被除数与除数的和为320,商是7,被除数和除数各是几?7、被除数和除数的和为120,商是7,被除数和除数各是几?8、被除数、除数、商的和为79,商是4,被除数、除数各是几?9、甲乙两数的和是209,甲数缩小10倍就和乙数同样大,甲乙两数分别是多少?三、差倍问题已知两个数的差与两个数的倍数关系,求这两个数分别是多少,像这样的应用题,通常叫做“差倍问题”。
和、差与倍数的应用题一、和差问题说到“和差问题”,小学高年级的同学,人人都会说:“我会!”和差问题的计算太简单了.是的,知道两个数的和与差,求两数,有计算公式:大数=(和+差)÷2小数=(和-差)÷2会算,还要会灵活运用,要把某些应用题转化成和差问题来算.先看几个简单的例子.例1 张明在期末考试时,语文、数学两门功课的平均得分是95分,数学比语文多得8分,张明这两门功课的成绩各是多少分?解:数学得分=(95×2+8)÷2=99.语文得分=(95×2-8)÷2= 91.答:张明数学得99分,语文得91分.注:也可以从 95×2-99=91求出语文得分.例2 有 A,B,C三个数,A加 B等于 252,B加 C等于 197, C加A等于 149,求这三个数.解:B=(252+ 197-149)÷ 2= 150,A=252-150=102,C=149-102=47.答:A,B,C三数分别是102,150,47.注:还有一种更简单的方法(A+B)+(B+C)+(C+A)=2×(A+B+C).上面式子说明,三数相加再除以2,就是三数之和.A+B+C=(252+197+149)÷C=299-252=47,B=299-149=150,A=299-197=102.例3甲、乙两筐共装苹果75千克,从甲筐取出5千克苹果放入乙筐里,甲筐苹果还比乙筐多7千克.甲、乙两筐原各有苹果多少千克?解:画一张简单的示意图,就可以看出,原来甲筐苹果比乙筐多5+7+ 5= 17(千克)因此,甲、乙两数之和是 75,差为17.甲筐苹果数=(75+17)÷2= 46(千克).乙筐苹果数=75-46=29(千克).答:原来甲筐有苹果46千克,乙筐有苹果29千克.例4张强用270元买了一件外衣,一顶帽子和一双鞋子.外衣比鞋贵140元,买外衣和鞋比帽子多花210元,张强买这双鞋花多少钱?解:我们先把外衣和鞋看成一件东西,它与帽子的价格和是 270元,差是 210元.外衣和鞋价之和=(270+ 210)÷2= 240(元).外衣价与鞋价之差是140,因此鞋价=(240-140)÷2=50(元).答:买这双鞋花50元.再举出三个较复杂的例子.如果你也能像下面的解答那样计算,那么就可以说,“和差问题”的解法,你已能灵活运用了.例5李叔叔要在下午3点钟上班,他估计快到上班时间了,到屋里看钟,可是钟早在12点10分就停了.他开足发条却忘了拨指针,匆匆离家,到工厂一看钟,离上班时间还有10分钟.夜里11点下班,李叔叔马上离厂回到家里,一看钟才9点整.假定李叔叔上班和下班在路上用的时间相同,那么他家的钟停了多少时间(上发条所用时间忽略不计)?解:钟停的时间+路上用的时间=160(分钟).晚上下班时,厂里钟是11点,到家看钟是9点,相差2小时.这是由于钟停的时间中,有一部分时间,被回家路上所用时间抵消了.因此钟停的时间-路上用的时间=120(分钟).现在已把问题转化成标准的和差问题了.钟停的时间=(160+120)÷ 2= 140(分钟).路上用的时间=160-140=20(分钟).答:李叔叔的钟停了2小时20分.还有一种解法,可以很快算出李叔叔路上所用时间:以李叔叔家的钟计算,他在12点10分出门,晚上9点到家,在外共8小时50分钟,其中8小时上班,10分钟等待上班,剩下的时间就是他上班来回共用的时间,所以上班路上所用时间=(8小时50分钟-8小时-10分钟)÷2=20(分钟).钟停时间=2小时 40分钟-20分钟=2小时20分钟.例6小明用21.4元去买两种贺卡,甲卡每张1.5元,乙卡每张0.7元,钱恰好用完.可是售货员把甲卡张数算作乙卡张数,把乙卡张数算作甲卡张数,要找还小明3.2元.问小明买甲、乙卡各几张?解:÷0.8=4(张).现在已有两种卡张数之差,只要求出两种卡张数之和问题就解决了.如何求呢?请注意××乙卡张数=21.4.××甲卡张数=21.4-3.2.从上面两个算式可以看出,两种卡张数之和是[21.4+(21.4-3.2)]÷(1.5+ 0.7)= 18(张).因此,甲卡张数是(18 + 4)÷ 2= 11(张).乙卡张数是 18-11= 7(张).答:小明买甲卡11张、乙卡7张.注:此题还可用鸡兔同笼方法做,请见下一讲.例7 有两个一样大小的长方形,拼合成两种大长方形,如右图.大长方形(A)的周长是240厘米,大长形(B)的周长是258厘米,求原长方形的长与宽各为多少厘米?解:大长方形(A)的周长是原长方形的长×2+宽×4.大长方形(B)的周长是原长方形的长×4+宽×2.因此,240+258是原长方形的长×6+宽×6.原长方形的长与宽之和是(240+258)÷6=83(厘米).原长方形的长与宽之差是(258-240)÷2=9(厘米).因此,原长方形的长与宽是长:(83+ 9)÷2= 46(厘米).宽:(83-9)÷2=37(厘米).答:原长方形的长是46厘米、宽是37厘米二、倍数问题“年龄问题”是这类问题的典型.先看几个基础性的例子.例8 有两堆棋子,第一堆有87个,第二堆有69个.那么从第一堆拿多少个棋子到第二堆,就能使第二堆棋子数是第一堆的3倍.解:两堆棋子共有87+69=156(个).为了使第二堆棋子数是第一堆的3倍,就要把156个棋子分成1+3=4(份),即每份有棋子156 ÷(1+3)=39(个).87-39=48(个).答:应从第一堆拿48个棋子到第二堆去.例9 有两层书架,共有书173本.从第一层拿走38本书后,第二层的书比第一层的2倍还多6本.问第二层有多少本书?解:我们画出下列示意图:我们把第一层(拿走38本后)余下的书算作1“份”,那么第二层的书是2份还多6本.再去掉这6本,即173-38-6=129(本)恰好是3份,每一份是129÷3=43(本).因此,第二层的书共有43×2 + 6=92(本).答:书架的第二层有92本书.说明:我们先设立“1份”,使计算有了很方便的计算单位.这是解应用题常用的方法,特别对倍数问题极为有效.把份数表示在示意图上,更是一目了然.例10 某小学有学生975人.全校男生人数是六年级学生人数的4倍少23人,全校女生人数是六年级学生人数的3倍多11人.问全校有男、女生各多少人?解:设六年级学生人数是“1份”.男生是4份-23人.女生是3份+11人.全校是7份-(23-11)人.每份是(975+12)÷7=141(人).男生人数=141×4-23=541(人).女生人数=975-541=434(人).答:有男生541人、女生434人.例9与例10是一个类型的问题,但稍有差别.请读者想一想,“差别”在哪里?70双皮鞋.此时皮鞋数恰好是旅游鞋数的2倍.问原来两种鞋各有几双?×2=6(份).400+70将是 3+1+6=10(份).每份是(400+70)÷10=47(双).原有旅游鞋 47×4=188(双).原有皮鞋 47×6-70=212 (双).答:原有旅游鞋188双,皮鞋212双.设整数的份数,使计算简单方便.小学算术中小数、分数尽可能整数化,使思考、计算都较简捷.因此,“尽可能整数化”将会贯穿在以后的章节中.下面例子将是本节的主要内容──年龄问题.年龄问题是小学算术中常见的一类问题,这类题目中常常有“倍数”这一条件.解年龄问题最关键的一点是:两个人的年龄差总保持不变.例12 父亲现年50岁,女儿现年14岁.问几年前,父亲的年龄是女儿年龄的5倍?解:父女相差36岁,这个差是不变的.几年前还是相差36岁.当父亲的年龄恰好是女儿年龄的5倍时,父亲仍比女儿大36岁.这36岁是女儿年龄的(5-1)倍.36÷(5-1)=9.当时女儿是9岁,14-9=5,也就是5年前.答:5年前,父亲年龄是女儿年龄的5倍.例13 有大、小两个水池,大水池里已有水 300立方米.小水池里已有水70立方米.现在往两个水池里注入同样多的水后,大水池水量是小水池水量的3倍.问每个水池注入了多少立方米的水.解:画出下面示意图:我们把小水池注入水后的水量算作1份,大水池注入水后的水量就是3份.从图上可以看出,因为注入两个水池的水量相等,所以大水池比小水池多的水量(300-70)是2份.因此每份是(300-70)÷2= 115(立方米).要注入的水量是115-70=45 (立方米)·答:每个水池要注入45立方米的水.例13与年龄问题是完全一样的问题.“注入水”相当于年龄问题中的“几年后”.例14 今年哥俩的岁数加起来是55岁.曾经有一年,哥哥的岁数与今年弟弟的岁数相同,那时哥哥的岁数恰好是弟弟岁数的两倍.哥哥今年几岁?解:当哥哥的岁数恰好是弟弟岁数的2倍时,我们设那时弟弟的岁数是1份,哥哥的岁数是2份,那么哥哥与弟弟的岁数之差是1份.两人的岁数之差是不会变的,今年他们的年龄仍相差1份.题目又告诉我们,那时哥哥岁数,与今年弟弟的岁数相同,因此今年弟弟的岁数也是2份,而哥哥今年的岁数应是2+1=3(份).今年,哥弟俩年龄之和是3+2=5(份).每份是 55÷5= 11(岁).哥哥今年的岁数是 11×3=33(岁).答:哥哥今年33岁.作为本节最后一个例子,我们将年龄问题进行一点变化.例15 父年38岁,母年36岁,儿子年龄为11岁.问多少年后,父母年龄之和是儿子年龄的4倍?解:现在父母年龄之和是38+ 36 = 74.现在儿子年龄的 4倍是 11×74-44= 30.从4倍来考虑,以后每年长1×4=4,而父母年龄之和每年长1+1=2.为追上相差的30,要30÷(4-2)=15(年)·答:15年后,父母年龄之和是儿子年龄的4倍.请读者用例15的解题思路,解习题二的第7题.也许就能完全掌握这一解题技巧了.请读者想一想,例15的解法,与例12的解法,是否不一样?各有什么特点?我们也可以用例15解法来解例12.具体做法有下面算式:(14 ×5-50)÷(5-1)= 5(年).不过要注意 14×5比 50多,因此是 5年前.三、盈不足问题在我国古代的算书中,《九章算术》是内容最丰富多彩的一本.在它的第七章,讲了一类盈不足问题,其中第一题,用现代的语言来叙述,就是下面的例题.例16 有一些人共同买一些东西,每人出8元,就多了3元;每人出7元,就少了4元。
三年级奥数和差倍分经典应用题题库一、和差问题(20题)(1)乙两筐香蕉共64千克,从甲筐里取出5千克放到乙筐里去,结果甲筐的香蕉比乙筐的香蕉多2千克。
甲、乙两筐原有香蕉各有多少千克?(2)甲乙两船共载客623人,若甲船增加34人,乙船减少57人,这时两船乘客同样多,甲船原有乘客多少人?(3)今年小刚和小强两人的年龄的和是21岁,1年前,小刚比小强小3岁,问今年小刚和小强各多少岁?(4)小茜和小敏两人今年的年龄和是23岁,4年后,小茜将比小敏大3岁,问小茜和小敏今年各多少岁?(5)期中考试王平和李杨语文成绩的总和是188分,李杨比王平少4分,两人各考了多少分?(6)两年前,小明比小华大10岁。
3年后,两人的年龄和将是42岁。
求小明和小华今年各多少岁?(7)赵叔叔沿长和宽相差30米的游泳池跑6圈,做下水前的准备活动,共跑了1080米,问游泳池的长和宽各是多少米?(8)把长108厘米的铁丝围成一个长方形,使长比宽多12厘米,长和宽各是多少厘米?(9)两筐水果共重124千克,第一筐比第二筐多8千克,两筐水果各重多少千克?(10)学校共有篮球、足球和排球共95个,其中足球比排球少5个,排球的个数是篮球个数的2倍。
篮球、足球、排球各有多少个?(11)把长84厘米的铁丝围成一个长方形,使宽比长少6厘米。
长和宽各是多少厘米?(12)两筐苹果共重90千克,如果从第一筐中取出6千克放入第二筐后,两筐的重量相等,两筐苹果原来各多少千克?(13)甲班和乙班共有图书150本。
甲班的图书给乙班20本后,两班就一样多,甲班和乙班原来各有图书多少本?(14)小亮期中考试语文和数学的平均分时94分,数学没考好,语文比数学多8分。
问小亮的语文数学各得了多少分?(15)乙两人年龄的和是35岁,甲比乙小5岁。
问甲、乙各多少岁?(16)两笼鸡蛋共19只,若甲笼再放入4只,乙笼中取出两只,这时乙笼比甲笼鸡蛋还多1只。
求甲乙两笼原来各有鸡蛋多少只?(17)学校苗圃中有月季花和菊花共30棵,其中月季花的棵数比菊花多6棵。
三年级数学和差问题应用题HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】应用题:和差问题 例1、参加体验夏令营的学生共有96人,其中男生比女生多8人,男、女生各有多少人?画出线段图表示题意: 想一想:怎样使男生和女生的人数同样多呢这时总人数发生了怎样的变化方法一、(1)如果女生增加8人,那么男女生一共有多少人?(2)男生有多少人?(3)女生有多少人?方法二、(1)如果男生减少8人,那么男女生一共有多少人?(2)女生有多少人?(3)男生有多少人?由例1可以发现,解答和差问题时,可以假设小数增加到与大数同样多,先求大数,再求小数;也可以假设大数减少到与小数同样多,先求小数,再求大数。
由此可得和差问题的基本数量关系是:(和+差)÷2=大数 (和-差)÷2=小数1、学校排球、篮球共62个,排球比篮球多12个,排球、篮球各有多少个?2、甲、乙两车间共有工人260人,甲车间比乙车间少30人,甲、乙两车间各有工人多少人?3、某校五、六年级共有324人,六年级的人数比五年级多46人,这个学校五、六年级各有多少人?4、小宁与小芳今年的年龄和是28岁,小宁比小芳小2岁,小芳今年多少岁?5、小敏和他爸爸的平均年龄是29岁,爸爸比他大26岁。
小敏和他爸爸的年龄各是多少岁?6、小兰期末考试时语文和数学的平均分是96分,数学比语文多4分。
小兰语文、数学各得多少分?例2、甲、乙两个书架共有书480本,如果从甲书架中取出40本放入乙书架,这时两个书架上书的本数正好相等。
甲、乙两个书架原来各有多少本?画出线段图:想一想:(1)当两个书架的书相等时,书的总数是多少?书的总数还是480本。
(2)现在乙书架有多少本?原来呢?(3)现在甲书架有多少本?原来呢?试一试:1、两个桶里共盛水30千克,如果把第一桶里的水倒6千克到第二个桶里,两个桶里的水就一样多。
原来每桶各有水多少千克?2、甲、乙两个仓库共存大米58吨,如果从甲仓调3吨大米到乙仓,两个仓库所存的大米正好相等。
和倍和差问题的应用题30道一、和倍问题1. 果园里有苹果树和梨树共 180 棵,苹果树的棵数是梨树的 3 倍,苹果树和梨树各有多少棵?解析:把梨树的棵数看作 1 份,苹果树的棵数就是 3 份,一共是 4 份。
用总数除以份数,可得 1 份的数量,即梨树的棵数:180÷(3 + 1) = 45(棵),苹果树的棵数:45×3 = 135(棵)2. 学校图书馆有科技书和故事书共 840 本,科技书的本数是故事书的 6 倍,科技书和故事书各有多少本?解析:把故事书的本数看作 1 份,科技书的本数就是 6 份,总共 7 份。
故事书的本数:840÷(6 + 1) = 120(本),科技书的本数:120×6 = 720(本)3. 甲、乙两数的和是 240,甲数是乙数的 4 倍,甲、乙两数各是多少?解析:乙数为 1 份,甲数为 4 份,共 5 份。
乙数:240÷(4 + 1) = 48,甲数:48×4 = 1924. 小明和小红共有邮票 150 张,小明的邮票数是小红的 2 倍,他们各有多少张邮票?解析:把小红的邮票数看作 1 份,小明的就是 2 份,一共 3 份。
小红的邮票数:150÷(2 + 1) = 50(张),小明的邮票数:50×2 = 100(张)5. 养殖场里鸡和鸭共 560 只,鸡的只数是鸭的 3 倍,鸡和鸭各有多少只?解析:鸭的只数为 1 份,鸡的只数为 3 份,总共 4 份。
鸭的只数:560÷(3 + 1) = 140(只),鸡的只数:140×3 = 420(只)6. 果园里桃树和杏树共 360 棵,桃树的棵数是杏树的 5 倍,桃树和杏树各有多少棵?解析:把杏树的棵数看作 1 份,桃树的棵数就是 5 份,一共 6 份。
杏树的棵数:360÷(5 + 1) = 60(棵),桃树的棵数:60×5 = 300(棵)7. 学校买来篮球和足球共 120 个,篮球的个数是足球的 2 倍,篮球和足球各有多少个?解析:足球个数为 1 份,篮球个数为 2 份,共 3 份。
应用题:和差问题
例1、参加体验夏令营的学生共有96人,其中男生比女生多8人,男、女生各有多少人? 画出线段图表示题意:
想一想:怎样使男生和女生的人数同样多呢?这时总人数发生了怎样的变化?
方法一、(1)如果女生增加8人,那么男女生一共有多少人?
(2)男生有多少人?
(3)女生有多少人?
方法二、(1)如果男生减少8人,那么男女生一共有多少人?
(2)女生有多少人?
(3)男生有多少人?
由例1可以发现,解答和差问题时,可以假设小数增加到与大数同样多,先求大数,再求小数;也可以假设大数减少到与小数同样多,先求小数,再求大数。
由此可得和差问题的基本数量关系是: (和+差)÷2=大数 (和-差)÷2=小数
试一试:
1、学校排球、篮球共62个,排球比篮球多12个,排球、篮球各有多少个?
2、甲、乙两车间共有工人260人,甲车间比乙车间少30人,甲、乙两车间各有工人多少人?
3、某校五、六年级共有324人,六年级的人数比五年级多46人,这个学校五、六年级各有多少人?
4、小宁与小芳今年的年龄和是28岁,小宁比小芳小2岁,小芳今年多少岁?
5、小敏和他爸爸的平均年龄是29岁,爸爸比他大26岁。
小敏和他爸爸的年龄各是多少岁?
6、小兰期末考试时语文和数学的平均分是96分,数学比语文多4
分。
小兰语文、数学各得多少分?
男生: 女生:
8人 96人
例2、甲、乙两个书架共有书480本,如果从甲书架中取出40本放入乙书架,这时两个书架上书的本数正好相等。
甲、乙两个书架原来各有多少本?
画出线段图:
想一想:
(1)当两个书架的书相等时,书的总数是多少?书的总数还是480本。
(2)现在乙书架有多少本?原来呢?
(3)现在甲书架有多少本?原来呢?
试一试:
1、两个桶里共盛水30千克,如果把第一桶里的水倒6千克到第二个桶里,两个桶里的水就一样多。
原来每桶各有水多少千克?
2、甲、乙两个仓库共存大米58吨,如果从甲仓调3吨大米到乙仓,两个仓库所存的大米正好相等。
甲、乙两个仓库各存大米多少吨?
例3、甲、乙两人共有150元钱,如果甲增加13元,而乙减少27元,那么两人的钱数就相等。
甲、乙两人和有多少元?
画出线段图表示题意:
想一想:
(1)甲、乙相等时,总数是多少元?
(2)乙有多少元?
(3)甲有多少元?
试一试:
1、第一车间和第二车间共有工人735人,如果第一车间调出27人,第二车间调入36人,那么两个车间的人数就相等。
两个车间各有多少人?
2、甲、乙两船共有乘客623人,如果甲船增加34人,乙船减少57人,那么两船的乘客同样多。
乙船有多少乘客?
2
.
和差法解应用题
1、妈妈星期天上街买衣服,花75元买了一条裤子和一件上衣。
已知上衣比裤子贵15元,妈妈买上衣花了多少钱?
2、甲、乙两筐共有苹果80千克,从甲筐取出5千克苹果放到乙筐,这时甲筐、乙筐的苹果同样多,甲、乙两筐原来各有苹果多少千克?
3、英华幼儿园买来49千克苹果分给大、中、小三个班。
大班比中班多分4千克,中班又比小班多分6千克,中班分得多少千克?
4、买一枝自动铅笔和一枝钢笔共用去12元,已知自动铅笔比钢笔便宜8元,那么买自动铅笔和钢笔各用去多少钱?
5、四个人的年龄之和是77岁,最小的10岁,他与最大的年龄之和比另外两个的年龄之和大7岁,最大的年龄多少岁?
6、一堆苹果99千克,分给甲、乙、丙三个组,甲组比乙组多4千克,乙组比丙组多4千克,三个组各分得多少千克?
7、有两筐苹果,甲筐比乙筐多18千克,如果从乙筐取出12千克放入甲筐,则甲筐是乙筐的2倍,甲筐原有多少千克苹果?
7、全家4口人,父亲比母亲大3岁,姐姐比弟弟大2岁,4年前全家年龄和是58岁,现在是73岁,现在各人年龄分别是多少岁?(提示:弟弟四年前还没有出生。
你知道是怎样判断的吗?)
. 3
【下载本文档,可以自由复制内容或自由编辑修改内容,更多精彩文章,期待你的好评和关注,我将一如既往为您服务】
4
.。