解直角三角形 (4)
- 格式:docx
- 大小:15.06 KB
- 文档页数:3
解直角三角形知识要点:1、 锐角三角函数:正弦、余弦、正切、余切sin A =斜边的对边A ∠, cos A =斜边的邻边A ∠,tan A =的邻边的对边A A ∠∠, cot A = 的对边的邻边A A ∠∠(1)平方关系:1cos sin 22=+A A ; (2)倒数关系:1cotA tanA =⋅; (3)商的关系:tanA=AAcos sin (4)互余两角的正余弦、正余切关系:如果ο90=∠+∠B A ,那么B A A cos )90cos(sin =-=ο;tanA=cot (90°-A )=cotB2、 解直角三角形3、 解直角三角形的应用:坡度问题、测量问题、航海问题 关键是把实际问题转化为数学问题来解决 (构造直角三角形) 几个专用名词:俯角、仰角、坡角、坡度(或坡比)、方向角 一:转化思想在解直角三角形中的应用转化的思想在数学中应用十分广泛,在不含直角三角形的图形中(如斜三角形、梯形等),我们应通过作适当的垂线构造直角三角形,从而转化为解直角三角形问题,希望同学们在不断地学习中总结这种添加垂线的技巧例1. 在△ABC 中,已知AB=6,∠B=45°,∠C=60°,求AC 、BC 的长.已知条件解法一边及 一锐角直角边a 及锐角A B =90°-A ,b =a·tanA,c=sin a A斜边c 及锐角A B =90°-A ,a =c·sinA,b =c·cosA两边两条直角边a 和b,B =90°-A ,直角边a 和斜边csinA=ac,B =90°-A ,例2. 如图所示,△ABC中,∠BAC=120°,AB=5,AC=3,求sinB·sinC的值.例3.如图,在ΔABC中,∠C=90°,∠A的平分线交BC于D,则CDACAB-等于().A .sin A B. cos A C . tan A D . cot A例4.如图所示,在ΔABC中,∠B=60°,且∠B所对的边b=1,AB+BC=2,求AB的值.例5.已知:在ΔABC中,∠B=60°,∠C=45°,BC=5,求ΔABC的面积.例6.如图,ΔABC中,∠A=90°,AB=AC,D是AC上的一点,且AD∶DC=1∶3,求tan∠DBC的值.二:可解的非直角三角形的类型与解法解这类三角形一般都需要三个条件,它的解题思路是:作垂线,构造含特殊角的直角三角形来解决,下面分类举例说明,供同学们参考.一、“SSS”型:例1.已知:如图1,BC=2,AC=6,AB=31+,求△ABC各内角的度数.BA DC图1二、“SAS ”型:例2.已知:如图,△ABC 中,∠A=1500,AB=5,AC=4,求△ABC 的面积三、“AAS ”型:例3.已知:如图3,△ABC 中,∠C=600,∠A=750,BC=33+, 求AB 、AC 的长. 四、“ASA ”型:例4.已知等腰∆ABC 的底边长为2,底角为75°,求腰长.五、其他类型:例5.已知:如图,△ABC 中,∠B=600,AB=5,sinC=57,求AC 和BC 的长.相关强化练习:1.等腰三角形底边为20,面积为31003,求各角的大小.2.如图,四边形BCDG 为矩形,∠ABG=45°,GB=20,BC=4,tanE=3,求EC 的长度.3.已知:如图,在△ABC 中,BC=6,AC=63,∠A=30°,求AB 的长.CBDA BA C D图2 ACD 图4BA CD图5例题: 如图23,ABCD 为正方形,E 为BC 上一点,将正方形折叠,使A 点与E 点重合,折痕为MN ,若10,31tan =+=∠CE DC AEN 。
图25.3.5图25.3.6 25.3解直角三角形4-- 坡度问题课时学习目标1.掌握坡角与坡度概念, 能利用解直角三角形解决有关实际问题。
2.由实际问题转化为几何问题时,学会自己画图,建立模型.学习重点难点重点: 灵活应用解直角三角形知识解决实际问题。
难点:由实际问题转化为几何问题(建模)。
课前预习导学 ( 自学课本完成下列问题)1.坡面的铅垂高度(h )和水平长度(l )的比叫做坡面的坡度(或坡比),记作i ,即=i .(坡度通常写成1∶m 的形式,如i =1∶6.)2.坡面与水平面的夹角叫做坡角,记作α,有tan α= .3.坡度越大,坡角α就越 ,坡面就越 .4.计算: ︒︒+︒+︒60cot 60tan 30cos 30sin 22225.如图,两建筑物的水平距离BC 为24米,从点A 测得点D 的俯角α=30°,测得点C 的俯角β=60°,求AB 和CD 两座建筑物的高.(结果保留根号)课堂学习研讨例1如图25.3.6,一段路基的横断面是梯形,高为4.2米,上底的宽是12.51米,路基的坡面与地面的倾角分别是32°和28°.求路基下底的宽.(精确到0.1米)例2、 一水库大坝的横断面为梯形ABCD ,坝顶宽6米,坝高20米,斜坡 AB 的坡度1i =1∶3,斜坡CD 的坡度2i =1∶2.5.求:(1) 斜坡AB 与坝底AD 的长度;(精确到0.1米)(2) 斜坡CD 的坡角α.(精确到1°)A B CA AB B CC 30° 第3题 课达标堂检测1. 如果a ∠是等腰直角三角形的一个锐角,则tan α的值是 。
2.如图,坡角为30 的斜坡上两树间的水平距离AC 为2m ,则两树间的坡面距离AB 为( )A .4mB .3mC .43m 3D .43m3. 如图,为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌。
1 / 17解直角三角形是九年级上学期第二章第二节的内容,通过本节的学习,需要掌握直角三角形中,除直角外其余五个元素之间的关系,并熟练运用锐角三角比的意义解直角三角形,以及解直角三角形的相关应用.重点在于理解仰角、俯角、方向角、坡度、坡角等概念,并能利用其解决实际问题;难点在于,若一个三角形不是直角三角形,要有意识把它化归为解直角三角形的问题.1、 解直角三角形在直角三角形中,由已知元素求出所有未知元素的过程,叫做解直角三角形. 在t R ABC ∆中,如果=90C ∠︒,那么它的三条边和两个锐角之间有以下的关系: (1)三边之间的关系:222a b c +=(2)锐角之间的关系:90A B ∠+∠=︒(3)边角之间的关系: sin cos a A B c ==,cos sin bA B c ==tan cot a A B b ==,cot tan b A B a== 解直角三角形内容分析知识结构模块一:解直角三角形知识精讲2 / 17A BO xy ABCDE【例1】 ABC ∆中,90C ∠=︒,已知AB = 6.4,40B ∠=︒,则A ∠=______,AC =______,BC =______.(sin400.64︒≈,sin500.77︒≈,边长精确到0.1)【难度】★ 【答案】 【解析】【例2】 若菱形的周长为8,相邻两内角之比为3 : 1,则菱形的高是______. 【难度】★ 【答案】 【解析】【例3】 如图,OAB ∆中,OA = OB ,125AOB ∠=︒.已知点A 的坐标是(4,0),则点B的坐标是____________.(用锐角三角比表示)【难度】★★ 【答案】 【解析】【例4】 如图,在ABC ∆中,90BAC ∠=︒,AB = AC ,D 为边AC 的中点,DE BC ⊥于点E ,连接BD ,则tan DBC ∠的值为( )A .13B .21-C .23-D .14【难度】★★ 【答案】 【解析】例题解析3/ 17AAB CDEOAB CDAB CAB C 【例5】如图,在矩形ABCD中,对角线AC、BD相交于点O,E是边AD的中点,若AC = 10,DC=5BO=______,EBD∠的度数约为____°____'(参考数据:1tan2634'2︒≈).【难度】★★【答案】【解析】【例6】在锐角ABC∆中,AB = 14,BC = 14,84ABCS∆=,求cot C的值.【难度】★★【答案】【解析】【例7】如图,ABC∆中,23AB=AC = 2,边BC上的高3AD求ABCS∆和BAC∠的大小.【难度】★★【答案】【解析】【例8】如图,在锐角ABC∆,4sin5B=,tan2C=,且40ABCS∆=,求BC的长.【难度】★★【答案】【解析】【例9】如图,ABC∆中,30B∠=︒,45C∠=︒,22AB AC-=BC的长.【难度】★★【答案】【解析】【例10】如图,先将斜边AB长6 cm,30A∠=︒的直角三角板ABC绕点C顺时针方向旋转90°至''A B C∆位置,再沿CB向左平移,使点B落在原三角板ABC位置的斜4/ 17CDFABC DAB CDAB CDENM边AB上,则平移的距离为______.【难度】★★【答案】【解析】【例11】如图,正方形ABCD中,E为边BC上一点,将正方形折叠,使A点与E点重合,折痕为MN,若1tan3AEN∠=,DC + CE =10.(1)求ANE∆的面积;(2)求sin ENB∠的值.【难度】★★【答案】【解析】【例12】如图,四边形ABCD中,90A C∠=∠=︒,120B∠=︒,AB = 4,BC = 2,求四边形的面积.【难度】★★★【答案】【解析】【例13】如图,在四边形ABCD中,已知AD = AB = BC,连接AC,且30ACD∠=︒,23tan BAC∠=CD = 3,求AC的长.【难度】★★★【答案】【解析】【例14】小智在学习特殊角的三角比时发现,将如图所示的矩形纸片ABCD沿过B点的直线折叠,使点A落在BC上的点E处,折痕BM.还原后,再沿过点E的直线5 / 17xyO折叠,使点A 落在BC 上的点F 处,折痕EN .利用这种方法,可以求出tan67.5︒的21,试证明之.【难度】★★★ 【答案】 【解析】【例15】在平面直角坐标系内,放置了5个如图所示的正方形(用阴影表示).点1B 在y 轴上,点1C 、1E 、2E 、2C 、3E 、4E 、3C 在x 轴上.已知正方形1111A B C D 的边长为1,1160B C O ∠=︒,11B C //22B C //33B C ,则点3A 到x 轴的距离是( )A 33+ B 31+ C 33+ D 31+【难度】★★★ 【答案】 【解析】6 / 17仰角 视线水平线视线俯角铅垂线北北偏东30°南偏西45° 北偏西70°南偏东50°30° 70° 45° 50°hl1、 仰角与俯角在测量过程中,常常会遇到仰角和俯角.如图,当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,视线在水平线下方的角叫做俯角.2、 方向角指北或指南方向线与目标方向线所成的小于90°的角叫做方向角. 如图:北偏东30°,北偏西70°,南偏东50°,南偏西45°.3、 坡度(坡比)、坡角在修路、挖河、开渠等设计图纸上,都需要注明斜坡的倾斜程度.如图,坡面的铅垂高度h 和水平宽度l 的比叫做坡面的坡度(或坡比),记作i ,即h i l=. 坡度通常写成1 : m 的形式,如1:1.5i =. 坡面与水平面的夹角叫做坡角,记作α.坡度i 与坡角α之间的关系:tan hi lα==.模块二:解直角三角形的应用知识精讲7 / 17ABOC ABDABP 北ABC【例16】如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角ABO ∠为α,则树OA 的高度为( )A .30tan αB .30sin αC .30tan αD .30cos α【难度】★ 【答案】 【解析】【例17】如图,一艘海轮位于灯塔P 的北偏东55°方向,距离灯塔2海里的点A 处.如果海轮沿着正南方向航行到灯塔的正东方向,那么海轮航行的距离AB 的长是( )海里A .2B .2sin 55°C .2cos 55°D .2tan 55°【难度】★ 【答案】 【解析】【例18】如图所示,某公园入口处原有三级台阶,每级台阶高为18厘米,深为30厘米,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A ,斜坡的起始点为C ,现设计斜坡BC 的坡度i = 1 : 5,那么AC 的长度是______厘米.【难度】★ 【答案】 【解析】【例19】如图,斜面AC 的坡度为1 : 2,AC =35米,坡顶有一旗杆BC ,旗杆顶端B点与A 点有一条彩带相连,若AB = 10米,则旗杆BC 的高度为( )米A .5B .6C .8D .3+5【难度】★★ 【答案】 【解析】【例20】如图,要在宽为22米的大道AB 两边安装路灯,路灯的灯臂CD 长2米,且例题解析8 / 17ABCDOABCDAC PQ与灯柱BC 成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO 与灯臂CD 垂直.当灯罩的轴线DO 通过公路路面中心线时照明效果最佳.此时,路灯的灯柱BC 的高度应该设计为( )米A .1122-B .1123-C .11322D .1134【难度】★★ 【答案】 【解析】【例21】如图,为测得一栋大厦CD 的高度,一人先在附近一楼房的底端A 点观测大厦顶端C 处的仰角是60°,然后爬到该楼房顶端B 处观测大厦底部D 处的俯角是30°,已知楼房高AB 约是45 m ,根据以上观测数据可求大厦的高CD 是______m .【难度】★★ 【答案】 【解析】【例22】如图,小智在大楼30米高(即PH = 30米)的窗口P 处进行观测,测得山坡上A 处的俯角为15°,山脚B 处的俯角为60°.已知山坡的坡度为3,点P 、H 、B 、C 、A 在同一平面上,点H 、B 、C 在同一直线上,且PH HC ⊥.则山坡上A 、B 两点间的距离为______.【难度】★★ 【答案】 【解析】【例23】某单位拟建造地下停车库,设计师提供了车库入口设计示意图(如图),按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入,9 / 17AB CDABA 'B 'O 'O为标明限高,请你计算图中CE 的长.(参考数据:sin180.309︒≈,cos180.951︒≈,tan180.325︒≈,cot18 3.078︒≈,结果精确到0.1 m )【难度】★★ 【答案】 【解析】【例24】小方在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车吊臂的支点O 距离地面高'2OO =米.当吊臂顶端由点A 抬升至点'A (吊臂长度不变)时,地面B 处的重物(高度不计)被吊至'B 处,紧绷着的吊缆''A B AB =.AB 垂直地面'O B 于点B ,直线''A B 垂直地面'O B 于点C ,吊臂长度'10OA OA ==米,且3cos 5A =,1sin '2A =.(1)求重物在水平方向移动的距离BC ;(2)求重物在竖直方向提升的高度'B C .【难度】★★ 【答案】 【解析】【例25】如图,是一座人行天桥的示意图,天桥的高度是10米,CB DB ⊥,坡面AC的坡角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC 的坡度为3:3i =.若新坡角下需留3米宽的人行道,问离原坡角(A 点处)10米的建筑物是否需要拆除?(参考数据:2 1.414≈,3 1.732≈)【难度】★★ 【答案】 【解析】【例26】数学兴趣小组准备利用所学的知识测量公路旁某广告牌的高度.如图所示,先在水平面上点A 处测得对广告牌上沿点C 的仰角为30°,然后沿AH 方向前进10米至点B 处,测得对广告牌下沿点D 的仰角为60°.已知矩形广告牌垂直于地面的AB C D E9 m0.5 m10 / 17ABC DP NMQH A BCD O 北东一边CD 高2米.求广告牌的高度GH (结果保留根号).【难度】★★ 【答案】 【解析】【例27】如图,轮船甲位于码头O 的正西方向A 处,轮船乙位于码头O 的正北方向C处,测得45CAO ∠=︒.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45 km /h 和36 km /h .经过0.1 h ,轮船甲行驶至B 处,轮船乙行驶至D 处,测得58DBO ∠=︒.此时B 处距离码头O 有多远?(参考数据:sin580.85︒≈,cos580.53︒≈,tan58 1.60︒≈)【难度】★★ 【答案】 【解析】【例28】如图,MN 表示一段笔直的高架道路,线段AB 表示高架道路旁的一排居民楼.已知点A 到MN 的距离为15米,BA 的延长线与MN 相交于点D ,且30BDN ∠=︒,假设汽车在高架道路上行驶时,周围39米以内会受到噪音的影响.(1)过点A 作MN 的垂线,垂足为H .如果汽车沿着从M 到N 的方向在MN 上行驶, 当汽车到达点P 处时,噪音开始影响这一排居民楼,那么此时汽车与点H 的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板.当汽车行驶到点Q 时,它与这 一排居民楼的距离QC 为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(结果精确到1米,参考数据:3 1.7≈)【难度】★★★ 【答案】 【解析】【例29】台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象部门观测,某沿海城市A 正南方向相距220 km 的B 处有一台风中心,中心最大风力为12级,每远离台风中心20 km ,风力就会减弱一ABCD G H广告牌ABC D EFN MP JHABC级.现台风中心正以15 km /h 的速度沿北偏东30°方向移动,如图所示.若城市所受风力达到或超过4级,则称为受台风影响.(1)设台风中心风力不变,该城市是否会受到这次台风的影响?请说明理由. (2)如该城市受台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响时的最大风力为几级?【难度】★★★ 【答案】 【解析】【例30】某水库大坝的横截面积是如图所示的四边形ABCD ,其中AB // CD .瞭望台PC 正前方水面上有两艘渔船M 、N ,观察员在瞭望台顶端P 处观测渔船M 的俯角31α=︒,观测渔船N 的俯角45β=︒.已知MN 所在直线与PC 所在直线垂直,垂足为E ,PE 长为30米.(1)求两渔船M 、N 之间的距离(结果精确到1米)(2)已知坝高24米,坝长100米,背水坡AD 的坡度i = 1 : 0.25.为了提高大坝的防洪能力,某施工队在大坝的背水坡填筑土石方加固,加固后坝顶加宽3米,背水坡FH 的坡度为i = 1 : 1.5.施工12天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的1.5倍,结果比原计划提前20天完成加固任务.施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan310.60︒≈,sin310.52︒≈)【难度】★★★ 【答案】 【解析】A BCDABCDABC DE FG AB CD【习题1】 如图,菱形ABCD 的边长为15,3sin 5BAC ∠=,则对角线AC 的长为______. 【难度】★ 【答案】 【解析】【习题2】 有一个相框的侧面抽象为如图所示的几何图形,已知BC = BD = 15 cm ,40CBD ∠=︒,则点B 到CD 的距离为______cm .(参考数据:sin200.342︒≈,cos200.940︒≈,sin400.642︒≈,cos400.766︒≈,结果精确到0.1 cm )【难度】★ 【答案】 【解析】【习题3】 如图,为了测得电视塔的高度AB ,在D 处用高为1米的测角仪CD 测得电视塔顶端A 的仰角为30°,再向电视塔方向前进100米到达F 处,又测得电视塔顶端A 的仰角为60°,则这个电视塔的高度AB 为( )A .503米B .51米C .()503+1米D .101米【难度】★★ 【答案】 【解析】【习题4】 如图,ABC ∆中,90C ∠=︒,3sin 5B =.D 是BC 上一点,已知45ADC ∠=︒,DC = 6,求tan BAD ∠的值.【难度】★★ 【答案】 【解析】随堂检测ABCDABCDEFABC30°45° 【习题5】 如图,ABC ∆和ADE ∆都是等边三角形,AB = 2AD ,已知45BAD ∠=︒,AC与DE 相交于点F ,ABC ∆3【难度】★★ 【答案】 【解析】【习题6】 如图,在四边形ABCD 中,45A C ∠=∠=︒,105ADB ABC ∠=∠=︒.(1)若AD = 2,求AB ;(2)若232AB CD +=,求AB . 【难度】★★ 【答案】 【解析】【习题7】 2015年4月25日14时11分,尼泊尔发生8.1级地震,震源深度为20千米.中国救援队火速赶往灾区救援,探测出某建筑物废墟下方C 处有生命迹象.在废墟一侧某面上选两探测点A 、B ,点A 、B 相距2米,探测线与该面的夹角分别是30°和45°(如图),试确定生命所在的点C 2 1.414,3 1.732≈)【难度】★★ 【答案】 【解析】【习题8】 利用几何图形,求sin 18°的值. 【难度】★★★ 【答案】 【解析】【习题9】 如图,港口B 位于港口O 正西方向120 km 处,小岛C 位于港口O 北偏西60°方向上.一艘游船从港口O 出发,沿OA 方向(北偏西30°)以v km /h 的速度驶离ABCO北北东ABCA 1B 1C 1港口O ,同时一艘快艇从港口B 出发,沿北偏东30°的方向以60 km /h 的速度驶向小岛C ,在小岛C 用1 h 加装补给物资后,立即按原来的速度给游船送去. (1)快艇从港口B 到小岛C 需要多长时间?(2)若快艇从小岛C 到与游船相遇恰好用时1 h ,求v 的值及相遇处与港口O 的距离. 【难度】★★ 【答案】 【解析】 【习题10】 如图所示,已知边长为2的正三角形ABC 沿直线l 顺时针滚动.(1)当ABC ∆滚动一周到111A B C ∆的位置时,A 点所运动的路程约为______;(精确到0.1)(2)设ABC ∆滚动240°,C 点的位置为'C ,当ABC ∆滚动480°时,A 点的位置再'A ,请你利用正切的两角和公式()tan tan tan 1tan tan αβαβαβ++=-,求出''CAC CAA ∠+∠的度数.【难度】★★★ 【答案】 【解析】ABCD EFABC北东ABCDEFABCD【作业1】 如图,将正方形ABCD 的边BC 延长到点E ,使得CE = AC ,AE 与CD 相交于点F ,求E ∠的余切值.【难度】★ 【答案】 【解析】【作业2】 如图,在矩形ABCD 中,AB = 8,BC = 12,E 是BC 的中点,连接AE ,将ABE∆沿AE 折叠,点B 落在点F 处,连接FC ,则sin EFC ∠的值为______.【难度】★★ 【答案】 【解析】【作业3】 如图,AD 是ABC ∆的中线,1tan 3B =,2cosC =,2AC =.求:(1)BC 的长;(2)sin ADC ∠的值.【难度】★★ 【答案】 【解析】【作业4】 如图,轮船从B 处以每小时60海里的速度沿南偏东20°的方向匀速航行,在B 处观测灯塔A 位于南偏东50°方向上.轮船航行40分钟到达C 处,在C 处观测灯塔A 位于北偏东10°方向上,则C 处与灯塔A 的距离是( )A .20海里B .40海里C .2033海里D .4033海里【难度】★★ 【答案】 【解析】课后作业ABCDABCDDABC ABNM 【作业5】 如图,在ABC ∆中,45B ∠=︒,56AB =,D 是BC 上一点,AD = 5,CD = 3,求ADC ∠的度数及AC 的长.【难度】★★ 【答案】 【解析】【作业6】 如图,点D 在ABC ∆的边BC 上,C BAD DAC ∠+∠=∠,4tan 7BAD ∠=,65AD =,CD = 13,求线段AC 的长.【难度】★★ 【答案】 【解析】【作业7】 如图,一栋楼房AB 背后有一台阶CD ,台阶每层高0.2米,且AC = 17.2米.设太阳光线与水平地面的夹角为α,当60α=︒时,测得楼房在地面上的影长AE = 10米.现有一只小猫睡在台阶的MN 这层上晒太阳.3 1.73) (1)楼房的高度约为多少米?(2)过了一会儿,当45α=︒时,问小猫能否还晒到太阳?请说明理由. 【难度】★★ 【答案】 【解析】【作业8】 如图,CD 是ABC ∆的中线,已知90ACD ∠=︒,3cos 5A =,求tan BCD ∠的值. 【难度】★★★ 【答案】 【解析】【作业9】 如图,在梯形ABCD 中,AD // BC ,AB = 4,BC = 6,DAC B AEF ∠=∠=∠,ABCDEF点E 、F 分别在BC 、AC 上(点E 与B 、C 不重合),设BE = x ,AF = y . (1)求cos B ;(2)求证:ABE ∆∽ECF ∆; (3)求y 关于x 的代数式;(4)当点E 在BC 上移动时,AEF ∆是否有可能是直角三角形?若有可能,请求出BE 的长;若不能,请说明理由.【难度】★★★ 【答案】 【解析】【作业10】 如图(a )所示,已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,E是BC 上一点,以AE 为边在直线MN 的上方作正方形AEFG . (1)连接GD ,求证:ADG ∆≌ABE ∆;(2)连接FC ,观察并猜测FCN ∠的度数,并说明理由;(3)如图(b )所示,将图(a )中正方形ABCD 改为矩形ABCD ,AB = a ,BC = b (a 、b 为常数),E 是线段BC 上一动点(不含端点B 、C ),以AE 为边在直线MN 上方作矩形AEFG ,使顶点G 恰好落在射线CD 上.判断当点E 由B 向C 运动时,FCN ∠的大小是否总保持不变,若FCN ∠的大小不变,请用含a 、b 的代数式表示tan FCN ∠的值;若FCN ∠的大小改变,请举例说明.【难度】★★★ 【答案】 【解析】ABCD E FNM GA BCDEFNM G图(a )图(b )。
华师大版数学九年级上册《解直角三角形》说课稿4一. 教材分析华师大版数学九年级上册《解直角三角形》这一节的内容是在学生已经学习了锐角三角函数的基础上进行的。
这部分内容主要让学生了解直角三角形的性质,掌握解直角三角形的方法,以及熟练运用解直角三角形的知识解决实际问题。
教材从生活实际出发,通过让学生观察和分析实际问题,引出直角三角形的性质和解直角三角形的方法。
然后,通过例题和练习题的讲解和练习,使学生掌握解直角三角形的方法,并能够运用到实际问题中。
二. 学情分析学生在学习这一节内容时,已经掌握了锐角三角函数的知识,对三角函数有一定的理解。
但是,对于解直角三角形的方法和应用,可能还比较陌生。
因此,在教学过程中,需要引导学生从生活实际出发,理解直角三角形的性质和解直角三角形的方法,并通过大量的练习,使学生能够熟练掌握解直角三角形的方法,并能够运用到实际问题中。
三. 说教学目标教学目标主要包括三个方面:知识与技能、过程与方法、情感态度与价值观。
1.知识与技能:使学生了解直角三角形的性质,掌握解直角三角形的方法,能够熟练运用解直角三角形的知识解决实际问题。
2.过程与方法:通过观察、分析实际问题,引导学生发现直角三角形的性质,学会解直角三角形的方法,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用,培养学生的创新精神和实践能力。
四. 说教学重难点教学重点是使学生掌握解直角三角形的方法,并能够熟练运用到实际问题中。
教学难点是引导学生发现直角三角形的性质,理解解直角三角形的方法。
五. 说教学方法与手段在教学过程中,我会采用问题驱动法、案例教学法和小组合作法等教学方法。
同时,利用多媒体教学手段,如PPT、视频等,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过展示一些生活中的实际问题,引导学生观察和分析,引出直角三角形的性质和解直角三角形的方法。
28.2解直角三角形(4)⑴: 使学生了解坡度与坡角⑵: 逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法. ⑶: 巩固用三角函数有关知识解决问题,学会解决方位角问题. 【学习重点】用三角函数有关知识解决方位角问题 【学习难点】学会准确分析问题并将实际问题转化成数学模型【导学过程】 一、自学提纲:坡度与坡角坡面的铅直高度h 和水平宽度l 的比叫做坡度(或叫做坡比), 一般用i 表示。
即i=,常i=1:m 的形式如i=1:2.5 把坡面与水平面的夹角α叫做坡角.结合图形思考,坡度i 与坡角α之间具有什么关系?这一关系在实际问题中经常用到。
二、教师点拨:例7同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图6-33水库大坝的横断面是梯形,坝顶宽6m ,坝高23m ,斜坡AB 的坡度i=1∶3,斜坡CD 的坡度i=1∶2.5,求斜坡AB 的坡面角α,坝底宽AD 和斜坡AB 的长(精确到0.1m)三、学生展示:完成课本91页练习2四、当堂检测1、(1)一段坡面的坡角为60°,则坡度i=______;______,坡角 ______度.2、利用土埂修筑一条渠道,在埂中间挖去深为0.6米的一块(图阴影部分是挖去部分),已知渠道内坡度为1∶1.5,渠道底面宽BC 为0.5米,求: ①横断面(等腰梯形)ABCD 的面积;②修一条长为100米的渠道要挖去的土方数.3、如图,水库大坝的截面是梯形ABCD.坝顶AD =6m ,坡长CD =8m.坡底BC =30m , ∠ADC=135°.(1)求∠ABC 的大小:(2)如果坝长100 m.那么建筑这个大坝共需多少土石料?(结果精确到0.01 m3)五、课堂小结:六、自我反思:本节课我的收获: 。
初三数学解直角三角形试题答案及解析1.一测量爱好者,在海边测量位于正东方向的小岛高度AC,如图所示,他先在点B测得山顶点A的仰角为30°,然后向正东方向前行62米,到达D点,在测得山顶点A的仰角为60°(B、C、D三点在同一水平面上,且测量仪的高度忽略不计).求小岛高度AC(结果精确的1米,参考数值:,)【答案】53米.【解析】首先利用三角形的外角的性质求得∠BAD的度数,得到AD的长度,然后在直角△ADC 中,利用三角函数即可求解.试题解析:∵∠ADC=∠B+∠BAD,∴∠BAD=∠ADC-∠B=60°-30°=30°,∴∠B=∠BAD,∴AD=BD=62(米).在直角△ACD中,AC=AD•sin∠ADC=62×=31≈31×1.7=52.7≈53(米).答:小岛的高度约为53米.【考点】解直角三角形的应用-仰角俯角问题.2.如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.(1)求证:△ABC∽△BCD;(2)求x的值;(3)求cos36°-cos72°的值.【答案】(1)证明见解析;(2);(3).【解析】(1)由等腰三角形ABC中,顶角的度数求出两底角度数,再由BD为角平分线求出∠DBC的度数,得到∠DBC=∠A,再由∠C为公共角,利用两对角相等的三角形相似得到三角形ABC与三角形BCD相似;(2)根据(1)结论得到AD=BD=BC,根据AD+DC表示出AC,由(1)两三角形相似得比例求出x的值即可;(3)过B作BE垂直于AC,交AC于点E,在直角三角形ABE和直角三角形BCE中,利用锐角三角函数定义求出cos36°与cos72°的值,代入原式计算即可得到结果.试题解析:(1)∵等腰△ABC中,AB=AC,∠BAC=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=36°,∵∠CBD=∠A=36°,∠C=∠C,∴△ABC∽△BCD;(2)∵∠A=∠ABD=36°,∴AD=BD,∵BD=BC,∴AD=BD=CD=1,设CD=x,则有AB=AC=x+1,∵△ABC∽△BCD,∴,即,整理得:x2+x-1=0,解得:x1=,x2=(负值,舍去),则x=;(3)过B作BE⊥AC,交AC于点E,∵BD=CD,∴E为CD中点,即DE=CE=,在Rt△ABE中,cosA=cos36°=,在Rt△BCE中,cosC=cos72°=,则cos36°-cos72°=-=.【考点】1.相似三角形的判定与性质;2.等腰三角形的性质;3.黄金分割;4.解直角三角形.3.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,AD=3,cosB=3/5,则AC等于()A.4B.5C.6D.7【答案】B.【解析】∵∠BAC=90°,AD⊥BC于D,∴∠BAD+∠CAD=90°,∠BAD+∠B=90°,∴∠CAD=∠B,∴cos∠CAD=cosB=,在直角△ACD中,∵∠ADC=90°,AD=3,∴cos∠CAD=,∴AC=5.故选B.【考点】解直角三角形.4.在△ACB中,∠C=90°,AB=10,,,.则BC的长为()A.6B.7.5C.8D.12.5【答案】A.【解析】∵∠C=90°,∴.又∵AB=10,∴.故选A.【考点】1.解直角三角形;2.锐角三角函数定义.5.已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)【答案】(1)10米;(2)19米.【解析】(1)过点A作AH⊥PQ,垂足为点H,利用斜坡AP的坡度为1:2.4,得出AH,PH,AH的关系求出即可;(2)利用矩形性质求出设BC=x,则x+10=24+DH,再利用tan76°=,求出即可.试题解析::(1)过点A作AH⊥PQ,垂足为点H.∵斜坡AP的坡度为1:2.4,∴,设AH=5k,则PH=12k,由勾股定理,得AP=13k.∴13k=26.解得k=2.∴AH=10.答:坡顶A到地面PQ的距离为10米.(2)延长BC交PQ于点D.∵BC⊥AC,AC∥PQ,∴BD⊥PQ.∴四边形AHDC是矩形,CD=AH=10,AC=DH.∵∠BPD=45°,∴PD=BD.设BC=x,则x+10=24+DH.∴AC=DH=x-14.在Rt△ABC中,tan76°=,即,解得x=,即x≈19,答:古塔BC的高度约为19米.【考点】1.解直角三角形的应用-坡度坡角问题;2.解直角三角形的应用-仰角俯角问题.6.超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在A处,离益阳大道的距离(AC)为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B处行驶到C处所用的时间为8秒,∠BAC=75°.(1)求B、C两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin 75°≈0.965 9,cos 75°≈0.258 8,tan 75°≈3.732,≈1.732,60千米/小时≈16.7米/秒)【答案】(1)112(米) (2)此车没有超过限制速度【解析】解:(1)在Rt△ABC中,∠ACB=90°,∠BAC=75°,AC=30,∴BC=AC·tan ∠BAC=30×tan 75°≈30×3.732≈112(米).(2)∵此车速度=112÷8=14(米/秒)<16.7(米/秒)=60(千米/小时)∴此车没有超过限制速度.7.在△ABC中,若∠A、∠B满足|cos A-|+=0,则∠C=________.【答案】75°【解析】∵|cos A-|+=0,∴cos A-=0,sin B-=0,∴cos A=,sin B=,∴∠A=60°,∠B=45°,则∠C=180°-∠A-∠B=180°-60°-45°=75°.8.在△ABC中,∠C=90°,,则().A.B.C.D.【答案】D.【解析】由sin A=,设∠A的对边是3k,则斜边是5k,∠A的邻边是4k.再根据正切值的定义,得tanA=.故选D.【考点】锐角三角函数.9.如图,将45°的∠AOB按下面的方式放置在一把刻度尺上:顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数恰为2cm.若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数约为cm.(结果精确到0.1cm,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】2.7【解析】过点B作BD⊥OA于D,过点C作CE⊥OA于E.在△BOD中,∠BDO=90°,∠DOB=45°,∴BD=OD=2cm,∴CE=BD=2cm.在△COE中,∠CEO=90°,∠COE=37°,∵tan37°=≈0.75,∴OE≈2.7cm.∴OC与尺上沿的交点C在尺上的读数约为2.7 cm.10.如图,一段河坝的横截面为梯形ABCD,试根据图中数据,求出坝底宽AD.(i=CE∶ED,单位:m)【答案】(7.5+4)m【解析】解:作BF⊥AD于点F.则BF=CE=4m,在直角△ABF中,AF===3m,在直角△CED中,根据i=,则ED===4m.则AD=AF+EF+ED=3+4.5+4=(7.5+4)m.11.如图,A、B两地之间有一座山,汽车原来从A地到B地经过C地沿折线A→C→B行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10千米,∠A=30°,∠B=45°.则隧道开通后,汽车从A地到B地比原来少走多少千米?(结果保留根号)【答案】(5+5-5)千米【解析】解:过C作CD⊥AB于D,在Rt△ACD中,∵AC=10,∠A=30°,∴DC=ACsin30°=5,AD=ACcos30°=5,在Rt△BCD中,∵∠B=45°,∴BD=CD=5,BC=5,则用AC+BC-(AD+BD)=10+5-(5+5)=5+5-5(千米).答:汽车从A地到B地比原来少走(5+5-5)千米.12.在Rt△ABC中,若∠C=90°,cosA=,则sinA的值为()A.B.C.D.【答案】A.【解析】先根据特殊角的三角函数值求出∠A的值,再求出sinA的值即可.∵Rt△ABC中,∠C=90°,∴∠A是锐角,∵cosA==,∴设AB=25x,BC=7x,由勾股定理得:AC=24x,∴sinA=.故选A.考点:同角三角函数的关系.13.如图,在△中,,,则△的面积是()A.B.12C.14D.21【答案】A【解析】如图,作因为,所以.由勾股定理得.又,所以所以所以所以14.计算下列各题:(1);(2).【答案】(1)2 (2)【解析】解:(1)(2)15.在Rt△ABC中,∠C=90°,sinA=,则cosB的值为()A.B.C.D.【答案】C.【解析】在Rt△ABC中,∠C=90°,sinA=,设BC=3x,则AB=5x,∴AC=4x.∴cosB=.故选C.考点: 互余两角三角函数的关系.16.计算:【答案】-2.【解析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简、负整数指数幂以及绝对值等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:考点: 实数的混合运算.17.若(为锐角),则=【答案】1.【解析】因为所以得,代入可得值为1【考点】正切和正、余弦函数的关系.18.如图所示,直角三角形纸片的两直角边长分别为6,8,现将如图那样折叠,使点与点重合,折痕为,则的值是________【答案】.【解析】折叠后形成的图形相互全等,利用三角函数的定义可求出.根据题意,BE=AE.设CE=x,则BE=AE=8-x.在Rt△BCE中,根据勾股定理得:BE2=BC2+CE2,即(8-x)2=62+x2解得x=,∴tan∠CBE==考点:(1)锐角三角函数的定义;(2)勾股定理;(3)翻折变换(折叠问题).19.(1)一个人由山底爬到山顶,需先爬450的山坡200m,再爬300的山坡300m,求山的高度(结果可保留根号)。
教学设计
内容:28.2.解直角三角形(一)
教学目标
1.知识与技能
(1)使学生理解解直角三角形中五个元素的关系,什么是解直角三角形。
(2)会运用勾股定理,直角三角形的两锐角互余及锐角三角函数解直角三角形。
2.过程与方法
通过综合运用勾股定理,直角三角形的两锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题,解决问题的能力。
3.情感态度与价值观
渗透数形结合的数学思考,培养学生综合运用知识的能力和良好的学习习惯
重点与难点
重点:直角三角形的解法。
难点:三角函数在直角三角形中的灵活运用。
教师根据学生的回答归纳。
在直角三角形中:
1.三边之间关系:a2+b2=c2(勾股定理)
2.锐角之间关系:∠A+∠B=90°
3.边角之间关系:
正弦函数:sinA=
余弦函数:cosA=
正切函数:tanA=示学生思考
总结(引
问:边与
边、角与
角、边与角
之间的关
系)
学生尝试总
结回答,教
师讲评汇
总。
回顾
复习
汇
总,
为解
直角
三角
形打
下基
础
三、新知探索
探究:在RT ABC中,
∠
ABC=90° C A
(1)若∠A=35°,AB=10,你能求出这个直角三角形中的其他元素吗?(2)若AB=10,BC=5,你能求出这个直角三角形中的其他元素吗?
(3)若∠A=35°∠B=55°,你能求出这个直角三角形中的其他元素吗?(4)在直角三角形中知道几个元素就可以求出其他元素?
(只讨方法,不解出结果)
归纳:1.在直角三角形六个元素中,除直角外的五个元素只要知道两个元素(其中至少有一条边)就可以求出其余的三个元素。
2.定义:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形。
3.解直角三角形,只有下面两种情况:
(1)已知两条边;(2)已知一条边和一个锐角
1.教
师提出
问题,
引导学
生思考
分析,
并简要
讲评。
2.学
生思考
回答,
注意在
解题过
程中方
法的多
样性。
3.教
师根据
学生回
答汇总
归纳
4. 学
生理解
通过
学生
探
究,
理解
什么
是解
直角
三角
形,
并掌
握解
直角
三角
形的
方
法,
学会
解直
角三
角
形。
(本。