【中考复习】2018届中考数学《第33课时:相似图形的应用》课时作业本(含答案)
- 格式:doc
- 大小:1.75 MB
- 文档页数:7
课后练习28 图形的相似第2课时 相似形的应用A 组1.手工制作课上,小红利用一些花布的边角料,剪裁后装饰手工画,下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形、矩形花边,其中,每个图案花边的宽度都相等,那么,每个图案中花边的内外边缘所围成的几何图形不相似的是( )2.如图,在等腰△ABC 中,底边BC =a ,∠A =36°,∠ABC 的平分线交AC 于D ,∠BCD 的平分线交BD 于E .设k =5-12,则DE =( ) A .k 2a B .k 3a C .a k 2 D .a k3第2题图3.如图,在边长为9的正三角形ABC 中,BD =3,∠ADE =60°,则AE 的长为____________________.第3题图4.如图1是夹文件用的铁(塑料)夹子在常态下的侧面示意图.AC ,BC 表示铁夹的两个面,O 点是轴,OD ⊥AC 于D .已知AD =15mm ,DC =24mm ,OD =10mm.已知文件夹是轴对称图形,试利用图2,求图1中A ,B 两点的距离是____________________mm.第4题图5.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB= m.第5题图6.在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC =1.6m,木竿PQ的影子有一部分落在了墙上,PM=1.2m,MN=0.8m,则木竿PQ的长度为____________________m.第6题图7.如图1是一种广场三联漫步机,其侧面示意图如图2所示,其中AB=AC=120cm,BC=80cm,AD=30cm,∠DAC=90°.求点D到地面的高度是多少?第7题图B组8.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是( )第8题图9.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中卷第九勾股,主要讲述了以测量问题为中心的直角三角形三边互求的关系.其中记载:“今有邑,东西七里,南北九里,各中开门,出东门一十五里有木,问:出南门几何步而见木?”译文:“今有一座长方形小城,东西向城墙长7里,南北向城墙长9里,各城墙正中均开一城门.走出东门15里处有棵大树,问走出南门多少步恰好能望见这棵树?”(注:1里=300步)你的计算结果是:出南门步而见木.第9题图10.正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:Rt△ABM∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN面积最大,并求出最大面积;(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x的值.第10题图C组11.如图,已知P是线段AB的黄金分割点,且PA>PB,若S1表示以PA为一边的正方形的面积,S2表示长是AB,宽是PB的矩形的面积,则S1S2(填“>”、“=”或“<”).第11题图参考答案课后练习28 图形的相似应用 第2课时 相似形的应用A 组1.D 2.A 3.7 4.30 5.5.5 6.2.3第7题图7.过A 作AF ⊥BC ,垂足为F ,过点D 作DH ⊥AF ,垂足为H .∵AF ⊥BC ,垂足为F ,∴BF =FC =12BC =40cm.根据勾股定理,得AF =AB 2-BF 2=1202-402=802(cm),∵∠DHA =∠DAC =∠AFC =90°,∴∠DAH +∠FAC =90°,∠C +∠FAC =90°,∴∠DAH =∠C ,∴△DAH ∽△ACF ,∴AH FC =AD AC ,∴AH 40=30120,∴AH =10cm ,∴HF =(10+802)cm.答:D 到地面的高度为(10+802)cm.B 组8.B 9.31510.(1)在正方形ABCD 中,AB =BC =CD =4,∠B =∠C =90°,∵AM ⊥MN ,∴∠AMN =90°,∴∠CMN +∠AMB =90°,在Rt △ABM 中,∠MAB +∠AMB =90°,∴∠CMN =∠MAB ,∴Rt △ABM∽Rt △MCN . (2)∵Rt △ABM ∽Rt △MCN ,∴AB MC =BM CN ,∴44-x =x CN ,∴CN =-x 2+4x4,∴y =S梯形ABCN =12⎝ ⎛⎭⎪⎫-x 2+4x 4+4·4=-12x 2+2x +8=-12(x -2)2+10,当x =2时,y 取最大值,最大值为10. (3)∵∠B =∠AMN =90°,∴要使△ABM ∽△AMN ,必须有AM MN =AB BM ,由(1)知AMMN=ABMC,∴BM =MC ,∴当点M 运动到BC 的中点时,△ABM ∽△AMN ,此时x =2. C 组11.=。
2018年中考数学真题汇编相似和位似(附答案和解释)
一、选择题
1 ( 2018安徽,8,4分)如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()
A4 B4 C6 D4
【答案】B
【逐步提示】由∠B=∠DAC,又找到共角∠C,得出△CAD∽△CBA,通过相似三角形的对应边成比例可求AC
【详细解答】解∵∠B=∠DAC,∠C=∠C,∴△CAD∽△CBA,∴ ,∵AD是中线,∴CD= BC=4,∴ ,解得AC=4 ,故选择B 【解后反思】求三角形的边的问题,在已知角相等的条下,一般是证明三角形相似,根据相似三角形的对应边成比例建立关系式求解【关键词】相似三角形,相似三角形的判定与性质
2 ( 2018甘肃省武威市、白银市、定西市、平凉市、酒泉市、临夏州、张掖市等9市,7,3分)如果两个相似三角形的面积比是14,那么它们的周长比是()
A. 116 B.14 C.16 D. 12
【答案】D
【逐步提示】本题考查了相似三角形的相关性质,解题的关键是掌握两个相似三角形的相似比与周长比、面积比之间的关系,由两个相似三角形的面积比得到两个相似三角形的相似比,进而得到它们的周长比;
【详细解答】解因为如果两个相似三角形的面积比是14,所以它们的相似比是12,而相似三角形的周长比等于相似比,即12,故选择D
【解后反思】相似三角形的对应线段、周长的比等于相似比,面积比等于相似比的平方,即若相似比为k,对应线段、周长的比为k,。
第33课时 相似形的应用(60分)一、选择题(每题6分,共24分)1.为了测量被池塘隔开的A ,B 两点之间的距离,根据实际情况,作出如图33-1所示的图形,其中AB ⊥BE ,EF ⊥BE ,AF 交BE 于D ,C 在BD 上.有四位同学分别测量出以下四组数据:①BC ,∠ACB ;②CD ,∠ACB ,∠ADB ;③EF ,DE ,BD ;④DE ,DC ,BC .能根据所测数据,求出A ,B 间距离的有(C)图33-1A .1组B .2组C .3组D .4组【解析】 此题比较综合,要多方面考虑.①因为知道∠ACB 和BC 的长,所以可利用∠ACB 的正切来求AB 的长; ②可利用∠ACB 和∠ADB 的正切求出AB ; ③因为△ABD ∽△FED ,可利用FE AB =DEDB求出AB ;④无法求出A ,B 间距离.故共有3组数据可以求出A ,B 间距离.2.如图33-2是小明设计的用手电来测量某古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB =1.2 m ,BP =1.8 m ,PD =12 m ,那么该古城墙的高度是(B) A .6 mB .8 mC .18 mD .24 m【解析】 由平面镜的入射角等于反射角, 易得∠APB =∠CPD .又∵∠B =∠D =90°,∴△ABP ∽△CDP , ∴PB PD =AB CD ,即1.812=1.2CD, 解得CD =8 m.图33-23.[2017·达州]如图33-3,以点O 为支点的杠杆,在A 端用竖直向上的拉力将重为G 的物体匀速拉起,当杠杆OA 水平时,拉力为F ;当杠杆被拉至OA 1时,拉力为F 1,过点B 1作B 1C ⊥OA ,过点A 1作A 1D ⊥OA ,垂足分别为点C ,D.图33-3①△OB 1C ∽△OA 1D ;②OA ·OC =OB ·OD ; ③OC ·G =OD ·F 1;④F =F 1. 上述4个结论中,正确结论有(D) A .1个B .2个C .3个D .4个4.[2016·聊城模拟]如图33-4,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1 m 的竹竿的影长是0.8 m ,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上,她先测得留在墙壁上的影高为1.2 m ,又测得地面的影长为2.6 m ,请你帮她算一下,树高是 (C)A .3.25 mB .4.25 mC .4.45 mD .4.75 m【解析】 设BD 是BC 在地面的影子,树高为x ,根据竹竿的高与其影子的比值和树高与其影子的比值相同得CB BD =10.8,而CB =1.2,∴BD =0.96,∴树在地面的实际影子长是0.96+2.6=3.56,再竹竿的高与其影子的比值和树高与其影子的比值相同得x 3.56=10.8.解得x =4.45.∴树高为4.45 m.二、填空题(每题6分,共24分)5.[2016·新疆]如图33-5,李明打网球时,球恰好打过网,且落在离网4 m 的位置上,则网球拍击球的高度h 为__1.4__m.图33-4图33-5【解析】 由题意得,DE ∥BC , ∴△ABC ∽△AED , ∴DE BC =AE AB, 即0.8h =44+3, 解得h =1.4 m .∴击球高度为1.4 m.6.如图33-6,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上.若光源到幻灯片的距离为20 cm ,到屏幕的距离为60 cm ,且幻灯片中图形的高度为6 cm ,则屏幕上图形的高度为__18__cm.【解析】 根据相似三角形的性质,对应高的比等于相似比进行解答.7.[2017·遵义]“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》.意思是说:如图33-7,矩形城池ABCD ,东边城墙AB 长9里,南边城墙AD 长7里,东门点E ,南门点F 分别是AB ,AD 中点,EG ⊥AB ,FH ⊥AD ,EG =15里,HG 经过A 点,则FH =__2120__里.图33-78.[2016·达州]如图33-8,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的中点C ′上,点D 落在D ′处,C ′D ′交AE 于点M .若AB =6,BC =9,则AM 的长为__94__.【解析】 ∵C ′是AB 的中点,AB =6, ∴AC ′=BC ′=3,∵四边形DCFE 沿EF 翻折至D ′C ′FE , ∴CF =C ′F ,∠C =∠MC ′F , ∴BC =BF +FC =BF +FC ′=9, ∴FC′=9-BF ,图33-6图33-8在Rt △BC ′F 中,根据勾股定理,得BF 2+BC ′2=FC ′2, 即32+BF 2=(9-BF )2, 解得BF =4,∴FC ′=5,又∵∠BFC ′+∠BC ′F =90°,∠AC ′M +∠BC ′F =90°, ∴∠BFC ′=∠AC ′M ,∵∠A =∠B =90°,∴△FC ′B ∽△C ′MA , ∴BF AC ′=BC ′AM ,即43=3AM, ∴AM =94.三、解答题(共20分)9.(10分)[2017·岳阳]如图33-9,矩形ABCD 为台球桌面.AD =260cm ,AB =130 cm.球目前在E 点位置,AE =60 cm.如果小丁瞄准BC 边上的点F 将球打过去,经过反弹后,球刚好弹到D 点的位置. (1)求证:△BEF ∽△CDF ; (2)求CF 的长.解:(1)由题意,得∠EFG =∠DFG ,∵∠EFG +∠BFE =90°,∠DFG +∠CFD =90°, ∴∠BFE =∠CFD ,∵∠B =∠C =90°, ∴△BEF ∽△CDF ;(2)∵△BEF ∽△CDF ,∴BE CD =BFCF, ∴70130=260-CF CF,∴CF =169. 10.(10分)[2016·菏泽]如图33-10,M ,N 为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞,工程人员为计算工程量,必须计算M ,N 两点之间的直线距离,选择测量点A ,B ,C ,点B ,C 分别在AM ,AN 上,现测得AM =1 km ,AN =1.8 km ,AB=54 m ,BC =45 m ,AC =30 m ,求M ,N 两点之间的直线距离.解:连结MN , ∵AC AM =301 000=3100,AB AN =541 800=3100,图33-9图33-10∴AC AM =AB AN, ∵∠BAC =∠NAM ,∴△BAC ∽△NAM , ∴BC MN =3100,∴45MN =3100, ∴MN =1 500.答:M ,N 两点之间的直线距离为1 500 m.(20分)11.(10分)[2016·邵阳]如图33-11,某校数学兴趣小组利用自制的直角三角形硬纸板DEF 来测量操场旗杆AB 的高度,他们通过调整测量位置,使斜边DF 与地面保持平行,并使边DE 与旗杆顶点A 在同一直线上,已知DE =0.5 m ,EF =0.25 m ,目测点D 到地面的距离DG =1.5 m ,到旗杆的水平距离DC =20 m ,求旗杆的高度.图33-11【解析】 根据题意可得△DEF ∽△DCA ,进而利用相似三角形的性质得出AC 的长,即可得出答案. 解:由题意可得△DEF ∽△DCA , 则DE DC =EF CA, ∵DE =0.5 m ,EF =0.25 m ,DG =1.5 m ,DC =20 m ,∴0.520=0.25AC,解得AC =10, 故AB =AC +BC =10+1.5=11.5(m), 答:旗杆的高度为11.5 m.12.(10分)如图33-12,四边形ABCD 中,AC 平分∠DAB ,∠ADC =∠ACB =90°,E 为AB 的中点. (1)求证:AC 2=AB ·AD ; (2)求证:CE ∥AD ;(3)若AD =4,AB =6,求ACAF的值.解:(1)证明:∵AC 平分∠DAB , ∴∠DAC =∠CAB.图33-12又∵∠ADC =∠ACB =90°, ∴△ADC ∽△ACB , ∴AD AC =AC AB, ∴AC 2=AB ·AD ;(2)证明:∵在Rt △ACB 中,E 为AB 的中点, ∴CE =12AB =AE ,∴∠EAC =∠ECA . 又∵∠CAD =∠CAB , ∴∠DAC =∠ECA , ∴CE ∥AD ; (3)∵CE ∥AD .∴∠DAF =∠ECF ,∠ADF =∠CEF , ∴△AFD ∽△CFE , ∴AD CE =AF CF. ∵CE =12AB ,AB =6,∴CE =12×6=3.又∵AD =4,由AD CE =AF CF 得43=AFCF,∴AF AC =47,∴AC AF =74.(12分)13.(12分)[2016·德州] (1)问题如图33-13①,在四边形ABCD 中,点P 为AB 上一点,∠DPC =∠A =∠B =90°. 求证:AD ·BC =AP ·BP ; (2)探究如图②,在四边形ABCD 中,点P 为AB 上一点,当∠DPC =∠A =∠B =θ时,上述结论是否依然成立?说明理由; (3)应用请利用(1)(2)获得的经验解决问题:如图③,在△ABD 中,AB =6,AD =BD =5.点P 以每秒1个单位长度的速度,由点A 出发,沿边AB 向点B 运动,且满足∠DPC =∠A .设点P 的运动时间为t (s),当以D 为圆心,以DC 为半径的圆与AB 相切,求t 的值.图33-13解:(1)证明:∵∠DPC =∠A =∠B =90°, ∴∠ADP +∠APD =90°, ∠BPC +∠APD =90°, ∴∠ADP =∠BPC . ∴△ADP ∽△BPC . ∴AD BP =AP BC. ∴AD ·BC =AP ·BP ;(2)结论AD ·BC =AP ·BP 仍成立. 理由:∵∠BPD =∠DPC +∠BPC , 又∵∠BPD =∠A +∠ADP , ∴∠DPC +∠BPC =∠A +∠ADP . ∵∠DPC =∠A =θ, ∴∠BPC =∠ADP , 又∵∠A =∠B =θ, ∴△ADP ∽△BPC , ∴AD BP =AP BC, ∴AD ·BC =AP ·BP ;(3)如答图,过点D 作DE ⊥AB 于点E . ∵AD =BD =5,AB =6.∴AE =BE =3.由勾股定理得DE =4.∵以D 为圆心,以DC 为半径的圆与AB 相切.第13题答图∴DC=DE=4.∴BC=5-4=1,又∵AD=BD,∴∠A=∠B.∵∠DPC=∠A,∴∠DPC=∠A=∠B.由(1),(2)的经验可知AD·BC=AP·BP.又AP=t,BP=6-t,∴t(6-t)=5×1.解得t1=1,t2=5.∴t的值为1 s或5 s.。
3.1 比例线段[3.1.1 比例的基本性质]一.选择题1.用6,8,9,12可以组成的比例式是( )A.6∶8=9∶12B.6∶8=12∶9C.12∶6=9∶8D.8∶12=9∶62.2017·兰州已知2x =3y (y ≠0),则下面的结论成立的是( ) A.x y =32 B.x 3=2y C.x y =23 D.x 2=y 33.如果x y =32,那么下列各式中成立的是( ) A .x +y y =5 B .y x -y =13C .x +3y +2=23D .x -y x +y =154.如果x ∶(x +y )=3∶5,那么x ∶y =( )A.85B.38C.23D.32二.填空题5.若a b =52,则a -b b的值是________. 6.若a b =c d =3(b +d ≠0),则a +c b +d=________. 7.已知实数a ,b ,c 满足a +b +c =10,且1a +b +1b +c +1c +a=1417,则c a +b +a b +c +b c +a的值是________. 三.解答题8.已知四个非零实数a ,b ,c ,d 成比例.(1)若a =2,b =3,c =4,求d 的值;(2)若a =-4,b =2,d =3,求c 的值.9.(1)若x ∶(6-x )=2∶3,求x 的值;(2)若x +y x -y =73,求x y的值.10.阅读理解型阅读下列解题过程,然后解题:题目:已知x a -b =y b -c =z c -a(a ,b ,c 互不相等),求x +y +z 的值.解:设x a -b =y b -c =z c -a=k , 则x =k (a -b ),y =k (b -c ),z =k (c -a ),∴x +y +z =k (a -b +b -c +c -a )=k ·0=0,∴x +y +z =0.依照上述方法解答下列问题:已知a ,b ,c 为非零实数,且a +b +c ≠0,当a +b -c c =a -b +c b=-a +b +c a 时,求(a +b )(b +c )(c +a )abc的值.参考答案1.[答案] A2.[答案] A3.[答案] D4.[解析] D ∵x ∶(x +y )=3∶5,∴5x =3x +3y ,2x =3y ,∴x ∶y =3∶2=32,故选D . 5.[答案] 32[解析] ∵a b =52,∴a =52b ,∴a -b b =52b -b b =32,故答案为32. 6.[答案] 37.[答案] 8917[解析] ∵a +b +c =10,∴a =10-(b +c ),b =10-(a +c ),c=10-(a +b ),∴c a +b +a b +c +b c +a =10-(a +b )a +b +10-(b +c )b +c+10-(a +c )c +a =10a +b +10b +c +10c +a -3.∵1a +b +1b +c +1c +a =1417,∴原式=1417×10-3=14017-3=8917,故填8917. 8.解:(1)因为a ,b ,c ,d 成比例,所以a b =c d ,即23=4d,解得d =6.(2)因为a ,b ,c ,d 成比例,所以a b =c d ,即-42=c 3,解得c =-6 2.9.解:(1)由比例的基本性质,得2(6-x )=3x ,化简,得5x =12,解得x =125. (2)由已知得3x +3y =7x -7y ,∴4x =10y ,∴x y =104=52. 10.解:设a +b -c c =a -b +c b =-a +b +c a=k , 则a +b -c =kc ,①a -b +c =kb ,②-a +b +c =ka ,③由①+②+③,得a +b +c =k (a +b +c ).∵a +b +c ≠0,∴k =1,∴a +b =2c ,b +c =2a ,c +a =2b ,∴(a +b )(b +c )(c +a )abc =2c ·2a ·2b abc=8.第3章 图形的相似3.1 比例线段3.1.1 比例的基本性质01 基础题知识点1 比例及其有关概念1.已知a =3,b =13,则a 与b 的比是(A)A.313B.133C.3013D.13302.下列选项中,与3∶(-2)比值相等的是(C) A.3∶ 2 B.(-13)∶12C.(-12)∶13D.18∶1103.请用2,4,6,3写一个比例式2∶4=3∶6,其中4和3称为比例内项,2和6称为比例外项.(答案不唯一)知识点2 比例的基本性质4.把ad =bc 写成比例式,不正确的是(C)A.a b =c dB.a c =b dC.b d =c aD.b a =d c5.若a ∶b =5∶3,则下列a 与b 关系的叙述,正确的是(A)A.a 为b 的53倍B.a 为b 的35C.a 为b 的58D.a 为b 的85倍 6.若a ∶3=b ∶4,则(A)A.a ∶b =3∶4B.a ∶b =4∶3C.b ∶a =3∶4D.4∶b =a ∶37.若a b =23,则a -b b 的值为(A)A.-13B.23C.43 D.538.填空:(1)如果7a =6b ,那么a ∶b =67;(2)如果9a =5b ,那么b ∶a =95; (3)如果35a =49b ,那么a ∶b =2027; (4)如果38a =0.45b ,那么b ∶a =56.9.已知四个数a ,b ,c ,d 成比例.(1)若a =-2,b =3,c =4,求d ;(2)若a =3,b =4,d =12,求c.解:(1)d =-6.(2)c =9.10.求下列各式中x 的值:(1)3∶8=15∶x ;解:x =40.(2)9x =4.50.8; 解:x =1.6.(3)14∶18=x ∶110. 解:x =15. 02 中档题11.若x ∶y =2∶3,则下列各式中正确的是(A)A.3x =2yB.2x =3yC.x 3=y 2D.x -y y =1312.若m +n n =52,则m n的值是(D) A.52 B.23C.25D.3213.已知b a =513,则a -b a +b的值是(D) A.23 B.32C.94D.4914.(牡丹江中考)若x ∶y =1∶3,2y =3z ,则2x +y z -y的值是(A)A.-5B.-103C.103D.515.已知5a =4b ,求下列各式的值:(1)a -b b ;(2)a +b b ;(3)a -ba +b .解:由5a =4b ,得a b =45.∴(1)a -b b =a b -1=-15.(2)a +b b =a b +1=95.(3)由(1)÷(2),得a -b a +b =-1595=-19.16.已知三个数2.4.8,请你再添上一个数,使它们成比例,求出所有符合条件的数.解:设添加的数为x ,当x ∶2=4∶8时,x =1;当2∶x =4∶8时,x =4;当2∶4=x ∶8时,x =4,当2∶4=8∶x 时,x =16,所以可以添加的数有1,4,16.17.已知b a =c d ≠1,求证:b +ab -a =c +dc -d .证明:设b a =c d =k(k≠1),则b =ak ,c =dk ,将其代入左右两边可得:左边=ak +a ak -a =k +1k -1,右边=dk +ddk -d =k +1k -1,∵左边=右边,∴b +ab -a =c +dc -d .03 综合题18.求比例式的值常用的方法有“设参消参法”.“代入消元法”.“特殊值法”.例:已知x 2=y 5=z 7,求x -2y +3zx -4y +5z 的值.方法1:设x 2=y 5=z 7=k ,则x =2k ,y =5k ,z =7k. 所以x -2y +3z x -4y +5z =2k -10k +21k 2k -20k +35k =13k 17k =1317. 方法2:由x 2=y 5=z 7,得y =52x ,z =72x.代入x -2y +3z x -4y +5z,得 x -2y +3z x -4y +5z =x -5x +212x x -10x +352x =132x 172x =1317. 方法3:取x =2,y =5,z =7,则x -2y +3z x -4y +5z =2-10+212-20+35=1317. 参考上面的资料解答下列问题:已知a.b.c 为△ABC 的三条边,且(a -c)∶(a +b)∶(c -b)=-2∶7∶1,a +b +c =24.(1)求a.b.c 的值;(2)判断△ABC 的形状.解:(1)设a -c =-2k ,a +b =7k ,c -b =k ,则⎩⎪⎨⎪⎧a -c =-2k ,a +b =7k ,c -b =k ,解得⎩⎪⎨⎪⎧a =3k ,b =4k ,c =5k ,∵a +b +c =24,∴3k +4k +5k =24.∴k =2.∴a =6,b =8,c =10. (2)∵a 2+b 2=100,c 2=100, ∴a 2+b 2=c 2.∴△ABC 是直角三角形.3.1.2 成比例线段01 基础题 知识点1 线段的比1.已知:线段a =5 cm ,b =2 cm ,则ab=(C)A.14B.4C.52D.252.如图,若点A.B.C 在同一直线上,且AC ∶BC =3∶2,则AB ∶BC =(C)A.2∶1B.5∶3C.5∶2D.3∶1 3.根据图示求线段的比:AB BC .AC AD .BC CD.解:AB BC =24=12,AC AD =614=37, BC CD =48=12. 知识点2 比例线段4.下列各组中的四条线段成比例线段的是(A) A.1 cm ,2 cm ,20 cm ,40 cm B.1 cm ,2 cm ,3 cm ,4 cm C.4 cm ,2 cm ,1 cm ,3 cm D.5 cm ,10 cm ,15 cm ,20 cm5.在比例尺是1∶38 000的南京交通游览图上,玄武湖公园与雨花台烈士陵园之间的距离约为20厘米,则它们之间的实际距离约为(D) A.19 000厘米 B.0.76千米 C.1.9千米 D.7.6千米6.已知a ,b ,c ,d 是成比例线段. (1)若a =4,b =1,c =12,求d ; (2)若a =1.5,b =2.5,d =2,求c ; (3)若b =3,c =2,d =33,求a.解:(1)∵a b =c d ,∴41=12d .∴d =3.(2)∵a b =c d ,∴1.52.5=c2.∴c =1.2.(3)∵a b =c d ,∴a 3=233.∴a =23.知识点3 黄金分割7.如图,点C 是线段AB 的黄金分割点,则下列等式不正确的是(D)A.AC AB =BC ACB.ACAB ≈0.618C.AC =5-12ABD.BC =5-12AB8.一条线段的黄金分割点有2个.9.如图,乐器上的一根弦AB =80 cm ,两个端点A.B 固定在乐器板面上,支撑点C 是靠近点B 的黄金分割点,支撑点D 是靠近点A 的黄金分割点,求C.D 之间的距离(结果保留根号).解:∵点C 是靠近点B 的黄金分割点,点D 是靠近点A 的黄金分割点, ∴AC =BD =80×5-12=405-40. ∴CD =AC +BD -AB =2BD -AB =805-160.答:C.D之间的距离为(805-160)cm.02 中档题10.已知成比例的四条线段的长度分别为6 cm,12 cm,x cm,8 cm,且△ABC的三边长分别为x cm,3 cm,5 cm,则△ABC是(C)A.等边三角形B.等腰直角三角形C.直角三角形D.无法判定11.已知线段AB上有两点C.D,且AC∶CB=1∶5,CD∶AB=1∶3,则AC∶CD等于(A)A.1∶2B.1∶3C.2∶3D.1∶112.如图所示,一张矩形纸片ABCD的长AB=a cm,宽BC=b cm,E,F分别为AB,CD的中点,这张纸片沿直线EF对折后,矩形AEFD的长与宽之比等于矩形ABCD的长与宽之比,则a∶b等于(A)A.2∶1B.1∶ 2C.3∶1D.1∶ 313.将两块长为a 米,宽为b 米的长方形红布,加工成一个长c 米,宽d 米的长方形,有人就a ,b ,c ,d 的关系写出了如下四个等式,不过他写错了一个,写错的那个是(D) A.2a c =d b B.a c =d 2bC.2a d =c bD.a 2c =d b14.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165 cm ,下半身长x 与身高l 的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为(C)A.4 cmB.6 cmC.8 cmD.10 cm15.甲.乙两地的图上距离是15 cm ,实际距离是750 km ,则比例尺为1∶5__000__000.16.已知三条线段的长分别为3 cm ,6 cm ,8 cm ,如果再增加一条线段,使这四条线段成比例,那么这条线段的长可以为多少?解:设这条线段长为x cm ,若x.3.6.8成比例,则x 3=68,解得x =94;若3.x.6.8成比例,则3x =68,解得x =4;若3.6.x.8成比例,则36=x8,解得x =4;若3.6.8.x 成比例,则36=8x,解得x =16.综上所述,这条线段的长可以为4 cm ,16 cm 或94cm.17.我们知道:选用同一长度单位量得两条线段AB ,CD 的长度分别是m ,n ,那么就说两条线段的比AB ∶CD =m ∶n ,如果把mn 表示成比值k ,那么ABCD=k ,或AB =kCD.请完成以下问题:(1)四条线段a ,b ,c ,d 中,如果a b =cd ,那么这四条线段a ,b ,c ,d 叫作成比例线段.(2)已知a b =c d =2,那么a +b b =3,c +dd=3;(3)如果a b =c d ,那么a -b b =c -dd 成立吗?请用两种方法说明其中的理由.解:成立.方法一:∵a b =cd ,∴a b -1=c d -1,即a -b b =c -d d . 方法二:设a b =cd =k ,则a =kb ,c =kd.∴a -b b =kb -b b =k -1,c -d d =kd -d d =k -1.∴a -b b =c -d d .03 综合题18.已知线段AB ,试作线段AB 的黄金分割点C. 作法:(1)作BD ⊥AB ,且使BD =12AB ;(2)连接AD ,以D 为圆心,BD 长为半径画弧交AD 于点E ; (3)以A 为圆心,AE 长为半径画弧交AB 于点C.点C 就是线段AB 的黄金分割点.请你探究:点C 为什么是线段AB 的黄金分割点?解:设DB =x ,则AB =2x , AD =x 2+(2x )2=5x.又∵DE =x ,∴AE =5x -x ,即AC =5x -x. ∴AC AB =5x -x 2x =5-12. ∴点C 是线段AB 的黄金分割点.3.2 平行线分线段成比例01 基础题知识点1 平行线分线段成比例1.(杭州中考)如图,已知a ∥b ∥c ,直线m 分别交直线a ,b ,c 于点A ,B ,C ,直线n 分别交直线a ,b ,c 于点D ,E ,F .若AB BC =12,则DE EF =(B )A.13B.12C.23D.12.如图,直线l 1∥l 2∥l 3,若AB =2,BC =3,DE =1,则EF 的长为(B ) A.23 B.32C.6D.163.如图,已知AB ∥CD ∥EF ,那么下列结论中,正确的是(C ) A.CD EF =AC AE B.AC AE =BD DFC.AC BD =CE DFD.AC BD =DF CE4.(湘潭中考)如图,直线a ∥b ∥c ,点B 是线段AC 的中点,若DE =2,则EF =2.5.如图,直线CD ∥EF ,若OC =3,CE =4,则OD OF 的值是37.6.如图,已知AD ∥BE ∥CF ,BC =3,DE ∶EF =2∶1,则AC =9.知识点2 平行于三角形一边的直线截其他两边,所得的对应线段成比例7.(兰州中考)如图,在△ABC 中,DE ∥BC ,若AD DB =23,则AEEC =(C )A.13B.25C.23D.358.如图,在△ABC 中,DE ∥BC ,AD =6,DB =3,AE =4,则EC 的长为(B )A.1B.2C.3D.49.如图,已知BD ∥CE ,则下列等式不成立的是(A ) A.AB BC =AD AE B.AB AC =AD AEC.AB BC =AD DED.AC BC =AE DE10.如图,在△ABC 中,点D ,E 分别在AB ,AC 边上,DE ∥BC ,若AD ∶AB =3∶4,AE =6,则AC 等于8.02 中档题11.如图,若AB ∥CD ∥EF ,则下列结论中,与ADAF相等的是(D )A.AB EFB.CD EFC.BO OED.BC BE12.如图,四边形ABCD 是平行四边形,点E 在BA 的延长线上,点F 在BC 的延长线上,连接EF ,分别交AD ,CD 于点G ,H ,则下列结论错误的是(C )A.EA BE =EG EFB.EG GH =AG GDC.AB AE =BC CFD.FH EH =CF AD13.如图,已知AB ∥CD ∥EF ,AC ∶CE =2∶3,BF =15,那么BD =6.14.(扬州中考)如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A .B .C 都在横格线上,若线段AB =4 cm ,则线段BC =12cm .15.已知,如图,l 1∥l 2∥l 3,AB =3,BC =5,DF =16,求DE 和EF 的长.解:∵l 1∥l 2∥l 3, ∴DE DF =AB AC =AB AB +BC , 即DE 16=33+5,∴DE =6,∴EF =DF -DE =16-6=10.16.如图,在△ABC 中,点D 是AB 上的一点,过点D 作DE ∥BC 交边AC 于点E ,过点E 作EF ∥DC 交AD 于点F .已知AD =2 6 cm ,AB =8 cm .求:(1)AEAC 的值; (2)AFAB 的值. 解:(1)∵DE ∥BC ,∴AE AC =AD AB. ∵AD =26,AB =8, ∴AE AC =268=64. (2)∵EF ∥DC ,∴AF AD =AE AC =64,即AF 26=64. 解得AF =3.∴AF AB =38. 03 综合题17.在△ABC 中,D 为BC 边的中点,E 为AC 边上任意一点,BE 交AD 于点O ,李瑞同学在研究这一问题时,发现了如下的事实: (1)当AE AC =12=11+1时,有AO AD =23=22+1(如图1);(2)当AE AC =13=11+2时,有AO AD =24=22+2(如图2);(3)当AE AC =14=11+3时,有AO AD =25=22+3(如图3);在图4中,当AE AC =11+n 时,参照上述研究结论,请你猜想用n (n 是正整数)表示AOAD 的一般结论,并证明.解:猜想:AO AD =2n +2.证明:作DF ∥BE 交AC 于F . ∵DF ∥BE ,∴CF EF =CDBD=1.∴EF =CF .∵AE AC =11+n ,∴AE EC =1n . ∴AE EF =AE 12EC =2n. ∵OE ∥DF ,∴AO OD =AE EF =2n .∴AO AD =2n +2.3.3 相似图形01 基础题知识点1 相似图形的概念1.下列选项中,是相似图形的本质属性的是(C ) A.大小不同 B.大小相同 C.形状相同 D.形状不同2.观察如图所示的四组图形,不相似的图形是(C )知识点2 相似三角形的概念及性质3.如果△ABC ∽△A ′B ′C ′,BC =3,B ′C ′=1.8,那么△A ′B ′C ′与△ABC 的相似比为(D )A.5∶3B.3∶2C.2∶3D.3∶5 4.如图所示,若△ABC ∽△DEF ,则∠E 的度数为(C )A.28°B.32°C.42°D.52°5.已知△ABC ∽△A ′B ′C ′,且相似比为3∶2,若A ′B ′=10 cm ,则AB 等于(B )A.203 cm B.15 cmC.30 cmD.20 cm 6.两个相似三角形的对应边的比值叫作相似比.7.两个三角形相似,其中一个三角形的两个内角分别是40°.60°,那么另一个三角形的最大角为80°,最小角为40°. 8.如图,△ABC ∽△AED ,找出对应角并写出对应边的比例式.解:对应角:∠B 与∠E ;∠C 与∠D ;∠BAC 与∠DAE ;对应边的比例式:AB AE =AC AD =BCED .知识点3 相似多边形的概念及性质 9.如下的各组多边形中,相似的是(B )A.(1)(2)(3)B.(2)(3)C.(1)(3)D.(1)(2)10.两个相似多边形一组对应边分别为3 cm ,4.5 cm ,那么它们的相似比为(A )A.23B.32C.49D.9411.若如图所示的两个四边形相似,则∠α的度数是(C ) A.60° B.75° C.87° D.120°12.如图,正五边形FGHMN 与正五边形ABCDE 相似,若AB ∶FG =2∶3,则下列结论正确的是(B )A.2DE =3MNB.3DE =2MNC.3∠A =2∠FD.2∠A =3∠F02 中档题13.给出四个判断:①所有的等腰三角形都相似;②所有的等边三角形都相似;③所有的直角三角形都相似;④所有的等腰直角三角形都相似.其中判断正确的个数是(B ) A.1 B.2 C.3 D.4 14.下列命题是真命题的是(B ) A.所有的等腰三角形都相似B.所有的对角线互相垂直平分且相等的四边形都相似C.四个角都是直角的两个四边形一定相似D.四条边对应成比例的两个四边形相似15.如图所示,△ABC ∽△ADE ,且∠ADE =∠B ,则下列比例式正确的是(D )A.AB BE =AD DCB.AE AB =AD ACC.AD AC =DE BCD.AE AC =DE BC16.如图,有两个相似的星星图案,则x的值是(D)A.15B.12C.10D.817.(南岸区一模)如图,△ABC∽△CBD,CD=2,AC=3,BC=4,那么AB的值等于(B)A.5B.6C.7D.418.如图,已知△ABC∽△ADE,AE=5 cm,EC=3 cm,BC=7 cm,∠BAC =45°,∠C=40°.(1)求∠AED和∠ADE的大小;(2)求DE的长.解:(1)∠AED=40°,∠ADE=95°.(2)∵△ABC∽△ADE,∴AE AC =DE BC ,即55+3=DE 7, ∴DE =358cm .19.如图,已知四边形ABCD ∽四边形A ′B ′C ′D ′,求∠A 的度数及x 的值.解:∵四边形ABCD ∽四边形A ′B ′C ′D ′,∠A ′=107°,AB =5,AD =4,A ′B ′=2,∴∠A =∠A ′,AB A′B′=ADA′D′,即∠A =107°,52=4x .∴x =85.03 综合题20.我们把相似形的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同,就把它们叫作相似体.如图,甲.乙是两个不同的正方体,正方体都是相似体,它们的一切对应线段之比都等于相似比:a ∶b ,设S 甲,S 乙分别表示这两个正方体的表面积,则S 甲S 乙=6a 26b 2=(a b )2,又设V 甲,V 乙分别表示这两个正方体的体积,则V 甲V 乙=a 3b 3=(a b)3.(1)下列几何体中,一定属于相似体的是(A ) A.两个球体 B.两个圆锥体 C.两个圆柱体 D.两个长方体 (2)请归纳出相似体的3条主要性质:①相似体的一切对应线段(或弧)长之比等于相似比; ②相似体表面积之比等于相似比的平方; ③相似体体积之比等于相似比的立方.3.4 相似三角形的判定与性质3.4.1 相似三角形的判定第1课时 相似三角形的判定的预备定理01 基础题知识点 用基本定理判定两个三角形相似1.如图,在△ABC 中,DE ∥AB ,DE 与AC ,BC 的交点分别为D ,E ,若CD AC =25,则DEAB等于(B) A.23 B.25C.32D.352.(贵阳中考)如图,在△ABC 中,DE ∥BC ,AD AB =13,BC =12,则DE 的长是(B)A.3B.4C.5D.63.如图,四边形ABCD 是平行四边形,则图中与△DEF 相似的三角形共有(B)A.1 个B.2个C.3个D.4个4.(威海中考)如图,在▱ABCD 中,点E 为AD 的中点,连接BE ,交AC 于点F ,则AF ∶CF =(A)A.1∶2B.1∶3C.2∶3D.2∶55.如图,在△ABC 中,DE ∥BC ,DE =3 cm ,BC =5 cm ,则△ADE 与△ABC 的相似比为35.6.(1)如图1, DE ∥BC ,则△ADE ∽△ABC ,对应边的比例式是: ADAB =AE AC =DE BC;(2)如图2, A′B′∥AB ,则△OA′B′∽△OAB ,对应边的比例式是:A′O OA =B′O OB =A′B′AB. 7.如图,∠ADE =∠B ,求证:△ADE ∽△ABC.证明:∵∠ADE =∠B ,∴DE ∥BC. ∴△ADE ∽△ABC.8.如图,在△ABC 中,已知DE ∥BC ,AD =4,DB =8,DE =3.求BC 的长.解:∵DE ∥BC , ∴△ADE ∽△ABC. ∴DE BC =AD AB ,即3BC =44+8. ∴3BC =13. ∴BC =9. 02 中档题9.在△ABC 中,若点D.E 分别在AB.BC 上,DE ∥AC ,ADDB =2,DE =4 cm ,则AC 的长为(D)A.8 cmB.10 cmC.11 cmD.12 cm10.如图,在△ABC 中,D.E 分别为AB.AC 边上的点,DE ∥BC ,BE 与CD 相交于点F ,则下列结论一定正确的是(A)A.AD AB =AE ACB.DF FC =AE ECC.AD DB =DE BCD.DF BF =EF FC11.(邵阳中考)如图,在▱ABCD 中,F 是BC 上的一点,直线DF 与AB 的延长线相交于点E ,BP ∥DF ,且与AD 相交于点P ,请从图中找出一组相似的三角形:△ABP ∽△AED ∽△BEF ∽△CDF(任写一组即可).12.如图,在△ABC 中,点D ,E 分别为AB ,AC 的中点,连接DE ,线段BE ,CD 相交于点O ,若OD =2,则OC =4.13.如图,A.B 两点被池塘隔开,在AB 外取一点C ,连接AC.BC ,在AC 上取点M ,使AM =3MC ,作MN ∥AB 交BC 于N ,量得MN =38 m ,求AB 的长.解:∵MN ∥AB ,∴△CMN ∽△CAB. 又∵AM =3MC , ∴CM AC =14. ∴MN AB =CM AC ,即38AB =14. ∴AB =38×4=152(m).14.如图,已知▱ABCD 中,E 为AD 延长线上的一点,AD =23AE ,BE 交DC 于F ,指出图中各对相似三角形及其相似比.解:∵四边形ABCD 是平行四边形, ∴AE ∥BC ,DC ∥AB. ∴△DEF ∽△CBF ,其相似比为DE CB =DE AD =AE -AD AD =13AE23AE =12.∵DC∥AB ,∴△DEF ∽△AEB , 其相似比为DE AE =13AE AE =13.∴△CBF ∽△AEB ,其相似比为CB AE =AD AE =23.03 综合题15.如图,AD ∥EG ∥BC ,EG 分别交AB ,DB ,AC 于点E ,F ,G ,已知AD =6,BC =10,AE =3,AB =5,求EG ,FG 的长.解:∵在△ABC 中,EG ∥BC , ∴△AEG ∽△ABC , ∴EG BC =AE AB. ∵BC =10,AE =3,AB =5, ∴EG 10=35,∴EG =6. ∵在△BAD 中,EF ∥AD , ∴△BEF ∽△BAD ,∴EF AD =BEAB .∵AD =6,AE =3,AB =5, ∴EF 6=5-35,∴EF =125. ∴FG =EG -EF =185.第2课时相似三角形的判定定理101 基础题知识点两角分别相等的两个三角形相似1.如图,D是BC上的点,∠ADB=∠BAC,则下列结论正确的是(B)A.△ABC∽△DACB.△ABC∽△DBAC.△ABD∽△ACDD.以上都不对2.如图,在矩形ABCD中,E在AD上,EF⊥BE,交CD于F,连接BF,则图中与△ABE一定相似的三角形是(B)A.△EFBB.△DEFC.△CFBD.△EFB和△DEF3.∠1=∠2是下列四个图形的共同条件,则四个图中不一定有相似三角形的是(D)4.(长春中考)如图,∠ABD =∠BDC =90°,∠A =∠CBD ,AB =3,BD =2,则CD 的长为(B)A.34B.43C.2D.35.如图,锐角△ABC 的边AB 和AC 上的高线CE 和BF 相交于点D.请写出图中的一对相似三角形:答案不唯一,如△ABF ∽△DBE 或△ACE ∽△DCF 或△EDB ∽△FDC 等.6.如图,∠C =∠E =90°,AD =10,DE =8,AB =5,则AC =3.7.(怀化中考)如图,已知在△ABC 与△DEF 中,∠C =54°,∠A =47°,∠F =54°,∠E =79°,求证:△ABC ∽△DEF.证明:在△ABC中,∠B=180°-∠A-∠C=79°,∴∠B=∠E.又∵∠C=∠F,∴△ABC∽△DEF.8.如图,点 B.D.C.F在一条直线上,且AB∥EF,AC∥DE,求证:△ABC∽△EFD.证明:∵AB∥EF,AC∥DE,∴∠B=∠F,∠ACB=∠EDF.∴△ABC∽△EFD.02 中档题9.(江阴模拟)下列条件中,能判定两个等腰三角形相似的是(C)A.都含有一个30°的内角B.都含有一个45°的内角C.都含有一个60°的内角D.都含有一个80°的内角10.(安徽中考)如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段AC 的长为(B)A.4B.4 2C.6D.4 311.如图,∠1=∠2,请补充一个条件:∠C =∠E 或∠B =∠ADE(答案不唯一),使△ABC ∽△ADE.12.如图,等边三角形ABC 的边长为3,点P 为BC 边上一点,且BP =1,点D 为AC 边上一点,若∠APD =60°,则CD 的长为23.13.如图,AD.BE 是钝角△ABC 的边BC.AC 上的高,求证:AD BE =ACBC.证明:∵AD.BE 是钝角△ABC 的高,∴∠BEC =∠ADC =90°. 又∵∠DCA =∠ECB , ∴△DAC ∽△EBC. ∴AD BE =AC BC. 14.如图,在矩形ABCD 中,E 为BC 上一点,DF ⊥AE 于点F. (1)△ABE 与△DFA 相似吗?请说明理由;(2)若AB =6,AD =12,AE =10,求DF 的长. 解:(1)△ABE ∽△DFA. 理由:∵四边形ABCD 是矩形, DF ⊥AE ,∴∠B =∠DFA =90°.∴∠FAD +∠FDA =90°,∠BAE +∠FAD =90°. ∴∠BAE =∠FDA. ∴△ABE ∽△DFA.(2)∵△ABE ∽△DFA , ∴AB DF =AE AD. ∴DF =AB·AD AE =6×1210=7.2.03 综合题15.在△ABC 中,P 为边AB 上一点.(1)如图1,若∠ACP =∠B ,求证:AC 2=AP·AB; (2)若M 为CP 的中点,AC =2.①如图2,若∠PBM =∠ACP ,AB =3,求BP 的长;②如图3,若∠ABC =45°,∠A =∠BMP =60°,直接写出BP 的长. 解:(1)证明:∵∠ACP =∠B ,∠BAC =∠CAP , ∴△ACP ∽△ABC. ∴AC AB =APAC . ∴AC 2=AP·AB .(2)①作CQ∥BM 交AB 的延长线于点Q.∴∠PBM=∠AQC . ∵∠PBM=∠ACP, ∴∠AQC=∠ACP . 又∵∠PAC=∠CAQ, ∴△APC∽△ACQ .∴AC AP =AQAC .∴AC 2=AP·AQ .∵M 为PC 的中点,BM∥CQ, ∴PB PQ =PM PC =12. 设BP =x ,则PQ =2x ,BQ =x , ∴22=(3-x)(3+x),解得x 1=5,x 2=-5(不合题意,舍去). ∴BP= 5. ②BP=7-1.第3课时 相似三角形的判定定理201 基础题知识点 两边成比例且夹角相等的两个三角形相似1.能判定△ABC ∽△A′B′C′的条件是(B) A.AB A′B′=AC A′C′B.AB AC =A′B′A′C′且∠A =∠A′C.AB BC =A′B′A′C′且∠B =∠CD.AB A′B′=AC A′C′且∠B =∠B′2.如图,四边形ABCD 的对角线AC.BD 相交于O ,且将这个四边形分成①②③④四个三角形.若OA ∶OC =OB ∶OD ,则下列结论中一定正确的是(C)A.①②相似B.①③相似C.①④相似D.②④相似3.在△ABC 中,AB =6,AC =8,在△DEF 中,DE =4,DF =3,要运用“两边对应成比例,且夹角相等”判定△ABC 与△DEF 相似,需添加的一个条件是∠A =∠D.4.如图,AB 与CD 相交于点O ,OA =3,OB =5,OD =6.当OC =185时,△OAC ∽△OBD.5.如图,求证:△AEF ∽△ABC.证明:∵AE AB =12,AF AC =12,∴AE AB =AF AC . 又∠EAF =∠BAC , ∴△AEF ∽△ABC.6.如图,AB =3AC ,BD =3AE ,BD ∥AC ,点B ,A ,E 在同一条直线上.求证:△ABD ∽△CAE.证明:∵BD ∥AC ,点B ,A ,E 在同一条直线上, ∴∠DBA =∠CAE. 又∵AB CA =BDAE =3,∴△ABD ∽△CAE.7.如图,△ABC 中,CD 是边AB 上的高,且AD CD =CDBD.(1)求证:△ACD ∽△CBD ; (2)求∠ACB 的大小.解:(1)证明:∵CD 是边AB 上的高, ∴∠ADC =∠CDB =90°. 又∵AD CD =CD BD ,∴△ACD ∽△CBD. (2)∵△ACD ∽△CBD , ∴∠A =∠BCD.在△ACD 中,∠ADC =90°. ∴∠A +∠ACD =90°.∴∠BCD +∠ACD =90°,即∠ACB =90°. 02 中档题8.(南通模拟)如图,已知∠C =∠E ,则不一定能使△ABC ∽△ADE 的条件是(D)A.∠BAD =∠CAEB.∠B =∠DC.BC DE =AC AED.AB AD =AC AE9.如图,已知∠ACB =∠CBD =90°,AC =8,CB =2,当BD =12时,△ACB ∽△CBD.10.如图,在四边形ABCD 中,AB ∥CD ,对角线BD ,AC 相交于点E ,问△AED 与△BEC 是否相似?有一位同学这样解答:∵AB ∥CD ,∴∠ABE =∠CDE ,∠BAE =∠DCE. ∴△AEB ∽△CED. ∴AE CE =BE DE. 又∵∠AED =∠BEC ,∴△AED ∽△BEC. 请判断这位同学的解答是否正确?并说明理由. 解:不正确.∵由已知条件不能得到AE BE =DECE ,∴不能证得△AED ∽△BEC.11.如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫作格点.△ACB 和△DCE 的顶点都在格点上,ED 的延长线交AB 于点F.(1)求证:△ACB ∽△DCE ; (2)求证:EF ⊥AB.证明:(1)∵AC DC =32,BC EC =64=32,∴AC DC =BC EC. 又∵△ACB 和△DCE 的顶点都在格点上, ∴∠ACB =∠DCE =90°. ∴△ACB∽△DCE .(2)∵△ACB∽△DCE,∴∠ABC=∠DEC . 又∵∠ABC+∠A=90°,∴∠DEC+∠A=90°. ∴∠EFA=90°.∴EF⊥AB .12.如图,在△ABC 中,AC =8 cm ,BC =16 cm ,点P 从点A 出发,沿着AC 边向点C 以1 cm/s 的速度运动,点Q 从点C 出发,沿着CB 边向点B 以2 cm/s 的速度运动,如果P 与Q 同时出发,经过几秒△PQC 和△ABC 相似?解:设经过x 秒,两三角形相似, 则CP =AC -AP =8-x ,CQ =2x , ①当CP 与CA 是对应边时,CP CA =CQ CB ,即8-x 8=2x 16,解得x =4.②当CP 与CB 是对应边时,CP CB =CQ CA ,即8-x 16=2x 8,解得x =85. 故经过4 s 或85 s ,△PQC 和△ABC 相似.03 综合题13.如图,AB⊥BD,CD⊥BD,AB =6 cm ,CD =4 cm ,BD =14 cm ,点P 在直线BD 上,由B 点到D 点移动.。
北京考题训练(三十三)[投影与视图]1.[2014·北京]图J33-1是某几何体的三视图,该几何体是()A.圆锥B.圆柱C.正三棱柱D.正三棱锥图J33-1图J33-22.[2011·北京]若图J33-2是某几何体的表面展开图,则这个几何体是________.1.[2015·燕山一模]下面的几何体中,俯视图为三角形的是()图J33-32.[2014·西城一模]由5个相同的正方体搭成的几何体如图J33-4所示,则它的主视图是()图J33-4图J33-53.[2014·顺义二模]图J33-6是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()图J33-6A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左试图改变D.主视图改变,左视图不变4.[2013·顺义二模]如图J33-7所示正方体的展开图是图J33-8中的()图J33-7图J33-8一、选择题1.[2015·东城一模]一个几何体的三视图如图J33-9所示,则这个几何体是()图J33-9A.圆柱B.球C.圆锥D.棱柱2.[2015·朝阳二模]在如图J33-10的四个几何体中,它们各自的左视图与主视图不相同的是()图J33-103.已知某几何体的三视图(单位:cm)如图J33-11所示,则该几何体的侧面积等于() A.12πcm2B.15πcm2C.24πcm2D.30πcm2图J33-11 图J33-124.[2015·石景山二模]如图J33-12是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“友”相对的面上的汉字是()A.爱B.国C.善D.诚5.小颖同学到学校领来n盒粉笔,整齐地摞在讲桌上,其三视图如图J33-13所示,则n的值是()图J33-13A.6 B.7 C.8 D.96.[2010·西城一模]小明将一张正方形包装纸剪成如图J33-14①所示的形状,用它包在一个棱长为10的正方体的表面(不考虑接缝),如图②所示.小明所用正方形包装纸的边长至少为()图J33-14A. 40B. 30+2 错误!C. 20 错误!D. 10+10 错误!二、填空题7.写出一个在三视图中俯视图与主视图完全相同的几何体:________.8.如图J33-15是一个上、下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为________cm2(结果保留根号).图J33-15三、解答题9.18世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:图J33-16(1)根据图中的多面体模型,完成下表:多面体顶点数(V) 面数(F) 棱数(E)四面体 4 4长方体8 6 12正八面体8 12正十二面体20 12 30你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是________;(2)若一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是________;(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成的,且有24个顶点,每个顶点处都有3条棱. 设该多面体外表面三角形的个数为x,八边形的个数为y,求x+y的值.参考答案北京真题演练1.C 2.圆柱北京模拟训练1.D 2.B 3.D 4.D北京自测训练1.A 2.B 3.B 4.C 5.B 6.C 7.球体或正方体8.(75 3+360) [解析] 根据该几何体的三视图可知其是一个正六棱柱. ∵其高为12 cm ,底面半径为5 cm , ∴其侧面积为6×5×12=360(cm 2),密封纸盒的底面积为2×12×5×523×6=75 3(cm 2),∴其全面积为(75 3+360)cm 2.9.[解析] 找到其中的规律再解答.对于此类型题目,要仔细观察所给条件,善于思索,归纳,总结,应用,找其共性,并合理验证,确保无误.解:(1)6 6 V +F -E =2 (2)20(3)由题意知,这个多面体的面数为x +y ,棱数为24×32=36(条),根据V +F -E =2可得24+(x +y )-36=2, ∴x +y =14.。
2018年全国各地中考数学试题《相似》解答题试题汇编1.(2018•安徽)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段A B(点A,B的对应点分别为A,B),画出线段A B;111111(2)将线段A B绕点B逆时针旋转90°得到线段A B,画出线段A B;1112121(3)以A,A,B,A为顶点的四边形AA B A的面积是个平方单位.1121122.(2018•巴中)如图,在△A BC中,AB=BC,以AB为直径的⊙O交BC于点D,交AC于点F,过点C作CE∥A B,与过点A的切线相交于点E,连接AD.(1)求证:AD=AE;(2)若AB=6,AC=4,求AE的长.3.(2018•巴中)在如图所示的平面直角坐标系中,已知点A(-3,-3),点B(-1,-3),点C(-1,-1).(1)画出△A BC;(2)画出△A BC关于x轴对称的△A B C,并写出A点的坐标:;1111(3)以O为位似中心,在第一象限内把△A BC扩大到原来的两倍,得到△A B C,222并写出A点的坐标:.24.(2018•江西)如图,在△A BC中,AB=8,BC=4,CA=6,CD∥A B,BD是∠A BC 的平分线,BD交AC于点E,求AE的长.5.(2018•上海)已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足分别是点E、F.(1)求证:EF=AE-BE;AF(2)连接BF,如果=BF.求证:EF=EP.DFAD6.(2018•陕西)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D,竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.7.(2018•福建)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△A BC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.8.(2018•宁夏)已知:△A BC三个顶点的坐标分别为A(-2,-2),B(-5,-4),C(-1,-5).(1)画出△A BC关于x轴对称的△A B C;111(2)以点O为位似中心,将△A BC放大为原来的2倍,得到△A B C,请在网222格中画出△A B C,并写出点B的坐标.22229.(2018•陕西)如图,已知:在正方形ABCD中,M是BC边上一定点,连接AM.请用尺规作图法,在AM上作一点P,使△D PA∽△ABM.(不写作法,保留作图痕迹)10.(2018•南通)如图,A B为⊙O的直径,C为⊙O上一点,A D和过点C的切线互相垂直,垂足为D,且交⊙O于点E.连接OC,BE,相交于点F.(1)求证:EF=BF;(2)若DC=4,DE=2,求直径AB的长.11.(2018•宁夏)已知:AB为⊙O的直径,延长AB到点P,过点P作圆O的切线,切点为C,连接AC,且AC=CP.(1)求∠P的度数;(2)若点D是弧AB的中点,连接CD交AB于点E,且DE•D C=20,求⊙O 的面积.(π取3.14)12.(2018•大连)如图,四边形ABCD内接于⊙O,∠B AD=90°,点E在BC的延长线上,且∠D EC=∠B AC.(1)求证:DE是⊙O的切线;(2)若AC∥D E,当AB=8,CE=2时,求AC的长.AB 13.(2018•张家界)如图,点P是⊙O的直径AB延长线上一点,且AB=4,点M为上一个动点(不与A,B重合),射线PM与⊙O交于点N(不与M重合).(1)当M在什么位置时,△M AB的面积最大,并求出这个最大值;(2)求证:△P AN∽△PMB.15.(2018•东营)如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠C AD=∠BDC;(2)若BD=2AD,AC=3,求CD的长.316.(2018•南京)如图,在正方形ABCD中,E是AB上一点,连接DE.过点A作AF⊥DE,垂足为F,⊙O经过点C、D、F,与AD相交于点G.(△1)求证:AFG∽△DFC;(2)若正方形ABCD的边长为4,AE=1,求⊙O的半径.17.(2018•滨州)如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC 平分∠DAB,求证:(1)直线DC是⊙O的切线;(2)AC2=2AD•AO.18.(2018•梧州)如图,AB是⊙M的直径,BC是⊙M的切线,切点为B,C是BC 上(除B点外)的任意一点,连接CM交⊙M于点G,过点C作DC⊥BC交BG的延长线于点D,连接AG并延长交BC于点E.(△1)求证:ABE∽△BCD;(2)若MB=BE=1,求CD的长度.19.(2018•杭州)如图,在△ABC中,AB=AC,AD为BC边上的中线,DE⊥AB于点E.(△1)求证:BDE∽△CAD.(2)若AB=13,BC=10,求线段DE的长.20.(2018•乌鲁木齐)如图,AG是∠HAF的平分线,点E在AF上,以AE为直径的⊙O交AG于点D,过点D作AH的垂线,垂足为点C,交AF于点B.(1)求证:直线BC是⊙O的切线;(2)若AC=2CD,设⊙O的半径为r,求BD的长度.R t ABC中,∠C=90°,AB=10,AC=8.线段AD由线21.(2018•福建)如图,在△90°得到,EFG由△ABC沿CB方向平移得到,段AB绕点A按逆时针方向旋转△且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.22.(2018•泸州)如图,已知AB,CD是⊙O的直径,过点C作⊙O的切线交AB 的延长线于点P,⊙O的弦DE交AB于点F,且DF=EF.(1)求证:CO2=OF•OP;(2)连接EB交CD于点G,过点G作GH⊥AB于点H,若PC=42,PB=4,求GH的长.23.(2018•遂宁)如图,过⊙O外一点P作⊙O的切线PA切⊙O于点A,连接PO并延长,与⊙O交于C、D两点,M是半圆CD的中点,连接AM交CD于点N,连接AC、CM.(1)求证:CM2=MN•M A;(2)若∠P=30°,PC=2,求CM的长.24.(2018•菏泽)如图,△A BC内接于⊙O,AB=AC,∠B AC=36°,过点A作AD ∥B C,与∠A BC的平分线交于点D,BD与AC交于点E,与⊙O交于点F.(1)求∠D AF的度数;(2)求证:AE2=EF•E D;(3)求证:AD是⊙O的切线.25.(2018•东营)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△A BC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=33,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥A C,交AO的延长线于点D,通过构造△A BD就可以解决问题(如图2).请回答:∠A DB=°,AB=.(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=33,∠A BC=∠A CB=75°,BO:OD=1:3,求DC的长.26.(2018•武汉)如图,P A是⊙O的切线,A是切点,A C是直径,A B是弦,连接PB、PC,PC交AB于点E,且PA=PB.(1)求证:PB是⊙O的切线;(2)若∠A PC=3∠B PC,求PE的值.CE27.(2018•呼和浩特)如图,已知BC⊥AC,圆心O在AC上,点M与点C分别是AC与⊙O的交点,点D是MB与⊙O的交点,点P是AD延长线与BC的交点,且AD=APAMAO.(1)求证:PD是⊙O的切线;(2)若AD=12,AM=MC,求的值.BPMD28.(2018•遵义)如图,AB是半圆O的直径,C是AB延长线上的点,AC的垂直平分线交半圆于点D,交AC于点E,连接DA,DC.已知半圆O的半径为3,BC=2.(1)求AD的长.(2)点P是线段AC上一动点,连接DP,作∠DPF=∠DAC,PF交线段CD于点F.当△DPF为等腰三角形时,求AP的长.29.(2018•葫芦岛)如图,AB是⊙O的直径,AC=BC,E是OB的中点,连接CE并延长到点F,使EF=CE.连接AF交⊙O于点D,连接BD,BF.(1)求证:直线BF是⊙O的切线;(2)若OB=2,求BD的长.30.(2018•苏州)问题1:如图①,在△A BC中,AB=4,D是AB上一点(不与A,B重合),DE∥B C,交AC于点E,连接CD.设△A BC的面积为S,△D EC的面积为S′.(1)当AD=3时,S′S=;(2)设AD=m,请你用含字母m的代数式表示S′S.问题2:如图②,在四边形ABCD中,AB=4,AD∥B C,AD=12BC,E是AB上一点(不与A,B重合),EF∥B C,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△E FC的面积为S′.请你利用问题1的解法或结论,用含字母n的代数式表示S′S.31.(2018•烟台)如图,已知D,E分别为△A BC的边AB,BC上两点,点A,C,E在⊙D上,点B,D在⊙E上.F为BD上一点,连接FE并延长交AC的延长线于点N,交AB于点M.(1)若∠E BD为α,请将∠C AD用含α的代数式表示;(2)若EM=MB,请说明当∠C AD为多少度时,直线EF为⊙D的切线;(3)在(2)的条件下,若AD=3,求MNMF的值.32.(2018•乐山)如图,P是⊙O外的一点,PA、PB是⊙O的两条切线,A、B 是切点,P O交AB于点F,延长BO交⊙O于点C,交PA的延长交于点Q,连结AC.(1)求证:AC∥P O;(2)设D为PB的中点,QD交AB于点E,若⊙O的半径为3,CQ=2,求AEBE的值.33.(2018•济宁)如图,在正方形ABCD中,点E,F分别是边AD,B C的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.(1)猜想DG与CF的数量关系,并证明你的结论;(2)过点H作MN∥CD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点P是MN上一点,求△P DC周长的最小值.34.(2018•衢州)如图,已知AB为⊙O直径,AC是⊙O的切线,连接BC交⊙O于点F,取BF的中点D,连接AD交BC于点E,过点E作EH⊥AB于H.(1)求证:△H BE∽△ABC;(2)若CF=4,BF=5,求AC和EH的长.34.(2018•下城区二模)如图,在菱形ABCD中,∠C=60°,AB=4,点E是边BC的中点,连结DE,AE.(1)求DE的长;(2)点F为边CD上的一点,连结AF,交DE于点G,连结EF,若∠D AG=∠FEG.①求证:△A GE∽△DGF;②求DF的长.35.(2018•玄武区二模)在△ABC中,AB=6,AC=8,D、E分别在AB、AC上,连接DE,设BD=x(0<x<6),CE=y(0<y<8).(1)当x=2,y=5时,求证:△AED∽△ABC;(△2)若ADE和△ABC相似,求y与x的函数表达式.。
专项33 相似三角形-一线三等角模型综合应用1.如图1,BDE EDF C B ∆⇒∠=∠=∠∽CFD ∆(一线三等角)如图2,ABD ADE C B ∆⇒∠=∠=∠∽DCE ∆(一线三直角)如图3,特别地,当D 是BC 中点时:BDE ∆∽DFE ∆∽CFD ∆⇒ED 平分BEF ∠,FD 平分EFC ∠。
2.一线三等角辅助线添加:一般情况下,已知一条直线上有两个等角(直角)或一个直角时,可构造“一线三等角”型相似。
【类型1:标准“K ”型图】【典例1】已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处.如图,已知折痕与边BC 交于点O ,连接AP 、OP 、OA .(1)求证:=;(2)若OP 与PA 的比为1:2,求边AB 的长.【解答】(1)证明:由折叠的性质可知,∠APO =∠B =90°,∴∠APD +∠OPC =90°,CB BC A A∵四边形ABCD为矩形,∴∠D=∠C=90°,∴∠POC+∠OPC=90°,∴∠APD=∠POC,∴△OCP∽△PDA,∴=;(2)解:∵△OCP∽△PDA,∴,∵OP与PA的比为1:2,AD=8,∴,∴PC=4,设AB=x,则DC=x,AP=x,DP=x﹣4,在Rt△APD中,AP2=AD2+PD2,∴x2=82+(x﹣4)2,解得:x=10,∴AB=10.【变式1-1】如图,正方形ABCD中,点E在BC边上,且AE⊥EF,若BE=2,CF=,求正方形ABCD的边长.【解答】解:∵∠AEB+∠CEF=90°,∠BAE+∠AEB=90°,∴∠BAE=∠CEF,又∵∠B=∠C=90°,∴△BAE∽△CEF,∴=,∵AB=BC,∴,∴,∴CE=4,∴BC=CE+BE=4+2=6,∴正方形ABCD的边长为6.【变式1-2】如图,在正方形ABCD中,M为BC上一点,ME⊥AM,ME交CD于F,交AD的延长线于点E.(1)求证:△ABM∽△MCF;(2)若AB=4,BM=2,求△DEF的面积.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=BC=CD,∠B=∠C=90°,BC∥AD,∴∠BAM+∠AMB=90°,∵ME⊥AM,∴∠AME=90°,∴∠AMB+∠FMC=90°,∴∠BAM=∠FMC,∴△ABM∽△MCF;(2)解:∵AB=4,∴AB=BC=CD=4,∵BM=2,∴MC=BC﹣BM=4﹣2=2,由(1)得:△ABM∽△MCF,∴=,∴=,∴CF=1,∴DF=CD﹣CF=4﹣1=3,∵BC∥AD,∴∠EDF=∠MCF,∠E=∠EMC,∴△DEF∽△CMF,∴=,∴=,∴DE=6,∴△DEF的面积=DE•DF=×6×3=9,答:△DEF的面积为9【类型2:做辅助线构造“K”型图】【典例2】已知:在△EFG中,∠EFG=90°,EF=FG,且点E,F分别在矩形ABCD的边AB,AD上.(1)如图1,填空:当点G在CD上,且DG=1,AE=2,则EG= ;(2)如图2,若F是AD的中点,FG与CD相交于点N,连接EN,求证:∠AEF=∠FEN;(3)如图3,若AE=AD,EG,FG分别交CD于点M,N,求证:MG2=MN•MD.【解答】(1)解:∵∠EFG=90°,∴∠AFE+∠DFG=90°,∵∠AEF+∠AFE=90°,∴∠AEF=∠DFG,又∵∠A=∠D=90°,EF=FG,∴△AEF≌△DFG(AAS),∴AE=FD=2,∴FG=,∴EG=FG=,故答案为:;(2)证明:延长EA、NF交于点M,∵点F为AD的中点,∴AF=DF,∵AM∥CD,∴∠M=∠DNF,∠MAD=∠D,∴△MAF≌△NDF(AAS),∴MF=FN,∵EF⊥MG,∴ME=GE,∴∠MEF=∠FEN;(3)证明:如图,过点G作GP⊥AD交AD的延长线于P,∴∠P=90°,同(1)同理得,△AEF≌△PFG(AAS),∴AF=PG,PF=AE,∵AE=AD,∴PF=AD,∴AF=PD,∴PG=PD,∵∠P=90°,∴∠PDG=45°,∴∠MDG=45°,在Rt△EFG中,EF=FG,∴∠FGE=45°,∴∠FGE=∠GDM,∵∠GMN=∠DMG,∴△MGN∽△MDG,∴,∴MG2=MN•MD.【变式2-1】(2021春•永川区期末)如图,在边长为6的正方形ABCD中,E为BC上一点,CE=2BE,将△ABE沿AE折叠得到△AFE,连接DF,则线段DF的长为 .【解答】解:过点F作FN⊥BC,垂足为N,延长NF交AD于点M,∵四边形ABCD是正方形,∴AB=BC=AD=6,∠B=90°,AD∥BC,∴FM⊥AD,∴∠AMF=∠FNE=∠DMF=90°,∴四边形ABNM是矩形,∴AM=BN,∵CE=2BE,∴BE=BC=2,由折叠得:BE=FE=2,AB=AF=6,∠B=∠AFE=90°,∴∠AFM+∠EFN=90°,∵∠FEN+∠EFN=90°,∴∠FEN=∠AFM,∴△ENF∽△FMA,∴===,设EN=x,则FM=3x,∴AM=BN=BE+EN=2+x,在Rt△AFM中,AM2+FM2=AF2,∴(2+x)2+(3x)2=36,∴x=或x=﹣2(舍去),∴AM=2+x=,FM=3x=,∴DM=AD﹣AM=,在Rt△DMF中,DF===,故答案为:.【变式2-2】(2022秋•皇姑区校级月考)已知,如图,矩形ABCD中,AB=5,AD=3,点E是射线BC上一动点,将矩形ABCD沿直线AE翻折,点B落在点F处.(1)若点F恰好落在CD边上,如图1,求线段BE的长;(2)若BE=1,如图2,直接写出点F到BC边的距离;(3)若△CEF为直角三角形,直接写出CE所有值.【解答】解:(1)∵四边形ABCD是矩形,∴CD=AB=5,BC=AD=3,∠B=∠C=∠D=90°,由折叠的性质得:BE=FE,AF=AB=5,∴DF===4,∴CF=CD﹣DF=5﹣4=1,设BE=FE=x,则CE=BC﹣BE=3﹣x,在Rt△CEF中,由勾股定理得:CF2+CE2=FE2,即12+(3﹣x)2=x2,解得:x=,即线段BE的长为;(2)如图2,过F作FG⊥BC于G,延长GF交AD于H,则∠FGE=90°,四边形ABGH是矩形,∴HG=AB=5,BG=AH,∠AHF=90°=∠FGE,由折叠的性质得:AF=AB=5,∠AFE=∠B=90°,FE=BE=1,∴∠AFH+∠EFG=90°,∵∠AFH+∠FAH=90°,∴∠EFG=∠FAH,∴△EFG∽△FAH,∴==,∴AH=5FG,设FG=x,则BG=AH=5x,∴EG=BG﹣BE=5x﹣1,在Rt△EFG中,由勾股定理得:x2+(5x﹣1)2=12,解得:x=或x=0(不符合题意舍去),∴FG=,即点F到BC边的距离为;(3)分三种情况:①∠CFE=90°时,如图3,∵∠AFE=90°,∴∠AFE+∠CFE=180°,∴A、F、C三点共线,∵四边形ABCD是矩形,∴CD=AB=5,∠B=∠D=90°,AD∥BC,∴∠ECF=∠CAD,AC===,由折叠的性质得:AF=AB=5,FE=BE,∠AFE=∠B=90°,∴∠CFE=90°=∠D,CF=AC﹣AF=﹣5,∴△CEF∽△ACD,∴=,即=,解得:CE=;②点F在CD上,∠ECF=90°时,如图4,由(1)可知,BE=,∴CE=BC﹣BE=3﹣=;③∠CEF=90°时,如图5,由折叠的性质得:∠AEB=∠AEF=45°,∴△ABE是等腰直角三角形,∴BE=AB=5,∴CE=BE﹣BC=5﹣3=2;④点F在CD延长线上,∠ECF=90°时,如图6,由折叠的性质得:AF=AB=5,∠AFE=∠B=90°,∵∠ADF=180°﹣∠ADC=90°,∴DF===4,∴CF=CD+DF=5+4=9,∵∠CFE+∠CEF=90°,∠CFE+∠DFA=90°,∴∠CEF=∠DFA,∵∠ECF=∠ADF=90°,∴△CEF∽△DFA,∴===3,∴CE=3DF=12;综上所述,若△CEF为直角三角形,则CE的值为或或2或12.【类型2:特殊“K”型图】【典例3】(2021秋•通许县期中)感知:(1)数学课上,老师给出了一个模型:如图1,∠BAD=∠ACB=∠AED=90°,由∠1+∠2+∠BAD=180°,∠2+∠D+∠AED=180°,可得∠1=∠D;又因为∠ACB=∠AED =90°,可得△ABC∽△DAE,进而得到= .我们把这个数学模型称为“一线三等角”模型.应用:(2)实战组受此模型的启发,将三等角变为非直角,如图2,在△ABC中,点D在边BC上,并且DA=DE,∠B=∠ADE=∠C.若BC=a,AB=b,求CE的长度(用含a,b的代数式表示).拓展:(3)创新组突发奇想,将此模型迁移到平行四边形中,如图3,在▱ABCD中,E为边BC上的一点,F为边AB上的一点.若∠DEF=∠B.求证:AB•FE=BE•DE.【解答】(1)解:∵△ABC∽△DAE,∴,故答案为:;(2)解:∵∠B=∠ADE=∠C,∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC,∴∠EDC=∠BAD,∵DA=DE,在△ADB与△DEC中,,∴△ADB≌△DEC(AAS),∴EC=BD,AB=DC=b,∴BD=BC﹣DC=a﹣b,即CE=a﹣b;(3)解:∵∠DEF=∠B,∴∠BFE+∠BEF=∠BEF+∠DEC,∴∠BFE=∠DEC,作CG∥FE交DE于点G,如图:∴∠DEF=∠EGC,∴∠B=∠EGC,∴△FBE∽△EGC,∴,∵四边形ABCD是平行四边形,∴∠B+∠BCD=180°,∵∠EGC+∠DGC=180°,∵∠B=∠EGC,∴∠DGC=∠BCD,∵∠EDC=∠CDG,∴△DGC∽△DCE,∴,∴,∴DC•FE=BE•DE,∵四边形ABCD是平行四边形,∴AB=DC,∴AB•FE=•BE•DE.解法二:延长BC到M,使得DC=DM.∵DC=DM,∵DC∥AB,∴∠DCM=∠B,∴∠B=∠M,∵∠BFE=∠DEM,∴△BFE∽△MED.∴=,∵AB=CD=DM,∴AB•FE=•BE•DE.【变式3-1】如图,AB=9,AC=8,P为AB上一点,∠A=∠CPD=∠B,连接CD.(1)若AP=3,求BD的长;(2)若CP平分∠ACD,求证:PD2=CD•BD.【解答】(1)解:∵AB=9,AC=3,∴BP=AB﹣AP=9﹣3=6,∵∠A=∠CPD,∠ACP+∠APC=180°﹣∠A,∠APC+∠BPD=180°﹣∠CPD,∴∠ACP=∠BPD,∵∠A=∠B,∴△ACP∽△BPD,∴=,∴=,∴BD=,∴BD的长为;(2)证明:∵CP平分∠ACD,∴∠PCD=∠ACP,∴∠PCD=∠DPB,∵∠CPD=∠B,∴△CPD∽△PBD,∴=,∴PD2=CD•BD.【变式3-2】(2022春•定海区校级月考)【基础巩固】(1)如图1,在△ABC中,∠ACB=90°,直线l过点C,分别过A、B两点作AE⊥l,BD⊥l,垂足分别为E、D.求证:△BDC∽△CEA.【尝试应用】(2)如图2,在△ABC中,∠ACB=90°,D是BC上一点,过D作AD的垂线交AB 于点E.若BE=DE,,AC=20,求BD的长.【拓展提高】(3)如图3,在平行四边形ABCD中,在BC上取点E,使得∠AED=90°,若AE=AB,,CD=,求平行四边形ABCD的面积.【解答】(1)证明:∵∠ACB=90°,∴∠BCD+∠ACE=90°,∵AE⊥CE,∴∠AEC=90°,∴ACE+∠CAE=90°.∴∠BCD=∠CAE.∵BD⊥DE,∴∠BDC=90°,∴∠BDC=∠AEC.∴△BDC∽△CEA.(2)解:过点E作EF⊥BC于点F.由(1)得△EDF∽△DAC.∴.∵AD⊥DE,,AC=20,∴,∴DF=16.∵BE=DE,∴BF=DF.∴BD=2DF=32.(3)解:过点A作AM⊥BC于点M,过点D作DN⊥BC的延长线于点N.∴∠AMB=∠DNC=90°.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠B=∠DCN.∴△ABM≌△DCN(AAS).∴BM=CN,AM=DN.∵AB=AE,AM⊥BC,∴BM=ME,∵,设AM=b,BE=4a,EC=3a.∴BM=ME=CN=2a,EN=5a.∵∠AED=90°,由(1)得△AEM∽△EDN.∴,∴,∴,∵,∴(2a)2+b2=14,∴a=1,.∴平行四边形ABCD的面积=.1.(2021秋•南京期末)如图,在矩形ABCD中,E,F,G分别在AB,BC,CD上,DE ⊥EF,EF⊥FG,BE=3,BF=2,FC=6,则DG的长是( )A.4B.C.D.5【答案】B【解答】解:∵EF⊥FG,∴∠EFB+∠GFC=90°,∵四边形ABCD为矩形,∴∠A=∠B=∠C=90°,AB=CD,∴∠GFC+∠FGC=90°,∴∠EFB=∠FGC,∴△EFB∽△FGC,∴,∵BE=3,BF=2,FC=6,∴,∴CG=4,同理可得△DAE∽△EBF,∴,∴,∴AE=,∴BA=AE+BE=+3=,∴DG=CD﹣CG=﹣4=.故选:B.2.(2022秋•二道区月考)如图,在△ABC中,AB=AC=9,BC=12,D,E分别是BC,AB上的动点(点D与B,C不重合),且2∠ADE+∠BAC=180°,若BE=4,则CD 的长为 .【答案】6【解答】解:∵AB=AC,∴∠C=∠B,∴∠C+∠B+∠BAC=2∠C+∠BAC=180°,又∵2∠ADE+∠BAC=180°,∴∠C=∠ADE,又∵∠BDE+∠ADC=180°﹣∠ADE,∠CAD+∠ADC=180°﹣∠C,∴∠BDE=∠CAD,∴△BDE∽△CAD,∴=,即=,解得CD=6.故答案为:6.3.(2022•杭州模拟)如图,点E是矩形ABCD边BC上一点,沿AE折叠,点B恰好落在CD边上的点F处.设=x(x>1),(1)若点F恰为CD边的中点,则x= .(2)设=y,则y关于x的函数表达式是 .【解答】解:(1)∵点F为CD边的中点,∴DC=2DF,∵四边形ABCD是矩形,∴AB=DC,∠B=∠C=∠D=90°,∴∠FEC+∠EFC=90°,由折叠得:BE=EF,AB=AF,∠B=∠AFE=90°,∴AB=AF=DC=2DF,∵∠EFC+∠AFD=90°,∴∠AFD=∠FEC,∴△AFD∽△FEC,∴==2,∴=2,∴x=2,故答案为:2;(2)由(1)可得AB=AF=DC=DF+CF,∵△AFD∽△FEC,∴=,∴=,∴x=,∴x=1+,∴x=1+,∴y=,故答案为:y=.4.(2021•海州区校级二模)如图,△DEF的三个顶点分别在等边△ABC的三条边上,BC =4,∠EDF=90°,=,则DF长度的最小值是 .【答案】【解答】解:过点F作FH⊥BC,垂足为H,∵∠EDF=90°,tan∠EFD==,∴∠EFD=60°,∴∠AFE+∠DFC=120°,∵△ABC是等边三角形,∴∠C=∠A=60°,AC=BC=4,∴∠AFE+∠AEF=120°,∴∠AEF=∠DFC,∴△AEF∽△CFD,∴=,∵∠EDF=90°,∠EFD=60°,∴cos∠EFD==,∴=2,∴设CD=a,则AF=2a,∴CF=AC﹣AF=4﹣2a,在Rt△CFH中,∠C=60°,∴CH=CF=2﹣a,∴FH=CH=2﹣a,∴DH=CD﹣CH=a﹣(2﹣a)=2a﹣2,在Rt△DFH中,DF2=DH2+FH2=(2a﹣2)2+(2﹣a)2=7a2﹣20a+16=7(a﹣)2+,∴DF2的最小值为,∴DF的最小值为:.5.如图,在等边三角形ABC中,点E,D分别在BC,AB上,且∠AED=60°,求证:△AEC∽△EDB.【解答】证明:∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠EDB+∠BED=120°,∠CAE+∠AEC=120°∵∠AED=60°,∴∠BED+∠AEC=180°﹣60°=120°,∴∠BED=∠CAE,∴△AEC∽△EDB.6.如图,在等腰直角△ABC中,∠BAC=90°,AB=AC,点D、E分别在边BC、AC上,连接AD、DE,有∠ADE=45°.(1)证明:△BDA∽△CED.(2)若BC=6,当AE=ED时,求BD的长.【解答】(1)证明:∵∠AED=∠C+∠EDC=45°+∠EDC,而∠ADC=∠ADE+∠EDC.∵∠ADE=45°,∴∠ADC=45°+∠EDC,∴∠AED=∠ADC.∴∠DEC=∠ADB(等角的补角相等).而∠B=∠C=45°,∴△ABD∽△DCE.故△ABD∽△DCE得证.(2)解:当AE=DE时,∴∠ADE=∠DAE,∵∠ADE=45°,∴∠ADE=∠DAE=45°,∵∠BAC=90°,∠BAD=∠EAD=45°,∴AD平分BAC,∴AD垂直平分BC,∴BD=3.7.(2022•安徽三模)如图,在四边形ABCD中,∠A=∠D=90°,AD=AB,以BC为直径的半⊙O与边AD相切于点E.(1)求证:∠BCE=∠DCE;(2)若,求DE的长.【解答】(1)证明:连接OE,∵半⊙O与边AD相切于点E,∴∠OEA=90°,∵∠D=90°,∴∠D=∠OEA=90°,∴OE∥CD,∴∠ECD=∠OEC,∵OE=OC,∴∠OEC=∠OCE,∴∠BCE=∠DCE;(2)解:连接BE,∵BA⊥AD,OE⊥AD,CD⊥AD,∴AB∥CD∥OE,∵OB=OC,∴AE=DE,设DE=AE=x,则AD=AB=2x,∵BC为⊙O的直径,∴∠BEC=90°,∴∠DEC+∠AEB=180°﹣∠BEC=90°,∵∠A=∠D=90°,∴∠ABE+∠AEB=90°,∴∠ABE=∠DEC,∴△ABE∽△DEC,∴,∴,解得:,∴DE的长为.8.(2022•钦州一模)已知下列各图中,△ABC是直角三角形,∠ABC=90°.【基本模型感知】如图1,分别过A,C两点作经过点B的直线的垂线,垂足分别为M、N.求证:△ABM∽△BCN;【基本模型应用】如图2,点P是边BC上一点,∠BAP=∠C,,求tan C的值;【灵活运用】如图3,点D是边CA延长线上一点,AE=AB,∠DEB=90°,,,请直接写出tan∠BEC的值.【解答】(1)证明:∵AM⊥MN,CN⊥MN,∴∠AMB=∠BNC=90°.∴∠BAM+∠ABM=90°.∵∠ABC=90°,∴∠ABM+∠CBN=90°.∴∠BAM=∠CBN.又∵∠AMB=∠CNB,∴△ABM∽△BCN.(2)解:如图2,过点P作PF⊥AP交AC于点F,过点F作FQ⊥BC交BC于点Q,在Rt△AFP中,tan∠PAC===,与(1)同理得,△ABP∽△PQF.∴===.设AB=a,PQ=2a(a>0),∵∠BAP=∠C=∠FPQ,∴PF=CF,且FQ⊥BC.∴PQ=CQ=2a.∴BC=BP+PQ+CQ=BP+2a+2a=4a+BP.∵∠BAP=∠C,∠B=∠B=90°,∴△ABP∽△CBA.∴=.∴BP⋅BC=AB2,即BP⋅(4a+BP)=.∴BP=a,BC=5a,在Rt△ABC中,tan C==.(3)解:在Rt△ABC中,sin∠BAC==,如图3,过点A作AG⊥BE于点G,过点C作CH⊥BE交EB的延长线于点H,∵∠DEB =90°,∴CH ∥AG ∥DE .∴==.与(1)同理得,△ABG ∽△BCH∴===.设BG =4m ,CH =3m ,AG =4n ,BH =3n ,∵AB =AE ,AG ⊥BE ,∴EG =BG =4m .∴GH =BG +BH =4m +3n .∴=.∴n =2m .∴EH =EG +GH =4m +4m +3n =8m +3n =8m +6m =14m .在Rt △CEH 中,tan ∠BEC ==.9.(2021•坪山区一模)如图,抛物线y =x 2+bx +c 与x 轴交于点A (﹣3,0)、B ,与y 轴交于点C (0,﹣3).(1)求抛物线的解析式;(2)在抛物线上求点P ,使S △BCP =2S △BCO ,求点P 的坐标;(3)如图2,直线y =x +3交抛物线于第一象限的点M ,若N 是抛物线y =x 2+bx +c 上一点,且∠MAN =∠OCB ,求点N 的坐标.【解答】解:(1)将C (0,﹣3)代入到抛物线解析式中得,c =﹣3,将B (﹣3,0)代入到抛物线解析式中得,9﹣3b ﹣3=0,∴b =2,∴抛物线解析式为:y =x 2+2x ﹣3;(2)令y =0,则x 2+2x ﹣3=0,解得x 1=﹣3,x 2=1,∴B (1,0),∴,∵S △BCP =2S △BCO ,∴S △BCP =3,如图1,过P 作PM ∥BC 交x 轴于M ,连接MC ,则S △MBC =S △BCP =3,∴,∴MB =2,∴M (﹣1,0),设直线BC 为y =k 1x ﹣3,代入点B (1,0)得,k 1=3,∴直线BC 为:y =3x ﹣3,则直线PM 设为:y =3x +b ,代入点M (﹣1,0)得,b =3,∴直线PM 为:y =3x +3,联立,解得,,∴P(3,12)或(﹣2,﹣3);(3)∵直线y=x+3交抛物线于第一象限的点M,∴联立,解得,,∴A(﹣3,0),M(2,5),在Rt△OBC中,tan∠OCB=,∴,①如图2,当N在AM下方时,过A作y轴平行线,过M作x轴平行线,两线交于点G过M作MQ⊥AM交AN于Q,过Q作y轴平行线交GM于H,∴∠AGM=∠MHQ=90°,∴∠AMG+∠GAM=90°,又AM⊥MQ,∴∠AMQ=90°,∴∠AMG+∠HMQ=90°,∴∠GAM=∠HMQ,又∠AGM=∠MHQ=90°,∴△AGM∽△MHQ,∴=,∵A(﹣3,0),M(2,5),∴AG=5,GM=5,∴MH=HQ=,∴Q(),设直线AQ为:y=k2(x+3),代入点Q,得,∴直线AQ为,联立,化简得,2x2+3x﹣9=0,解得x=或﹣3,当x=时,y=,∴N(),②当N在AM上方时,同理可得,N(3,12),∴N()或(3,12).。
§6.3 图形的相似一、选择题1.(2013·浙江宁波江北区初三学业模拟,1,3分)若a b =35,则a +b b 的值为( ) A.85B.35C.32D.58解析 法一 由a b =35可设a =3k ,b =5k ,则a +b b =3k +5k 5k =85.法二 由a b =35可得5a =3b ,则a +b b =3(a +b )3b =3a +3b 3b =3a +5a 5a =85.法三 也可特殊化,令a =3,b =5,则a +b b =85. 答案 A2.(2013·浙江宁波宁海九年级12月月考,6,3分)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )解析 由正方形的性质可得∠ACB =135°,而B 、C 、D 中最大的角都不是135°,故排除B ,C ,D ,选A. 答案 A3.(2015·浙江杭州模拟(36),8,3分)如图,梯形ABCD中,AD ∥BC ,∠B =∠ACD =90°,AB =3,DC =5,则△ABC 与△DCA 的面积比为 ( ) A.35 B.1112C.925D.725解析 ∵AD ∥BC ,∴∠BCA =∠CAD , ∵∠B =∠ACD =90°,∴△ABC ∽△DCA ,∴S △ABC S △DCA =⎝ ⎛⎭⎪⎫AB DC 2=⎝ ⎛⎭⎪⎫352=925.答案 C4.(2015·浙江衢州一模,8,3分)如图,Rt △ABC 中,∠A =90°,AD ⊥BC 于点D ,若BD ∶CD =3∶2,则tan B = ( ) A.32B.23C.62D.63解析 在Rt △ABC 中, ∵AD ⊥BC 于点D , ∴∠ADB =∠CDA .∵∠B +∠BAD =90°,∠BAD +∠DAC =90°, ∴∠B =∠DAC ,∴△ABD ∽△CAD ,∴BD AD =ADCD . ∵BD ∶CD =3∶2, 设BD =3x ,CD =2x , ∴AD =3x ·2x =6x , 则tan B =AD BD =6x 3x =63. 答案 D 二、填空题5.(2015·浙江温州模拟(2),1,5分)如果线段c 是a ,b 的比例中项,且a =4,b =9,则c =________.解析 ∵c 是a ,b 的比例中项,∴c 2=ab .又∵a =4,b =9,∴c 2=ab =36,解得c =±6.又c 为线段的长度,故c =-6舍去;即c =6. 答案 66.(2015·浙江温州模拟(三),13,5分)如图,身高为1.6米的小华站在离路灯灯杆8米处测得影长2米,则灯杆的高度为________米.解析 如图:∵AB ∥CD ,∴CD ∶AB =CE ∶BE , ∴1.6∶AB =2∶10, ∴AB =8米, ∴灯杆的高度为8米. 答案 87.(2013·浙江宁波九年级模拟,15,3分)如图,在长为8 cm ,宽为4 cm 的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是________.解析 留下矩形的一条边是4 cm ,设另一条边为x cm.可由矩形相似得出x ∶4=4∶8,∴x =2.∴阴影部分的面积是2×4=8(cm 2). 答案 8 cm 28.(2013·浙江宁波宁海第二次月考,20,3分)已知点P 是边长为4的正方形ABCD 内一点,且PB =3,BF ⊥BP ,垂足是点B ,若在射线BF 上找一点M ,使以点B ,M ,C 为顶点的三角形与△ABP 相似,则BM 为________.解析 ∵∠ABC =∠FBP =90°,∴∠ABP =∠CBF .当△ABP ∽△MBC 时,BM ∶BA =BC ∶BP ,得BM =4×4÷3=163;当△ABP ∽△CBM 时,BM ∶BP =CB ∶AB ,得BM =4×3÷4=3. 答案 163或3 三、解答题9.(2015·浙江温州模拟(1),19,8分)如图,在方格纸中,△ABC 的三个顶点及D ,E ,F ,G ,H 五个点都在小方格的顶点上.现以点D ,E ,F ,G ,H 中的三个点为顶点画三角形.(1)在图甲中画出一个三角形与△ABC 相似且相似比为1∶2. (2)在图乙中画出一个三角形与△ABC 的面积比为1∶4但不相似.解(1)如图甲所示:(2)如图乙所示.10.(2015·浙江湖州模拟(19),23,10分)如图1,已知正方形ABCD在直线MN 的上方,BC在直线MN上,E是线段BC上一点,以AE为边在直线MN的上方作正方形AEFG.(1)连结GD,求证△ADG≌△ABE;(2)如图2,将图1中正方形ABCD改为矩形ABCD,AB=1,BC=2,E是线段BC上一动点(不含端点B,C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当E由B向C运动时,∠FCN的大小是否保持不变?若∠FCN的大小不变,求tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.解(1)∵四边形ABCD和四边形AEFG是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,∴∠BAE+∠EAD=∠DAG+∠EAD,∴∠BAE=∠DAG.∴△BAE≌△DAG.(2)当点E由B向C运动时,∠FCN的大小总保持不变,理由是:作FH⊥MN于H,由已知可得∠EAG=∠BAD=∠AEF=90°,由(1)得∠FEH=∠BAE=∠DAG,又∵G在射线CD上,∠GDA=∠EHF=∠EBA=90°,∴△EFH≌△GAD,△EFH∽△ABE,∴EH=AD=BC=2,∴CH=BE,∴EHAB=FHBE=FHCH,∴在Rt△FCH中,tan∠FCN=FHCH=EHAB=2,∴当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=2.11. (2014·浙江杭州朝晖中学三模,23,12分)如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA<8),以O为圆心,OA的长为半径的圆交边CD于点M,连结OM,过点M作⊙O的切线交边BC于N.(1)图中是否存在与△ODM相似的三角形,若存在,请找出并给予证明;(2)设DM=x,OA=R,求R关于x的函数关系式;(3)在动点O逐渐向点D运动(OA逐渐增大)的过程中,△CMN的周长如何变化?说明理由.解 (1)存在△MCN 与△ODM 相似. 证明:∵MN 切⊙O 于点M , ∴∠OMN =90°.∵∠OMD +∠CMN =90°, ∠CMN +∠CNM =90°, ∴∠OMD =∠MNC . 又∵∠D =∠C =90°, ∴△ODM ∽△MCN .(2)在Rt △ODM 中,DM =x , OA =OM =R ,∴OD =AD -OA =8-R , 由勾股定理得:(8-R )2+x 2=R 2, ∴64-16R +R 2+x 2=R 2, ∴OA =R =x 2+6416.(3)∵CM =CD -DM =8-x ,OD =8-R =8-x 2+6416, 且有△ODM ∽△MCN , ∴MC OD =CN DM ,∴代入得到:CN =16xx +8.同理MC OD =MN OM ,∴代入得到:MN =x 2+64x +8,∴△CMN 的周长=CM +CN +MN =(8-x )+16x x +8+x 2+64x +8=(8-x )+(x +8)=16,在点O 的运动过程中,△CMN 的周长始终为16,是一个定值.。
相似三角形的应用相似三角形的应用在实际问题中常常利用相似三角形的性质测量物体高度、宽度,常见类型如下:1。
利用阳光下的影子测量数据:人的身高AC与影长BC,旗杆的影长B′C′.方法归纳:相似三角形的对应边成比例,即错误!=错误!.2. 利用标杆测量数据:BF的长,BD的长,标杆高度CD,人眼离地面的高度AB.方法归纳:由△ACG∽△AEH,得错误!=错误!,而AG=BD,AH=BF,CG=CD-AB,于是EH 可求。
再加上人眼离地面的高度AB即为旗杆的高度.3. 利用镜子反射测量数据:人眼离地面的高度AB,镜子与人的距离BE,镜子与旗杆的距离ED。
方法归纳:由于光线的入射角等于反射角,得∠AEB=∠CED,因此△ABE∽△CDE,有错误!=BEDE,于是CD可求.总结:1. 能够利用相似三角形解决测量物体的高度、宽度等实际问题。
2。
学会综合运用三角形相似的判定条件和性质解决问题,加深对相似三角形的理解和认识。
例题1如图所示,小明为了测量一高楼MN的高度,在离N点20m的A处放了一个平面镜,小明沿NA后退到C点,正好从镜中看到楼顶M点,若AC=1.5m,小明的眼睛离地面的高度BC为1。
6m,请你帮助小明计算一下楼房的高度.(精确到0.1m)ABCMN解析:根据物理学定律:光线的入射角等于反射角,这样△BCA与△MNA的相似关系就明确了,再利用相似三角形的对应边成比例求楼房高度MN即可.答案:因为BC⊥CA,MN⊥AN,∠BAC=∠MAN,所以△BCA∽△MNA,所以MNBC=错误!,即MN∶1。
6=20∶1.5,所以MN=1.6×20÷1。
5≈21。
3(m)。
点拨:这是一个实际应用题,利用了两角对应相等的两个三角形相似,且相似三角形对应边成比例.例题2某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距离分别为40cm、8cm。
第33课时 相似图形的应用(68分)一、选择题(每题6分,共30分)1.为了测量被池塘隔开的A ,B 两点之间的距离,根据实际情况,作出如图33-1所示的图形,其中AB ⊥BE ,EF⊥BE ,AF 交BE 于点D ,点C 在BD 上.有四位同学分别测量出以下4组数据:①BC ,∠ACB ;②CD ,∠ACB ,∠ADB ;③EF ,DE ,BD ;④DE ,DC ,BC .能根据所测数据求出A ,B 间距离的有 ( C ) A .1组 B .2组 C .3组 D .4组【解析】 此题比较综合,要多方面考虑.①∵知道∠ACB 和BC 的长,∴可利用∠ACB 的正切来求AB 的长;②可利用∠ACB 和∠ADB 的正切求出AB ;③∵△ABD ∽△FED ,∴可利用AB FE =DB DE 求出AB ;④无法求出A ,B 间距离.故共有3组数据可以求出A ,B 间距离.2.[2017·眉山]“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图33-2获得,则井深为( B )A .1.25尺B .57.5尺C .6.25尺D .56.5尺图33-2 第2题答图图33-1【解析】 如答图,依题意有△ABF ∽△ADE ,∴AB ∶AD =BF ∶DE ,即5∶AD =0.4∶5,解得AD =62.5,BD =AD -AB =62.5-5=57.5(尺).3.[2017·绵阳]为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E ,标记好脚掌中心位置为B ,测得脚掌中心位置B 到镜面中心C的距离是50 cm ,镜面中心C 距离旗杆底部D 的距离为4 m ,如图33-3.已知小丽同学的身高是1.54 m ,眼睛位置A 距离小丽头顶的距离是4 cm ,则旗杆DE 的高度等于( B ) A .10 mB .12 mC .12.4 mD .12.32 m【解析】 由题意可得AB =1.5 m ,BC =0.5 m ,DC =4 m ,△ABC ∽△EDC ,则AB ED =BC DC ,即1.5DE =0.54,解得DE =12 m.4.[2016·烟台]如图33-4,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为6,则C 点坐标为 ( A )A .(3,2)B .(3,1)C .(2,2)D .(4,2) 5.[2018·中考预测]如图33-5,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1 m 的竹竿的影长是0.8 m ,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上,她先测得留在墙壁上的影高为1.2 m ,又测得地面的影长为2.6 m ,请你帮她算一下,树高是( C )A .3.25 mB .4.25 mC .4.45 mD .4.75 m【解析】 BD 是BC 在地面的影子,设树高为x,根据竹竿的高与其影长的比图33-3图33-4图33-5值和树高与其影长的比值相同,得CB BD =10.8,而CB =1.2,∴BD =0.96 m ,∴树在地面的实际影长是0.96+2.6=3.56(m),再由竹竿的高与其影长的比值和树高与其影长的比值相同,得x 3.56=10.8,解得x =4.45 m .故选C.二、填空题(每题6分,共18分)6.如图33-6,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上.若光源到幻灯片的距离为20 cm ,到屏幕的距离为60 cm ,且幻灯片中图形的高度为6 cm ,则屏幕上图形的高度为__18__cm. 【解析】 根据相似三角形的性质,对应高的比等于相似比进行解答.7.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.其中第九章“勾股”,主要讲述了以测量问题为中心的直角三角形三边互求的关系.如图33-7,其中记载:“今有邑,东西七里,南北九里,各中开门,出东门一十五里有木,问:出南门几何步而见木?”译文:“今有一座长方形小城,东西向城墙长7里,南北向城墙长9里,各城墙正中均开一城门.走出东门15里处有棵大树,问走出南门多少步恰好能望见这棵树?”(注:1里=300步)你的计算结果是:出南门__315__步而见木.【解析】 如答图,由题意,得AB =15里,AC =4.5里,CD =3.5里,∵△ACB ∽△DEC ,∴AC DE =AB DC ,即4.5DE =153.5,解得DE =1.05里=315步,∴走出南门315步恰好能望见这棵树.8.如图33-8,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的中点C ′上,点D 落在点D ′处,C ′D ′交AE 于点M .若AB =6,BC =9,则AM 的长为__94__.【解析】 ∵C ′是AB 的中点,AB =6,∴AC ′=BC ′=3,∵四边形DCFE 沿EF 翻折至四边形D ′C ′FE,图33-6图33-7第7题答图图33-8∴CF =C ′F ,∠C =∠MC ′F ,∴BC =BF +FC =BF +FC ′=9,∴FC ′=9-BF ,在Rt △BC ′F 中,根据勾股定理,得BF 2+BC ′2=FC ′2,即BF 2+32=(9-BF )2,解得BF =4,∴FC ′=5,又∵∠BFC ′+∠BC ′F =90°,∠AC ′M +∠BC ′F =90°,∴∠BFC ′=∠AC ′M ,∵∠A =∠B =90°,∴△FC ′B ∽△C ′MA ,∴BF AC ′=BC ′AM ,即43=3AM ,∴AM =94. 三、解答题(共20分)9.(10分)如图33-9,M ,N 为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞,工程人员为计算工程量,必须计算M ,N 两点之间的直线距离,选择测量点A ,B ,C ,点B ,C 分别在AM ,AN 上,现测得AM =1 km ,AN =1.8 km ,AB =54 m ,BC =45 m ,AC =30 m ,求M ,N 两点之间的直线距离.图33-9 第9题答图 解:如答图,连结MN .∵AC AM =301 000=3100,AB AN =541 800=3100,∴AC AM =AB AN ,∵∠BAC =∠NAM ,∴△BAC ∽△NAM ,∴BC MN =3100,∴45MN =3100,∴MN =1 500.答:M ,N 两点之间的直线距离为1 500 m.10.(10分)如图33-10,某校数学兴趣小组利用自制的直角三角形硬纸板DEF 来测量操场旗杆AB 的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE 与旗杆顶点A 在同一直线上,已知DE =0.5 m ,EF =0.25 m ,目测点D 到地面的距离DG =1.5 m ,到旗杆的水平距离DC =20 m ,求旗杆的高度.图33-10【解析】 根据题意,可得△DEF ∽△DCA ,进而利用相似三角形的性质得出AC 的长,即可得出答案.解:由题意,可得△DEF ∽△DCA ,则DE DC =EF CA ,∵DE =0.5 m ,EF =0.25 m ,DG =1.5 m ,DC =20 m ,∴0.520=0.25AC ,解得AC =10,∴AB =AC +BC =10+1.5=11.5(m).答:旗杆的高度为11.5 m.(20分)11.(10分)[2017·十堰]如图33-11,已知AB 为半圆O 的直径,BC ⊥AB 于点B ,且BC =AB ,D 为半圆上一点,连结BD 并延长交半圆O 的切线AE 于点E .① ②图33-11(1)如图①,若CD =CB ,求证:CD 为半圆O 的切线;(2)如图②,若点F 在OB 上,且FD ⊥CD ,求AE AF 的值.解:(1)证明:如答图①,连结DO ,CO ,∵BC ⊥AB ,∴∠ABC =90°,在△CDO 与△CBO 中, ⎩⎨⎧CD =CB ,OD =OB ,OC =OC ,∴△CDO ≌△CBO ,∴∠CDO =∠CBO =90°,∴OD ⊥CD ,∴CD 为半圆O 的切线;第11题答图① 第11题答图②(2)如答图②,连结AD ,∵AB 是直径,∴∠ADB =90°,∴∠ADF +∠BDF =90°,∠DAB +∠DBA =90°, ∵∠BDF +∠BDC =90°,∠CBD +∠DBA =90°, ∴∠ADF =∠BDC ,∠DAB =∠CBD ,∴△ADF ∽△BDC ,∴AD BD =AF BC ,∵∠DAE +∠DAB =90°,∠E +∠DAE =90°, ∴∠E =∠DAB ,∵在△ADE 和△BDA 中,⎩⎨⎧∠ADE =∠BDA =90°,∠E =∠DAB ,∴△ADE ∽△BDA ,∴AE AB =AD BD ,∴AE AB =AF BC ,即AE AF =AB BC ,∵AB =BC ,∴AE AF =1.12.(10分)如图33-12,已知四边形ABCD 内接于⊙O ,A是BDC ︵的中点,AE ⊥AC 于点A ,与⊙O 及CB 的延长线交于点F ,E ,且BF ︵=AD ︵.(1)求证:△ADC ∽△EBA ;(2)如果AB =8,CD =5,求tan ∠CAD 的值.解:(1)证明:∵四边形ABCD 内接于⊙O ,∴∠CDA =∠ABE .∵BF ︵=AD ︵,∴∠DCA =∠BAE ,∴△ADC ∽△EBA ;(2)∵A 是BDC ︵的中点,∴AB ︵=AC ︵,∴AB =AC =8,∵△ADC ∽△EBA ,∴∠CAD =∠AEC ,图33-12∴CD AB =CA AE ,即58=8AE ,∴AE =645,∴tan ∠CAD =tan ∠AEC =AC AE = 8 645=58.(12分)13.(12分)[2017·眉山]如图33-13,点E 是正方形ABCD 的边BC 延长线上一点,连结DE ,过顶点B 作BF ⊥DE ,垂足为F ,BF 分别交AC 于H ,交CD 于G .(1)求证:BG =DE ;(2)若点G 为CD 的中点,求HG GF 的值.解:(1)证明:∵BF ⊥DE ,∴∠GFD =90°,∵∠BCG =90°,∠BGC =∠DGF ,∴∠CBG =∠CDE , 在△BCG 与△DCE 中,⎩⎨⎧∠CBG =∠CDE ,BC =DC ,∠BCG =∠DCE ,∴△BCG ≌△DCE ,∴BG =DE ;(2)设CG =1,∵G 为CD 的中点,∴GD =CG =1, 由(1)可知△BCG ≌△DCE ,∴CG =CE =1, ∴由勾股定理可知DE =BG =5,∵sin ∠CDE =CE DE =GF GD ,∴GF =55,∵AB ∥CG ,∴△ABH ∽△CGH , ∴AB CG =BH GH =21,∴BH =235,GH =135,∴HG GF=53. 图33-13。