第2章 穷举与回溯
- 格式:ppt
- 大小:393.00 KB
- 文档页数:32
回溯法概述与穷举的“笨拙”搜索相较,回溯法那么是一种“伶俐”的求解效益更高的搜索法。
下面介绍回溯设计及其应用,体会回溯法相关于穷举的特点与优势。
回溯的概念有许多问题,当需要找出它的解集或要求回答什么解是知足某些约束条件的最正确解时,往往利用回溯法。
回溯法是一种试探求解的方式:通过对问题的归纳分析,找出求解问题的一个线索,沿着这一线索往前试探,假设试探成功,即取得解;假设试探失败,就慢慢往回退,换其他线路再往前试探。
因此,回溯法能够形象地归纳为“向前走,碰鼻转头”。
回溯法的大体做法是试探搜索,是一种组织得井井有条的、能幸免一些没必要要搜索的穷举式搜索法。
回溯法在问题的解空间树中,从根结点动身搜索解空间树,搜索至解空间树的任意一点,先判定该结点是不是包括问题的解;若是确信不包括,那么跳过对该结点为根的子树的搜索,逐层向其父结点回溯;不然,进入该子树,继续搜索。
从解的角度明白得,回溯法将问题的候选解按某种顺序进行列举和查验。
当发觉当前候选解不可能是解时,就选择下一个候选解。
在回溯法中,舍弃当前候选解,寻觅下一个候选解的进程称为回溯。
倘假设当前候选解除不知足问题规模要求外,知足所有其他要求时,继续扩大当前候选解的规模,并继续试探。
若是当前候选解知足包括问题规模在内的所有要求时,该候选解确实是问题的一个解。
与穷举法相较,回溯法的“伶俐”的地方在于能适时“转头”,假设再往前走不可能取得解,就回溯,退一步另找线路,如此可省去大量的无效操作。
因此,回溯与穷举相较,回溯更适宜于量比较大,候选解比较多的问题。
5.1.2 回溯描述1.回溯的一样方式下面简要论述回溯的一样方式。
回溯求解的问题P,通常要能表达为:关于已知的由n元组(x1,x2,…,x n)组成的一个状态空间E={(x1,x2,…,x n)|x i∈s i,i=1,2,…,n},给定关于n元组中的一个分量的一个约束集D,要求E中知足D的全数约束条件的所有n元组。
回溯法详解回溯法(Backtracking)是一种解决问题的算法,也称为试探法。
它是一种基于深度优先策略的搜索方法,用于在一个大型的搜索空间中找到所有可能的解。
回溯法常用于解决组合问题、优化问题、排列问题、路径问题等等。
回溯法的实现方法是:从一个初始状态开始,不断地向前搜索,直到找到一个合法的解或者所有的搜索空间都被遍历结束。
在搜索的过程中,如果发现当前的搜索路径不可能得到合法的解,就会回溯到上一个状态,继续向其他方向搜索。
回溯法仍然是一种穷举算法,但它通过剪枝操作排除大部分不必要的搜索路径,从而减少了搜索的时间和空间复杂度。
回溯法的实现过程中,我们需要完成以下三个步骤:1. 选择基于当前的状态,选择一个可能的方向,继续向前搜索。
这意味着我们需要对问题进行建模,找到一些限制条件或者选择条件,来指导我们如何选择下一个状态。
2. 约束在选择方向之后,我们需要考虑当前方向是否可行。
这称为约束条件。
如果当前的方向违反了某些约束条件,那么我们需要回溯到上一个状态,重新选择一个合法的方向。
3. 回溯如果当前方向无法得到一个合法解,我们就需要回溯到上一个状态,并尝试其他的方向。
回溯操作的核心是恢复状态,也就是将当前状态的改变撤回。
这意味着我们需要记录每一个状态的改变,从而能够正确地回溯。
回溯法的优点在于它的适用范围比较广泛,在解决复杂问题时能够得到很好的效果。
但同时回溯法也存在一些缺点,例如在搜索效率方面并不是最优的,在搜索空间比较大的情况下,时间和空间复杂度也会非常高。
因此,在实践中,我们需要结合具体问题来选择合适的算法。
回溯算法的基本思想回顾法也叫启发式。
回溯的基本方法是深度优先搜索,这是一种组织良好的穷举搜索算法,可以避免不必要的重复搜索。
回溯算法的基本思想是:往前走一条路,可以就往前走,不行就往回走,换一条路再试。
当我们遇到某一类问题时,它的问题是可以分解的,但是我们无法得到一个清晰的动态规划或者递归的解。
这时候可以考虑用回溯法来解决这类问题。
回溯法的优点是程序结构清晰,可读性强,易于理解,通过分析问题可以大大提高运行效率。
但对于可以迭代得到明显递推公式的问题,不宜采用回溯法求解,因为它耗时较长。
对于用回溯法求解的问题,要对问题进行适当的转化,得到状态空间树。
这棵树的每一条完整路径都代表了一个解决方案的可能性。
先用深度搜索这棵树,枚举每一个可能的解;从而得到结果。
但通过构造回溯法中的约束函数,可以大大提高程序效率,因为在深度优先搜索的过程中,每一个解(不一定是完整的,其实这就是构造约束函数的意义)都在不断地与约束函数进行比较,删除一些不可能的解,这样就不必列出其余的解,节省了一些时间。
回溯法中,首先需要明确下面三个概念:(一)约束函数:约束函数是根据题意定出的。
通过描述合法解的一般特征用于去除不合法的解,从而避免继续搜索出这个不合法解的剩余部分。
因此,约束函数是对于任何状态空间树上的节点都有效、等价的。
(二)状态空间树:刚刚已经提到,状态空间树是一个对所有解的图形描述。
树上的每个子节点的解都只有一个部分与父节点不同。
(三)扩展节点、活结点、死结点:所谓扩展节点,就是当前正在求出它的子节点的节点,在深度优先搜索中,只允许有一个扩展节点。
活结点就是通过与约束函数的对照,节点本身和其父节点均满足约束函数要求的节点;死结点反之。
由此很容易知道死结点是不必求出其子节点的(没有意义)。
利用回溯法解题的具体步骤首先,要通过读题完成下面三个步骤:(1)描述解的形式,定义一个解空间,它包含问题的所有解。
(2)构造状态空间树。
沈阳理工大学算法实践与创新论文摘要对于计算机科学来说,算法的概念是至关重要的,算法是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。
为了更加的了解算法,本篇论文中,我们先研究一个算法---回溯法。
回溯法是一种常用的重要的基本设计方法。
它的基本做法是在可能的范围之内搜索,适于解一些组合数相当大的问题。
圆排列描述的是在给定n个大小不等的圆 C1,C2,…,Cn,现要将这n个圆排进一个矩形框中,且要求各圆与矩形框的底边相切。
圆排列问题要求从n个圆的所有排列中找出有最小长度的圆排列。
图着色问题用数学定义就是给定一个无向图G=(V, E),其中V为顶点集合,E为边集合,图着色问题即为将V分为K个颜色组,每个组形成一个独立集,即其中没有相邻的顶点。
其优化版本是希望获得最小的K值。
符号三角形问题要求对于给定的n,计算有多少个不同的符号三角形,使其所含的“+”和“-”的个数相同。
在本篇论文中,我们将运用回溯法来解决着图的着色问题,符号三角形问题,图排列问题,将此三个问题进行深入的探讨。
关键词: 回溯法图的着色问题符号三角形问题图排列问题目录第1章引言 (1)第2章回溯法的背景 (2)第3章图的着色问题 (4)3.1 问题描述 (4)3.2 四色猜想 (4)3.3 算法设计 (5)3.4 源代码 (6)3.5 运行结果图 (10)第4章符号三角形问题 (11)4.1 问题描述 (11)4.2 算法设计 (11)4.3 源代码 (12)4.4 运行结果图 (16)第5章圆的排列问题 (17)5.1 问题描述 (17)5.2 问题分析 (17)5.3 源代码 (18)5.4 运行结果图 (22)结论 (23)参考文献 (24)第1章引言在现实世界中,有相当一类问题试求问题的全部解或求问题的最优解。
最基本的方法是通过枚举法搜索问题的解空间。
但许多问题解空间的大小随问题规模n的增长呈指数规律增长,这就使问题理论上可解而实际不可行。
五大常用算法回溯算法一、回溯算法的概述回溯算法是一种常用的解决问题的算法,通常用于解决组合优化问题,如排列、组合、子集等问题。
回溯算法通过不断地尝试可能的解,直到找到问题的解或者确定不存在解为止。
它的核心思想是通过递归实现穷举,然后进行剪枝,以提高效率。
回溯算法主要包含以下五个步骤:1.选择:在每一步中,可以根据条件选择一个或多个可能的路径。
2.约束:根据问题的约束条件,限制可选择的路径。
3.:以递归的方式进行,尝试所有可能的解。
4.判断:在的过程中,判断当前路径是否符合问题的要求,如果符合则接受,否则进行回溯。
5.取消选择:在判断出当前路径不符合要求时,撤销当前选择,回到上一步继续尝试其他可能的选择。
回溯算法的优缺点:优点:1.简单直观:回溯算法的思路清晰,易于理解和实现。
2.灵活性高:回溯算法适用于各种问题,没有固定的限制条件,可以根据具体问题进行调整。
3.扩展性好:回溯算法可以通过剪枝策略提高效率,并且可以和其他算法结合使用。
缺点:1.效率低:回溯算法通常需要穷举所有的可能解,因此在处理大规模问题时效率较低。
2.可能的重复计算:由于回溯算法会尝试所有可能的解,所以有可能会产生重复计算的问题。
二、回溯算法的应用回溯算法在许多实际问题中都有应用,包括但不限于以下几个领域:1.组合求解:回溯算法可以用来求解排列、组合、子集等问题。
例如,在给定一组数字的情况下,找到所有可能的组合,使其和等于给定的目标值。
2.图的:回溯算法可以用来解决图的遍历问题,如深度优先、广度优先等。
例如,在给定一张无向图的情况下,找到从起点到终点的路径。
3.数独游戏:回溯算法可以用来解决数独游戏。
数独是一种逻辑类的游戏,在一个9×9的网格中填入1-9的数字,要求每行、每列、每个3×3的子网格都包含1-9的数字,且不能重复。
4.八皇后问题:回溯算法可以用来解决八皇后问题。
八皇后问题是在一个8×8的棋盘上放置八个皇后,要求每行、每列、每个对角线上都不能有两个皇后。
回溯法原则
回溯法原则是一种问题求解的方法,也称为回溯搜索或试探法。
它通常用于解决组合优化、排列组合、装箱、密码破解等问题。
回溯法的基本思想是从问题的开始状态开始,逐步尝试各种可能的选择,并进行系统性地搜索。
在搜索的过程中,如果发现当前的选择方案不能得到有效的解决方案,就回溯到上一步,并尝试其他的选择,直到找到符合问题要求的解决方案,或者全部搜索完毕。
回溯法的主要步骤如下:
1. 定义问题的解空间:确定问题的解空间是指问题的解可取的范围或者搜索的空间限制。
2. 选择搜索的方向:根据问题的特点和要求,确定搜索的方向和策略。
3. 进行搜索:采用递归方式或者迭代方式,按照确定的搜索方向,逐步尝试不同的选择,并对每一次选择进行验证和判断。
4. 回溯:如果当前的选择不能得到有效的解决方案,则回溯到上一步,重新选择其他的可能,并再次进行验证和判断。
5. 终止条件:在搜索的过程中,根据问题的要求设置合适的终止条件,当满足终止条件时,停止搜索,输出结果。
回溯法是一种穷举搜索的方法,时间复杂度较高,需要进行大量的尝试和验证。
因此,在使用回溯法解决问题时,需要注意问题的规模和复杂度,以避免搜索空间过大导致的效率问题。
同时,还可以通过剪枝等优化策略来提高搜索效率。
回溯算法的步骤回溯算法的步骤回溯算法是一种通过穷举所有可能的解来求解问题的算法。
它通常用于求解组合优化问题、排列问题和子集问题等。
下面我们将介绍回溯算法的步骤。
1. 定义问题在使用回溯算法之前,需要先定义好要解决的问题。
例如,如果要求解一个排列问题,那么就需要确定排列中元素的个数和范围。
2. 确定状态空间树状态空间树是指所有可能解的集合。
在回溯算法中,状态空间树通常用于表示所有可能的决策路径。
例如,在排列问题中,每一个节点代表一个元素被选中或未被选中。
3. 确定约束条件约束条件是指限制解决方案可行性的条件。
在回溯算法中,必须遵守约束条件才能得到有效的解决方案。
例如,在排列问题中,每个元素只能出现一次。
4. 确定搜索顺序搜索顺序是指按照什么顺序遍历状态空间树。
在回溯算法中,搜索顺序通常有两种:深度优先搜索和广度优先搜索。
5. 编写递归函数递归函数是实现回溯算法最重要的部分。
递归函数的作用是遍历状态空间树,找到所有可行的解决方案。
在编写递归函数时,需要考虑以下几个方面:(1)确定终止条件:当搜索到状态空间树的叶子节点时,需要确定终止条件,返回当前路径是否符合要求。
(2)确定回溯条件:当搜索到某个节点时,如果发现该节点不符合约束条件,则需要回溯到上一个节点。
(3)确定状态变化:在搜索过程中,需要记录每个节点的状态变化。
例如,在排列问题中,需要记录哪些元素已经被选中。
6. 调用递归函数最后一步是调用递归函数,并将初始状态作为参数传入。
在调用递归函数之后,程序会自动遍历状态空间树,并找到所有可行的解决方案。
总结回溯算法是一种常见的求解组合优化问题、排列问题和子集问题等的算法。
它通过穷举所有可能的解来求解问题,在实际应用中有着广泛的应用。
在使用回溯算法时,需要先定义好要解决的问题,并按照上述步骤进行操作。