N皇后问题 回溯法
- 格式:ppt
- 大小:2.40 MB
- 文档页数:45
n皇后问题解法总数规律n皇后问题是一个经典的数学问题,最早由欧洲的数学家在18世纪提出。
问题的描述是在一个n×n的棋盘上放置n个皇后,使得它们互不攻击,即任意两个皇后不能处于同一行、同一列或同一斜线上。
这个问题的解法总数一直是一个引人关注的问题,不同的n对应的解法总数有一定的规律。
首先,我们来分析一下较小的n对应的解法总数。
当n=1时,显然只有一种解法。
当n=2时,由于两个皇后不能处于同一行、同一列或同一斜线上,所以无解。
当n=3时,也无解。
当n=4时,解法总数为2。
具体的解法如下所示:. Q . . . . Q .. . . Q Q . . .Q . . . . . . Q. . Q . . Q . .可以发现,当n=4时,只有两种解法。
随着n的增大,解法总数逐渐增加。
当n=5时,解法总数为10。
当n=6时,解法总数为4。
当n=7时,解法总数为40。
当n=8时,解法总数为92。
当n=9时,解法总数为352。
可以看出,解法总数并不是一个简单的线性增长。
为了进一步分析n皇后问题解法总数的规律,我们可以使用回溯算法。
回溯算法是一种穷举搜索的算法,通过尝试所有可能的解,找到所有满足条件的解。
在n皇后问题中,我们可以从第一行开始,依次尝试每一列,如果当前位置可以放置一个皇后,我们就继续尝试下一行,直到放置了n个皇后,即找到了一种解法。
然后,我们回溯到上一行,尝试该行的下一列,继续寻找下一种解法。
当回溯到第一行时,即找到了所有的解法。
通过回溯算法,我们可以得到n=1到n=9的解法总数,如下所示:n=1,解法总数为1n=2,解法总数为0n=3,解法总数为0n=4,解法总数为2n=5,解法总数为10n=6,解法总数为4n=7,解法总数为40n=8,解法总数为92n=9,解法总数为352可以观察到,n=1到n=9的解法总数并不是一个简单的规律,解法总数的增长呈现出一定的波动。
然而,当n=10时,解法总数突然增加到724。
算法设计及分析n皇后问题---回溯求解国际象棋中皇后威力很大,它可以象“车”一样沿直线上下或左右移动;也可以如同“象”那样沿着斜线移动。
双方的皇后是不能在同一行或同一列或同一斜线上对持的。
那么,在一张空白的国际象棋盘上最多可以放上几个皇后并且不让它们互相攻击呢?这个问题是伟大数学家高斯在十九世纪中期提出来的,并作了部分解答。
高斯在棋盘上放下了N个互不攻击的皇后,他还认为可能有N种不同的放法,这就是有名的“N皇后”问题。
如果你动手试试,就一定会发现开头几颗皇后很容易放置,越到后来就越困难。
由于我们的记忆有限,很可能在某个位置放过子后来证明不行取消了,但是以后又重新放上子去试探,这样就会不断地走弯路,花费大量的精力。
因此,必须找到一个简易有效、有条不紊的法则才行。
回溯法的基本思想:对于用回溯法求解的问题,首先要将问题进行适当的转化,得出状态空间树。
这棵树的每条完整路径都代表了一种解的可能。
通过深度优先搜索这棵树,枚举每种可能的解的情况;从而得出结果。
在深度优先搜索的过程中,不断的将每个解(并不一定是完整的,事实上这也就是构造约束函数的意义所在)与约束函数进行对照从而删除一些不可能的解,这样就不必继续把解的剩余部分列出从而节省部分时间。
不妨以8皇后为例,设8皇后为x i,她们分别在第i行(i=1,2,3,4,5,6,7,8),这样问题的解空间就是一个8个皇后所在列的序号,为n元一维向量(x1,x2,,x3,x4,x5,x6,x7,x8),搜索空间是1≤x i≤8(i=1,2,3,4,5,6,7,8),共88个状态。
约束条件是8个点(1,x1),(2,x2),(3,x3),(4,x4),(5,x5),(6,x6),(7,x7),(8,x8)不在同一列和同一对角线上。
虽然问题共有88个状态,但算法不会真正地搜索这么多的状态,因为回溯法采用的是“走不通就掉头”的策略,而形如(1,1,x3,x4,x5,x6,x7,x8)的状态共有86个,由于1,2号皇后在同一列不满足约束条件,回溯后这些状态是不会搜索的。
算法分析与设计实验报告第三次附加实验附录:完整代码(回溯法)//回溯算法递归回溯n皇后问题#include<iostream>#include<time.h>#include<iomanip>#include"math.h"using namespace std;class Queen{friend int nQueen(int); //定义友元函数,可以访问私有数据private:bool Place(int k); //判断该位置是否可用的函数void Backtrack(int t); //定义回溯函数int n; //皇后个数int *x; //当前解long sum; //当前已找到的可行方案数};int main(){int m,n;for(int i=1;i<=1;i++){cout<<"请输入皇后的个数:"; //输入皇后个数cin>>n;cout<<"皇后问题的解为:"<<endl;clock_t start,end,over; //计算程序运行时间的算法start=clock();end=clock();over=end-start;start=clock();m=nQueen(n); //调用求解的函数cout<<n<<"皇后问题共有";cout<<m<<"个不同的解!"<<endl; //输出结果end=clock();printf("The time is %6.3f",(double)(end-start-over)/CLK_TCK); //显示运行时间cout<<endl;}system("pause");return 0;}bool Queen::Place(int k)//传入行号{for(int j=1;j<k;j++){if((abs(k-j)==abs(x[j]-x[k]))||(x[j]==x[k]))//如果两个在同一斜线或者在同一列上,说明冲突,该位置不可用{return false;}}return true;}void Queen::Backtrack(int t){if(t>n){sum++;/*for(int i=1;i<=n;i++) //输出皇后排列的解{cout<<x[i]<<" ";}cout<<endl;*/}else{//回溯探索第i行的每一列是否有元素满足要求for(int i=1;i<=n;i++){x[t]=i;if(Place(t)){Backtrack(t+1);}}}}int nQueen(int n){Queen X; //定义Queen类的对象X//初始化XX.n=n;X.sum=0;int *p=new int[n+1]; //动态分配for(int i=0;i<=n;i++) //初始化数组{p[i]=0;}X.x=p;X.Backtrack(1);delete[] p;return X.sum;//输出解的个数}完整代码(回溯法)//回溯算法迭代回溯n皇后问题#include<iostream>#include<time.h>#include<iomanip>#include"math.h"using namespace std;class Queen{friend int nQueen(int); //定义友元函数private:bool Place(int k); //定义位置是否可用的判断函数void Backtrack(void); //定义回溯函数int n; // 皇后个数int *x; // 当前解long sum; // 当前已找到的可行方案数};int main(){int n,m;for(int i=1;i<=1;i++){cout<<"请输入皇后的个数:";cin>>n;cout<<n<<"皇后问题的解为:"<<endl;clock_t start,end,over; //计算程序运行时间的算法start=clock();end=clock();over=end-start;start=clock();m=nQueen(n); //调用求解皇后问题的函数cout<<n<<"皇后问题共有";cout<<m<<"个不同的解!"<<endl;end=clock();printf("The time is %6.3f",(double)(end-start-over)/CLK_TCK); //显示运行时间cout<<endl;}system("pause");return 0;}bool Queen::Place(int k){for (int j=1;j<k;j++){if ((abs(k-j)==abs(x[j]-x[k]))||(x[j]==x[k])) //如果两个皇后在同一斜线或者在同一列上,说明冲突,该位置不可用{return false;}}return true;}void Queen::Backtrack() //迭代法实现回溯函数{x[1] = 0;int k = 1;while(k>0){x[k] += 1; //先将皇后放在第一列的位置上while((x[k]<=n)&&!(Place(k))) //寻找能够放置皇后的位置{x[k] += 1;}if(x[k]<=n) //找到位置{if(k == n) //如果寻找结束输出结果{/*for (int i=1;i<=n;i++){cout<<x[i]<<" ";}cout<<endl; */sum++;}else//没有结束则找下一行{k++;x[k]=0;}}else//没有找到合适的位置则回溯{ k--; }}}int nQueen(int n){Queen X; //定义Queen类的对象X//初始化XX.n=n;X.sum=0;int *p=new int[n+1];for(int i=0;i<=n;i++){p[i]=0;}X.x=p;X.Backtrack();delete []p;return X.sum; //返回不同解的个数}。
n后问题-回溯法问题描述: 在n*n的棋盘上放置彼此不受攻击的n个皇后。
按国际象棋的规则,皇后可以与之处在同⼀⾏或者同⼀列或同⼀斜线上的棋⼦。
n后问题等价于在n*n格的棋盘上放置n皇后,任何2个皇后不放在同⼀⾏或同⼀列的斜线上。
算法设计: |i-k|=|j-l|成⽴,就说明2个皇后在同⼀条斜线上。
可以设计⼀个place函数,测试是否满⾜这个条件。
1 当i>n时,算法搜索⾄叶节点,得到⼀个新的n皇后互不攻击放置⽅案,当前已找到的可⾏⽅案sum加1. 2 当i<=n时,当前扩展结点Z是解空间中的内部结点。
该结点有x[i]=1,2,3....n共n个⼉⼦节点。
对当前扩展结点Z的每个⼉⼦节点,由place检察其可⾏性。
并以深度优先的⽅式递归地对可⾏⼦树,或剪去不可⾏⼦树。
算法描述: #include <iostream>#include <cstdlib>using namespace std;class Queen{friend int nQueen(int);private:bool Place(int k);void Backtrack(int t);int n,* x;long sum;};bool Queen::Place(int k){for(int j=1;j<k;j++)if((abs(k-j)==abs(x[j]-x[k]))||(x[j]==x[k]))return false;return true;}void Queen::Backtrack(int t){if(t>n)sum++;elsefor(int i=1;i<=n;i++){x[t] = i;if(Place(t))Backtrack(t+1);}}int nQueen(int n){Queen X;X.n = n;X.sum = 0;int *p = new int [n+1];for(int i=0;i<=n;i++)p[i] = 0;X.x = p;X.Backtrack(1);delete [] p;cout<<X.sum<<endl;return X.sum;}int main(){nQueen(4);nQueen(2);nQueen(3);return0;}执⾏结果:迭代回溯:数组x记录了解空间树中从根到当前扩展结点的路径,这些信息已包含了回溯法在回溯时所需要的信息。
n皇后实验报告n皇后实验报告引言:n皇后问题是一个经典的数学问题,其目标是在一个n×n的棋盘上放置n个皇后,使得它们互不攻击。
本实验旨在通过编程实现n皇后问题的解法,并对不同的算法进行性能分析。
实验方法:本实验采用Python语言编写程序,实现了两种常见的解法:回溯法和遗传算法。
回溯法是一种穷举搜索的方法,通过不断尝试每一种可能的放置方式,直到找到满足条件的解;而遗传算法则是通过模拟生物进化的过程,利用选择、交叉和变异等操作逐步优化解的质量。
实验结果:在实验中,我们分别测试了回溯法和遗传算法在不同规模的n皇后问题上的性能表现。
以下是实验结果的总结:1. 回溯法:- 对于规模较小的问题(n<10),回溯法可以在短时间内找到所有解,并输出结果。
- 随着问题规模的增大,回溯法的搜索时间呈指数级增长。
当n=15时,搜索时间已经超过10秒。
- 回溯法在解决大规模问题时,遇到了组合爆炸的问题,无法在合理的时间内得出结果。
2. 遗传算法:- 遗传算法对于规模较小的问题表现不如回溯法,因为其需要较长的时间来找到一个较优解。
- 随着问题规模的增大,遗传算法的性能逐渐超过回溯法。
当n=20时,遗传算法能够在合理的时间内找到一个较优解。
- 遗传算法在解决大规模问题时,相比回溯法有明显的优势,因为其搜索时间增长较慢。
实验讨论:通过对实验结果的分析,我们可以得出以下结论:- 回溯法适用于规模较小的n皇后问题,但在大规模问题上的性能不佳。
- 遗传算法在大规模问题上表现较好,但对于规模较小的问题需要更长的时间来找到较优解。
- 遗传算法的性能受到参数设置的影响,不同的选择、交叉和变异策略可能导致不同的结果。
结论:综上所述,回溯法和遗传算法都是解决n皇后问题的有效方法,但在不同规模的问题上有不同的性能表现。
在实际应用中,我们可以根据问题规模选择合适的算法来求解。
对于规模较小的问题,回溯法可以提供精确的解;而对于大规模问题,遗传算法能够在合理的时间内找到较优解。
实验报告4回溯算法实验4回溯算法解决N皇后问题一、实验目的1)掌握回溯算法的实现原理,生成树的建立以及限界函数的实现;2)利用回溯算法解决N皇后问题;二、实验内容回溯算法解决N皇后问题。
三、算法设计1)编写限界函数bool PLACE(int k,int x[]),用以确定在k列上能否放置皇后;2)编写void NQUEENS(int n)函数用以摆放N个皇后;3)编写主函数,控制输入的皇后数目;4)改进和检验程序。
四、程序代码//回溯算法解决N皇后问题的c++程序#include<math.h>#include<iostream>using namespace std;int count=0; //皇后摆放的可能性bool PLACE(int k,int x[]);//限界函数void NQUEENS(int n);//摆放皇后int main(){}int queen;cout<<"先生(女士)请您输入皇后的总数,谢谢!:"<<endl;cin>>queen;NQUEENS(queen);cout<<"所有可能均摆放完毕,谢谢操作"<<endl;return 0;void NQUEENS(int n){/*此过程使用回溯算法求出在一个n*n棋盘上放置n个皇后,使其即不同行,也不同列,也不在同一斜角线上*/int k, *x=new int[n];//存放皇后所在的行与列x[0]=0;k=0;while (k>=0&&k<n){ //对所有的行执行以下语句x[k]=x[k]+1; //移到下一列while(x[k]<=n&&(!PLACE(k,x))){ //此处能放置一个皇后吗?}if( x[k]<=n ) { //找到一个位置if( k==n-1 ){ //是一个完整的解吗cout<<"第"<<++count<<"排法是:"<<endl;for(int i=0;i<n;i++)//打印皇后的排列{}cout<<"\n";for (int j=0;j<n;j++){}cout<<"\n";if (x[i] == j+1){}else{}cout<<". ";cout<<"*";x[k]=x[k]+1; //移到下一列}}}}else { k=k+1; x[k]=0;} //移向下一行else k=k-1; //回溯bool PLACE(int k,int x[]){/*如果一个皇后能放在第k行和x(k)列,返回ture;否则返回false。