历届2+2高等数学试卷及评分标准
- 格式:doc
- 大小:4.52 MB
- 文档页数:79
----------------------2009年浙江省普通高校“2+2”联考《高等数学》试卷-------------------第 页,共 12 页1 2009年浙江省普通高校“2 + 2”联考《 高等数学 》试卷考试说明:1、考试时间为150分钟;2、满分为150分;3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;4、密封线左边各项要求填写清楚完整。
一、填空题:(只需在横线上直接写出答案,不必写出计算过程,本题共有6个小题,每一小题4分,共24分)1.函数 11,,)1ln()(<≥++⋅⎩⎨⎧=x x eb x a x f x在 1=x 处可导 ,则 a = , b = .2.若函数 0)(≠x f 满足方程 1)(2)(02+=⎰xdt t f x f ,则 )(x f = .3 . 二阶常系数线性非齐次微分方程 x y y sin ''=+ 的通解是 . 4.设 ,,),,(αααT A c b a == *A 为 A 的伴随矩阵, 则 *A = .5.设 A 为 n 阶方阵,E E AA T,= 为 n 阶单位阵, 0<A , 则 =+E A .6. 袋中有6只红球4只黑球,今从袋中随机取出4只球,设取到一只红球得2分,取到一只黑球得1分,则得分不小于7的概率为 .二.选择题. (本题共有5个小题,每一小题4分,共20分,每个小题给出的选项中,只有一项符合要求)1.二元函数 y x y x y x f ln ln 22),(22--+= 在其定义域内 ( ) .(A ) 有极小值(B ) 有极大值 (C ) 既有极大值也有极小值 (D ) 无极值姓名:_____________准考证号:______________________报考学校 报考专业------------------------------------------------------------------------------------------密封线---------------------------------------------------------------------------------------------------第 页,共 12 页2 2. R 为收敛半径的充分必要条件是 ( ) .(A )当 R x ≤ 时,∑+∞=1n nn x a 收敛,且当 R x > 时∑+∞=1n nn x a 发散(B ) 当 R x < 时,∑+∞=1n nn x a 收敛,且当 R x ≥ 时∑+∞=1n nn x a 发散(C )当 R x < 时,∑+∞=1n nn x a 收敛,且当 R x > 时∑+∞=1n nn x a 发散(D )当 R x R ≤<- 时,∑+∞=1n nn x a 收敛,且当 R x > 或 R x -≤ 时∑+∞=1n nn x a 发散3.已知二元函数 ),(y x f 在点 )0,0( 某邻域内连续 , 且 1),(lim223300=+++→→yx yx y x f y x ,则( ).(A ) 点 )0,0( 不是二元函数 ),(y x f 的极值点 (B ) 点 )0,0( 是二元函数 ),(y x f 的极大值点 (C ) 点 )0,0( 是二元函数 ),(y x f 的极小值点 (D ) 无法判断点 )0,0( 是否是二元函数 ),(y x f 的极值点 4.对于非齐次线性方程组 ⎪⎪⎩⎪⎪⎨⎧=+⋅⋅⋅++⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=+⋅⋅⋅++=+⋅⋅⋅++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212*********以下结论中 不正确 的是 ( ).(A) 若方程组无解, 则系数行列式 0=D (B) 若方程组有解, 则系数行列式 0≠D (C) 若方程组有解, 则或有唯一解, 或有无穷多解 (D) 0≠D 是方程组有唯一解的充分必要条件5. 某单位电话总机在长度为 t (小时) 的时间间隔内, 收到呼叫的次数服从参数为3t 泊松分布, 而与时间间隔的起点无关, 则在一天24小时内至少接到1次呼叫的概率为 ( ).第 页,共 12 页3 (A) 1-e (B) 41--e (C) 8-e (D) 8-1-e三.计算题:(计算题必须写出必要的计算过程,只写答案的不给分,本题共7个小题,每小题9分,共63分)1. 已知 )ln 2ln (2),(y x y x y x f z +⋅+== ,在计算点 )1,2( 处函数值时,如果自变量 x 和 y 分别发生误差 02.0-=∆x 和 01.0=∆y , 试用二元函数的微分来估计此时产生的函数值误差 z ∆ 的近似值 .2.设函数 )(x f 在点 0=x 的邻域内 连续,极限 ])1ln(2)(3[lim 2xx xx f A x ++-=→存在 ,(1)求 )0(f 的值; (2)若 1=A ,问:)(x f 在点 0=x 处是否可导? 如不可导,说明理由;如可导,求出 )0('f .第 页,共 12 页43. (1)已知广义积分dx ex2-+∞∞-⎰是收敛的,试利用初等函数 xe 的幂级数展开式推导出这个广义积分的值大于1 的结论 ,详细说明你的理由(4 分) ;(2) 利用(1) 的结论,试比较dx ex xx 222)2(+-+∞⋅-⎰与dx ex xx 2212)2(+-⋅-⎰的大小 ,详细说明你的理由 (5 分) .第 页,共 12 页54.已知定义在全平面上的二元函数 32),()1(),(),(2+⋅++⋅=⎰⎰⎰Dd y x f x dx y x x f y x f σ ,其中 D 是由直线 x y =, 1=y 和 y 轴所围成的封闭平面区域,求 ),(y x f 的解析表达式 .___________准考证号:______________________报考学校 报考专业:-------------------------------------------------------------------密封线---------------------------------------------------------------------------------------------------第 页,共 12 页6 5.计算行列式aa a a a a a a a --------111010000011000110001 的值 .第 页,共 12 页7 6.已知 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=20120031204312,10110001100011C B , 矩阵 A 满足 : E C B CE A TT=--)(1, E 为单位阵 , 求 A .第 页,共 12 页8 7.设随机变量 ),(Y X 的概率密度函数为 ⎩⎨⎧>>⋅=+-其它,00,0,),()(y x e A y x f y x ,求 : (1) 常数 A (2分) ; (2) ),(min Y X Z = 的概率密度函数 (4分) ;(3)),(Y X 落在以 x 轴 , y 轴及直线 22=+y x 所围成三角形区域D 内的概率 (3分).第 页,共 12 页9四.应用题: (本题共3个小题,每小题10分,共30分)1. 设工厂生产 A 、B 两种相同用途但不同档次的产品。
2002年江苏省高等数学竞赛试题(本科一级)一.填空(每题5分,共40分)1.()tan 0lim0x xk x e e c c x →-=≠,则k =3,c =132. 设()f x 在[)1,+∞上可导,下列结论成立的是 C A. 若()lim 0x f x →+∞'=,则()f x 在[)1,+∞上有界B. 若()lim 0x f x →+∞'≠,则()f x 在[)1,+∞上无界C. 若()lim 1x f x →+∞'=,则()f x 在[)1,+∞上无界3. 设由()1y e x y x x -+-=+确定()y y x =,则()0y ''=3-4.arcsin arccos x xdx ⋅=⎰arcsin arccos arcsin )2x x x x x x C ⋅+-++5. 曲线22222z x y x y y ⎧=+⎨+=⎩,在点()1,1,2的切线的参数方程为1122x y t z t=⎧⎪=+⎨⎪=+⎩6.设(),sin x y z f g e y x ⎛⎫=+ ⎪⎝⎭,f 有二阶连续导数,g 有二阶连续偏导数,则2z x y ∂=∂∂12321cos xy f f g y e x x'''--+⋅ 7. 交换二次积分的次序()2130,xx dx f x y dy -=⎰⎰12133012(,)(,)(,)ydy f x y dx dy f x y dx dy f x y dx -++⎰⎰⎰⎰⎰8.幂级数111112n n x n∞=+++∑的收敛域[1,1)-二.(8分)设40tan n n I xdx π=⎰,求证()()()1122121n I n n n <<≥+-证:令tan x t =,1120011tan 12222n nnn t t I xdx dt dt t t n n π==<=<+-⎰⎰⎰,(2)n ≥ 11220011112(1)n nn t t I dt dt t n =>=+++⎰⎰ 三.(8分)设()f x 在[],a b 上连续,()()0bbx aaf x dx f x e dx ==⎰⎰,求证: ()f x 在(),a b 内至少存在两个零点. 解:令()()xaF x f t dt =⎰,()a x b ≤≤,则()()0F a F b ==,且()()F x f x '=。
2005年浙江省普通高校“2+2”联考《高等数学B 》试卷一、填空题:( 8*3)1.若 0)1ln()2(lim≠=+⋅-⎰→k xdtt t x nxx , 则自然数 n = .2.=⋅--++⋅-⋅+⋅--++∞→])2()!12()1()2(!71)2(!51)2(!312[lim 121753n n n n πππππΛ . 3 . =++-⎰21010cos sin 1cos sin πdx x x xx . 4. 已知 x xe ex y 4)23(2+⋅+= 是二阶常系数非齐次线性微分方程x e c by ay y 2'''⋅=++ 的一个特解,则该方程的通解是5. 已知 A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡252321100001 , A * 为 A 的伴随阵,则 ()1*-A = 6.已知三元非齐次线性方程组 A Ⅹ=b ,A 的秩 r (A) = 1 ;α1 、α2 、α3 是该线性方程组的三个解向量,且α1+α2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101,α2+α3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡531,α3+α1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡212该非齐次线性方程组的通解 7.设方程 02=++βαx x 中的 α 和β 分别是连续抛掷一枚骰子先后出现的点数,则此方程有实根的概率为 .8.已知男性中有 5% 为色盲患者,女性中有 0.25% 为色盲患者,今从男女人数相等的人群中随机地挑选一人,其恰好是色盲患者,则此人是男性的概率为 二.选择题. (8*3) 1.设函数 xx x f 1)(-=, 则正确的结论是(A ) 1=x 是 )(x f 的极值点,但 )0,1( 不是曲线 )(x f y = 的拐点; (B ) 1=x 不是 )(x f 的极值点,但 )0,1( 是曲线 )(x f y = 的拐点; (C ) 1=x 是 )(x f 的极值点,且 )0,1( 是曲线 )(x f y = 的拐点;(D ) 1=x 不是 )(x f 的极值点,)0,1( 也不是曲线 )(x f y = 的拐点.2. 设二元函数 ),(y x f 在点 )1,1( 处可微,1)1,1(')1,1(')1,1(===y x f f f ,又知)),(,(x x f x f z =,则1=x dxdz =( ).(A ) 1 (B ) 2 (C ) 3 (D ) 4 3.下列命题中正确的结论是 ( ) .(A ) 若∑+∞=1n n u 发散 ,则∑+∞=+-11)1(n n n u 必发散 ;B ) 若∑+∞=+-11)1(n n n u 发散 ,则 ∑+∞=1n n u 必发散 ;C ) 若∑+∞=14n nu发散 ,则∑+∞=1n n u 必发散(D ) 若 1lim 1>++∞→nn n u u, 则∑+∞=14n nu必发散.4.下列等式成立的是 ( ).(A ) 若⎰+∞)(dx x f 和 ⎰∞-0)(dx x f 均发散,则 ⎰+∞∞-dx x f )( 必发散 ;(B ) 若⎰+∞0)(dx x f 和 ⎰+∞0)(dx x g 均发散,则 ⎰+∞+0)]()([dx x g x f 必发散 ;(C ) 若⎰+∞)(dx x f 和 ⎰+∞)(dx x g 均发散,则 ⎰+∞⋅0)]()([dx x g x f 必发散 ;(D ) 若⎰+∞)(dx x f 收敛, ⎰+∞)(dx x g 发散,则 ⎰+∞⋅0)]()([dx x g x f 必发散 .5.设二次型 32312123222142244x x x x x x x x x f +-+++=λ 为正定二次型 ,则λ 的取值范围为( ).(A )1<λ (B )2->λ(C )22<<-λ (D )12<<-λ6.设随机变量 ξ~N (μ,52),η~N (μ,42),概率值 )5(1+<=μξP P , )4(2->=μξP P ,则下式( )是正确的 . (A )对任意μ 均有 21P P = (B )对任意 μ 均有 21P P <(C )对任意μ 均有 21P P > (D )只对 μ 的个别值有 21P P =7.一个复杂的系统由 100 个相互独立起作用的部件组成,在整个运行期间,每个部件损坏的概率为 0.1 ,为了使整个系统起作用,至少必须有 85个部件正常工作,则整个系统起作用的概率约为( ).( )(x Φ 为标准正态分布函数)(A ))1(Φ (B )1-)1(Φ (C ))34(Φ (D ))35(Φ 8.已知随机向量(ξ,η)的联合密度函数为⎪⎩⎪⎨⎧<<<<--=其它,,04220)6(81),(y x y x y x f则概率值 P (4≤+ηξ)=( ) (A )21 (B )32 (C )83 (D )43三.计算题:(9*7)1. 计算极限 )]1sin 1([lim 2xx x x ⋅-∞→ .2.)0(4>+=x xb ax y 与 x a b y ln 3-= 在 1=x 处垂直相交(即它们在交点处的切线相互垂直),求常数 a 与 b 值.3. 计算二重积分 )(31σd y x x I D⎰⎰+= ,其中 D 为直线 1=+y x ,0=x和 0=y 所围成的平面区域 . 4.设函数 a x x y --=sin 2 在 )2,0(π 内有且仅有1个零点,求正数 a 的取值范围 .5.设函数 )(x f 在 ),(+∞-∞ 上可导 ,且满足dt t f x f x dt t x f x)()1(1)(01⎰⎰-+=+++ , 求)(x f 的表达式 .6.已知矩阵 A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011101110,B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111011001 ,且矩阵 P 满足 E BPA APB BPB APA ++=+ ,其中 E 为单位阵 ,求 P7.已知矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡60002282x 相似于对角阵 Λ,试求常数 x ,并求可逆阵 P ,使 Λ=-AP P 1.8.设随机变量 ξ 的密度函数为 ⎩⎨⎧<<=其它10)(2x ax x f , 求(1)常数 a ; (2) ξ 的期望 ξE 和方差 ξD ; (3) 2ξ 的概率密度函数; (4) 概率值 )2(=ηP ,其中 η 表示对 ξ 的三次独立重复观察中事件 ⎭⎬⎫⎩⎨⎧≤21ξ 出现的次数. 9.已知随机向量 (ξ,η) 的联合分布律为η-1 1 2 ξ-1 0.25 0.1 0.32 0.15 0.15 0.05求(1ηξ+ 的分布律; (2)在 η=-1 条件下 ξ 的分布律(3)期望值 )(ηξ⋅E .四.应用题: (3*8)1.为销售某产品,拟作电视和电台广告宣传,当电视广告与电台广告宣传费分别为 和 y (万元)时,销售量为yyx x +++10725100(吨). 若该产品每吨销售价为2000元 . 问: 1) 如要使总广告费不超过 10 万元 ,应如何分配电视与电台广告费 使广告产生的利润最大 ?最大利润是多少 ?2)如总广告费恰好是 4.8 万元 ,又应如何分配电视与电台广告费 ,使广告产生的利润最大 ?最大利润是多少2.设 ⎪⎪⎪⎭⎫ ⎝⎛=2111ξ,⎪⎪⎪⎭⎫ ⎝⎛=112k ξ,⎪⎪⎪⎭⎫ ⎝⎛=113k ξ,⎪⎪⎪⎭⎫ ⎝⎛=c b a η ; 问:(1)在什么条件下,η 可由 1ξ,2ξ,3ξ 线性表示 ,且表法唯一 ? (2)在什么条件下,η 可由 1ξ,2ξ,3ξ 线性表示 ,表法不唯一 并写出不同的表示式 .(3)在什么条件下 ,η 不能由 1ξ,2ξ,3ξ 线性表示 ?3.设自动生产线加工的某种零件的内径 ξ ~ )1,(μN ;内径小于 10 或者大于12 的为不合格品 ,其余为合格品 ,销售每件合格品可获利 20 元 ,销售每件不合格品要亏损 ,其中内径小于 10 的亏 1 元 ,内径大于12 的亏 5 元 ,求平均内径 μ 取何值时 ,销售一个零件的平均利润最大 ?五.证明题: ( 8*7) 1. 证明: (1) 若级数)0()1(11>⋅-∑+∞=+n n n n a a 绝对收敛 ,则级数∑+∞=-112n n a是收敛级数 ;(2) 若级数)0()1(11>⋅-∑+∞=+n n n n a a 条件收敛 , 则级数∑+∞=-112n n a是发散级数 .2. 设向量 1ξ ,2ξ ,…… ,r ξ 是线性方程组 0=AX 的一个基础解系 ,向量 η 不是 0=AX 的解向量 证明向量组 η,1ξη+ ,2ξη+ ,…… ,r ξη+ 线性无关 .2006年浙江省普通高校“2 + 2”联考《 高等数学B 》试卷一、填空题:( 8*3,共24分) 1.函数 xx y 23)2(+=的渐近线有2.设 1)23()2)(2(lim )(22+++-+-=+∞→x x n x x n x f n ,则 )(x f 的第一类间断点是 .3 . 设 yxe x e y y x xy z ++⋅-++⋅=)21ln()1()tan()sin( , 则=∂∂)1,0(y z .4. 二阶常系数非齐次线性微分方程 xe xy y y =--2''' 特解猜想的试解形式是 5. 袋中有10个新球和2个旧球,每次取一个,取后不放回,则第二次取出的是旧球的概率 p = 。
212111-==⎩⎨⎧⇒b a 2005年高等数学(B )答案及评分标准: 一. 填空题 ( 每题 3 分 ) 1. 3 2. 12sin=π3. 04. x x x xe e C e C 22212++5.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----1040620004 6.⎪⎪⎪⎭⎫⎝⎛--+⎪⎪⎪⎭⎫ ⎝⎛---+⎪⎪⎪⎭⎫ ⎝⎛---=X 11011343221k k 7. 19/36 8. 20/21二.选择题 ( 每题 3 分 )1. C 2. C 3. D 4. A5 D6 A7 D8 B三.计算题 ( 每题 7 分 )1.3012sin lim )]1sin 1([lim ttt x x x t xt x -=⋅-→=∞→ 分3ΛΛΛΛ 203cos 1limt tt -=→ 分5ΛΛΛΛt tt 6sin lim 0→= 分6ΛΛΛΛ61= 分7ΛΛΛΛ2.b a a b ba -=⇒-=+⋅1ln 3141 ; 分2ΛΛΛΛ 11)'ln 3()'4(==-=+x x x ab x bax 分4ΛΛΛΛa b -=-4 分5ΛΛΛΛa b ba -=--=⎩⎨⎧4 分6ΛΛΛΛ或212122=-=⎩⎨⎧b a 分7ΛΛΛΛ3. 解法一 画出区域 D 的示意草图 分1ΛΛΛΛrdr d d y x xI D⋅+=+=⎰⎰⎰⎰+31sin cos 123)sin cos cos ( θθθθσθθπ分3ΛΛΛΛ )sin (cos 1)sin cos cos (2120231⎰+⋅+=πθθθθθθd 分4ΛΛΛΛ )sin cos cos ()sin cos cos (21231⎰+⋅+-=πθθθθθθd 分5ΛΛΛΛ210131sin cos cos ⎰⋅-=+=dtt t θθθ 分6ΛΛΛΛ 83=分7ΛΛΛΛ 解法二 画出区域 D 的示意草图 分1ΛΛΛΛdy y x x dx d y x x I xD3110103)( +=+=⎰⎰⎰⎰-σ 分4ΛΛΛΛ dx x x dx y x x x)(23)(23103110103231-=+⋅=⎰⎰- 分6ΛΛΛΛ83= 分7ΛΛΛΛ4.]2,0[,sin 2)(π∈--=x a x x x fa f a f --=<-=22)2(,0)0(ππ 分1ΛΛΛΛ40cos 21)('0π=⇒=-=x x x f 分2ΛΛΛΛ2440,,00)('πππ<<<<><⎩⎨⎧=x x x f 2440,,)(πππ<<<<⎩⎨⎧=⇒x x x f 递增递减 分3ΛΛΛΛ(1) 当 22-≥πa 时,022)2(≤--=a f ππ 分4ΛΛΛΛ 内无零点;)(在2,0sin 2)(πa x x x f --= 分5ΛΛΛΛ (2) 当 220-<<πa 时,022)2(>--=a f ππ 分6ΛΛΛΛ 内有且只有一个零点;)(在2,0sin 2)(πa x x x f --=所以本题答案是: 220-<<πa 。
2006—2007学年第二学期 高等数学(2-2)期末试卷(A)参考答案一、选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内). 1.设三向量→→→c b a ,,满足关系式→→→→⋅=⋅c a b a ,则( D ). (A )必有→→=0a 或者→→=c b ; (B )必有→→→→===0c b a ; (C )当→→≠0a 时,必有→→=c b ; (D )必有)(→→→-⊥c b a . 2. 已知2,2==→→b a ,且2=⋅→→b a ,则=⨯→→b a ( A ).(A )2 ; (B )22; (C )22; (D )1 . 3. 设曲面)0,0(:2222>≥=++a z a z y x S ,1S 是S 在第一卦限中的部分,则有( C ).(A )⎰⎰⎰⎰=14S SxdS xdS ; (B )⎰⎰⎰⎰=14S SxdS ydS ;(C )⎰⎰⎰⎰=14S SxdS zdS ; (D )⎰⎰⎰⎰=14S SxyzdS xyzdS .4. 曲面632222=++z y x 在点)1,1,1(--处的切平面方程是:(D ). (A )632=+-z y x ; (B )632=-+z y x ; (C )632=++z y x ; (D )632=--z y x .5. 判别级数∑∞=⋅1!3n nn n n 的敛散性,正确结果是:( B ).(A )条件收敛; (B )发散;(C )绝对收敛; (D )可能收敛,也可能发散.6. 平面0633=--y x 的位置是(B ).(A )平行于xoy 平面; (B )平行于z 轴,但不通过z 轴; (C )垂直于z 轴 ; (D )通过z 轴 .二、填空题(本题共4小题,每小题5分,满分20分). 1. 已知xy e z =,则2x xdy ydx e dz xy -⋅-=.2. 函数zx yz xy u ++=在点)3,2,1(P 处沿向量→OP 的方向导数是71411,函数u 在点P 处的方向导数取最大值的方向是}3,4,5{,该点处方向导数的最大值是25.3. 已知曲线1:22=+y x L ,则π2)(2=+⎰Lds y x .4. 设函数展开傅立叶级数为:)(,cos 02ππ≤≤-=∑∞=x nx ax n n,则12=a .三、解答下列各题(本题共7小题,每小题7分,满分49分). 1. 求幂级数∑∞=+01n nn x 收敛域及其和函数. 解 nn n a a 1lim+∞→ ,121lim =++=∞→n n n ∴收敛半径为1, 当1=x 时,级数∑∞=+011n n 发散,当1-=x 时,级数∑∞=+-01)1(n nn 收敛, 故所求的收敛域为)1,1[-;令;)1,1[,1)(0-∈+=∑∞=x n x x S n n于是.1,1)(01<+=∑∞=+x n x x S x n n 逐项求导,得.1,11)1(])([001<-=='+='∑∑∞=∞=+x x x n x x S x n n n n.1),1ln(1])([)(00<--=-='=∴⎰⎰x x t dtdt t tS x xS x x1,)1ln(1)(<--=∴x x xx S 且.0≠x而,2ln )1ln(1lim )(lim )1(11=--==-++-→-→x x x S S x x 1)0(=S ,故⎪⎩⎪⎨⎧=<<<≤---=.01,1001,)1ln()(x x x xx x S 2. 计算二重积分⎰⎰≤++42222y x y xdxdy e.解 令⎩⎨⎧==θθsin cos r y r x ,则⎰⎰≤++42222y x y x dxdy e⎰⎰=20202rdr e d r πθ ⎰=22)(2r d e r π202r eπ=).1(4-=e π3. 已知函数),(y x f z =的全微分ydy xdx dz 22-=,并且2)1,1(=f . 求),(y x f z =在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.解 由,22ydy xdx dz -=得),1(2x xf=∂∂ ),2(2y y f -=∂∂)1(两边关于x 积分,得)(2),(y C xdx y x f +=⎰)(2y C x +=,此式两边关于y 求偏导,再由)2(知,2)(y y C -=',)(2C y y C +-=⇒.),(22C y x y x f +-=∴ 由2)1,1(=f 知,2=C ,故.2),(22+-=y x y x f令,0202⎪⎪⎩⎪⎪⎨⎧=-=∂∂==∂∂y yf x x f得驻点)0,0(在D 内部,且2)0,0(=f ,在D 的边界1422=+y x 上:.11,252)44(222≤≤--=+--=x x x x z 其最大值是,3)0,1(1=±=±=f z x 最小值是2)2,0(0-=±==f z x ;故),(y x f z =在椭圆域}14),{(22≤+=y x y x D 上的最大值是3}2,3,2max{=-, 最小值是.2}2,3,2min{-=-.4. 设Ω是由4,22=+=z y x z ,所围成的有界闭区域,计算三重积分⎰⎰⎰Ω++dxdydz z y x)(22.解 令,sin cos ⎪⎩⎪⎨⎧===z z r y r x θθ则.4,20,20:2≤≤≤≤≤≤Ωz r r πθ⎰⎰⎰⎰⎰⎰+=++∴Ω422020222)()(rdz z r rdr d dxdydz z y x πθ⎰⎰+=42202)(2rdz z r rdr π⎰==+=204222]2[2dr z z r r z r z π⎰-+=2053)2384(2dr r r r π.32]44[220624ππ=-+=r r r 5. 设AB L 为从点)0,1(-A 沿曲线21x y -=到点)0,1(B 一段曲线,计算⎰++ABL y x ydy xdx 22. 解 ⎩⎨⎧-=-=≤≤-==,2,1.11,,:2xdx dy x y x dx dx x x L AB.0)1()2)(1(11222222=-+--+=++∴⎰⎰-dx x x x x x y x ydy xdx ABL6. 设∑是上半球面221y x z --=的下侧,计算曲面积分⎰⎰∑++-+dxdy z y xy dzdx z y x dydz xz)2()(2322.解 ,2,,2322z y xy R z y x Q xz P +=-== ,222z y x zRy Q x P ++=∂∂+∂∂+∂∂ 作.1,0:22≤+=∑y x z 上补与下∑所围成的立体为Ω,由高斯公式,⎰⎰∑++-+dxdy z y xy dzdx z y x dydz xz )2()(2322 ⎰⎰∑+∑++-+=上补下dxdy z y xy dzdx z y x dydz xz )2()(2322⎰⎰∑++-+-上补dxdy z y xy dzdx z y x dydz xz )2()(2322⎰⎰⎰⎰⎰≤+Ω⋅+---∂∂+∂∂+∂∂-=1222)02(00y x dxdy y xy dxdydz z R y Q x P )(000222---++-=⎰⎰⎰Ωdxdydz z y x )((作球面坐标变换)⎰⎰⎰⋅-=1222020sin ρϕρρϕθππd d d .52sin 21420πρρϕϕππ-=-=⎰⎰d d 7. 将函数61)(2--=x x x f 展开成关于1-x 的幂级数 .解.1,110<=-∑∞=x x x n n.1,)1(110<-=+∑∞=x x x n n n )2131(51)3)(2(161)(2+--=-+=--=∴x x x x x x x f ]3)1(12)1(1[51+----=x x]311131211121[51-+⋅---⋅-=x x ]311131211121[51-+⋅+--⋅-=x x∑∞=+--=012)1(51n n n x ∑∞=+---013)1()1(51n n nn x ( 121<-x 且131<-x ) 21,)1](3)1(21[51011<---+-=∑∞=++x x n n n nn 即).3,1(-∈x四、证明题(7分). 证明不等式:2)sin (cos 122≤+≤⎰⎰Dd x yσ,其中D 是正方形区域:.10,10≤≤≤≤y x证D 关于y x =对称,⎰⎰∴Dd yσ2(cos ⎰⎰=D d x σ2cos ,⎰⎰+∴Dd x y σ)sin (cos 22.)sin (cos 22⎰⎰+=Dd x x σ又 ),4sin(2)cos 21sin 21(2cos sin 22222π+=+=+x x x x x而,102≤≤x ,2)4sin(22212≤+≤=∴πx 即 ,2cos sin 122≤+≤x x,22)cos (sin 1122=≤+≤⋅=∴⎰⎰⎰⎰⎰⎰DDDd d x x d σσσ即 .2)sin (cos 122≤+≤⎰⎰Dd x y σ2007—2008学年第二学期 高等数学(2-2)期末试卷(A)参考答案一、填空题:1~6小题,每小题4分,共24分. 请将答案写在指定位置上. 1. 平面1:0y z -=∏与平面2:0x y +=∏的夹角为3π.2. 函数22y x z +=在点)2,1(处沿从点)2,1(到点)32,2(+的方向的方向导数为321+.3. 设(,)f x y 是有界闭区域222:a y x D ≤+上的连续函数,则当0→a 时,=⎰⎰→Da dxdy y x f a ),(1lim20π)0,0(f .4. 区域Ω由圆锥面222x y z +=及平面1=z 围成,则将三重积分f dv ⎰⎰⎰Ω在柱面坐标系下化为三次积分为211()πθ⎰⎰⎰rd dr f r rdz .5. 设Γ为由曲线32,,t z t y t x ===上相应于t 从0到1的有向曲线弧,R Q P ,,是定义在Γ上的连续三元函数,则对坐标的曲线积分化为对弧长的曲线积分有:Pdx Qdy Rdz Γ++=⎰6. 将函数()1(0)f x x x π=+≤≤展开成余弦级数为)0()5cos 513cos 31(cos 412122πππ≤≤+++-+=+x x x x x .二、单项选择题:7~12小题,每小题3分,共18分。
《高等数学》试卷(C )(2)参考答案及评分标准一、单项选择题(每题3分,共15分)1、B2、C3、C4、D5、 B 二、填空题(每空3分,共15分)1、922、1-3、44200(,)ydy f x y dx -⎰⎰ 4、12a a - 5、24cos xy x三、计算题(共63分) 1.解:21ln ex xdx ⎰311ln 3e xdx =⎰33111(ln )13e e x x x dx x =-⎰ (+4分) 32331111()((1))333e e x dx e e =-=--⎰32199e =+ (+3分)2.解:设2ln(1)z v u =+ ,,u xy v x y ==+,求2zx y∂∂∂z z u z v x u x v x∂∂∂∂∂=+∂∂∂∂∂222222()ln(1)1xy x y x y x y =++++ (+4分) 2z x y ∂=∂∂222222(()ln(1))1xy x y x y y x y∂+++∂+ 222222222222224(1)222()1(1)1xy xy x y xy x y x y x y x y x y x y +-=++++++ 22222(3)2()(1)x y xy x y x y +=++ (+3分)3.解:因 112()dxdx xx y ex e dx c ---⎰⎰=+⎰ ln 2ln ()x x e x e dx c -=+⎰21()2x x c =+ (+4分)11|1,2x y C ===由得 , 故方程的特解为21(1)2y x x =+ (+3分)4. 解:21122221x Dx y dxdy x dx y dy -=⎰⎰⎰⎰12811()3x x dx -=-⎰ (+4分)39111114()33927x x -=-=(+3分)5. 解:方程的特征方程为:2420r r -+=,其特征根为1,22r = (+4分)故方程的通解为:(2(212xxy c e c e =+ (+3分)6.解:曲线()x f y =绕y 轴旋转所得体积为 2dcV x dy π=⎰,且曲线214x y y =-与y 轴上的交点为120,4y y == (+4分) 所以44222345400111132()()43816515V x dy y y dy y y y ππππ==-=-+=⨯⎰⎰ (+3分) 7.解:20x x →=34241sin 2limx x x x x +→ (+3分) 242021sin lim xx x x +=→21121sin lim 4220=+=→x x x x (+4分) 8.解:设长方体的长、宽、高分别为,x y ,z ,则长方体的体积为 V xyz =,而有条件 2()4xy yz zx ++=,即设(,,,)(2()4)F x y z xyz xy yz zx λλ=-++-, (+3分)则2()02()02()02()40x y z F yz y z F yz x z F xy x y F xy yz zx λλλλ=-+=⎧⎪=-+=⎪⎨=-+=⎪⎪=++-=⎩,求解以上方程组得x y z ===V = (+4分)9、设 =)(x s 21121n n x n -∞=-∑,则 ∑∑∞=∞=-=='02122)()(n nn n x x x s 2211lim x x n n --=∞→ (+3分)当1x <时级数 ++++753753x x x x 收敛, 故=')(x s 211x- 所以两边积分得 ()s x =xx-+11ln 21 (+4分) 四、证明题(共7分) 证明:21()nn n ab ∞=+∑221112n n n n n n n a b a b ∞∞∞====++∑∑∑2222111()n n n n n n n a b a b ∞∞∞===≤+++∑∑∑22112()n n n n a b ∞∞===+∑∑, .(+3分)因级数正项级数1nn a∞=∑与1nn b∞=∑都收敛,故存在N ,当n N >时有1,1n n a b <<,即当n N>时有22,n n n n a a b b <<,21()nn n ab ∞=+∑22221111112()2()2()NNn n n n n nn n n n n N n N a b a b a b ∞∞∞∞=====+=+≤+≤+++∑∑∑∑∑∑112()n n n n M a b ∞∞==≤++∑∑,其中112()NNn n n n M a b ===+∑∑可得级数21()nn n ab ∞=+∑也收敛 .(+4分)证法2:因级数正项级数1nn a∞=∑与1nn b∞=∑都收敛,故有lim 0,lim 0n n n n a b →∞→∞==,且1()nn n ab ∞=+∑也收敛。
高二数学试题参考答案及评分标准(理科)一、选择题:(每小题5分,满分50分)CDBAD CBDCA二、填空题:(每小题5分,满分25分)11.真 12.90 13.③④三、解答题(本大题共6小题,满分75分)16.解:∵直线3470x y +-=的斜率为34-,∴直线l 的斜率为34-. ………(3分) 设直线l 的方程为34y x b =-+,令0y =,得43x b =;令0x =,得y b =. ………(7分) 由于直线l 与两坐标轴围成的三角形的面积是24, ∴142423S b b =⋅||⋅||=,解得6b =±, ………(10分) ∴直线l 的方程是364y x =-±(或34240x y +±=). ………(12分) 17.证明:⑴(必要性)∵⊿ABC 三个内角成等差数列,不妨设这三个内角依次为B B B αα-+,,, 由()()180B B B αα-+++= ,得60B = ,∴⊿ABC 有一个内角等于60 . …………(5分) ⑵(充分性)若ABC ∆有一个内角为60 ,不妨设60B = ,则180601202A C B +=-== , ∴A B B C -=-,∴三个内角A B C ,,成等差数列. …………(10分) 综合⑴⑵得,⊿ABC 三个内角成等差数列的充要条件是有一个内角等于60 . …………(12分) (说明:混淆了必要性与充分性,或未注明必要性与充分性,扣4分)18.证明:⑴∵BC ABE ⊥平面,AE ABE ⊂平面,∴AE BC ⊥.又∵BF ACE ⊥平面,AE ACE ⊂平面,∴AE BF ⊥. …………(3分) ∵BF BC B = , ∴AE BCE ⊥平面.又∵BE BCE ⊂平面,∴AE BE ⊥. …………(6分) ⑵取DE 的中点P ,连接PA PN ,.∵点N 为线段CE 的中点,∴PN ∥DC ,且12PN DC =. …………(8分) 又∵四边形ABCD 是矩形,点M 为线段AB 的中点,∴AM ∥DC ,且12AM DC =, ∴PN ∥AM ,且PN AM =,∴四边形AM NP 是平行四边形,∴MN ∥AP . …………(10分) ∵AP ⊂平面DAE ,M N ⊄平面DAE ,∴MN ∥平面DAE . …………(12分)19.解:∵OM ON CM CN ==,,∴OC 垂直平分线段MN . ……………(4分)∵2MN k =-,∴12OC k =,∴直线OC 的方程是12y x =, ∴212t t =,解得2t =或2t =-. ……………(8分)⑴当2t =时,圆心C 的坐标为(2,1),半径OC =||此时圆心C 到直线24y x =-+的距离d ==<C 相交,符合题意.⑵当2t =-时,圆心C 的坐标为(-2,-1),半径OC =||此时圆心C 到直线24y x =-+的距离d ==>,直线与圆C 相离,不符合题意.………………(11分)综合⑴⑵得,圆C 的方程为22(2)(1)5x y -+-=. ………………(12分)20.解:⑴如图,取AB 的中点E ,则//DE BC .∵BC AC ⊥,∴DE AC ⊥.∵1A D ⊥平面ABC ,∴分别以1DE DC DA ,,所在直线为x y z ,,轴建立空间直角坐标系,得()01 0A -,,,()0 1 0C ,,,()2 1 0B ,,,()10 0 A t ,,,()10 2 C t ,,.由21130AC BA t ⋅=-+= ,得t =…………(3分)设平面1A AB 的法向量为()1111n x y z = ,,.∵(10 1AA = ,,()2 2 0AB = ,,,∴11111110220n AA y n AB x y ⎧⋅==⎪⎨⋅=+=⎪⎩ . 设11z =,可得)1n = ……………(5分)∴点1C 到平面1A AB的距离111AC n d n ⋅= ||||. ……………(7分) (2)再设平面1A BC 的法向量为()2222n x y z = ,,.∵(10 1CA =- ,,()2 0 0CB = ,,,∴212222020n CA y n CB x ⎧⋅=-=⎪⎨⋅==⎪⎩ . 设21z =,可得()20n = , ……………(9分)∴121212cos ||||n n n n n n ⋅<>==⋅ ,……………(11分) 根据法向量的方向可知,二面角1A A B C --…………(13分) 21.解:⑴根据题意得22121914ab =⎨⎪+=⎪⎩,解得2243.a b ⎧=⎨=⎩,. …………(2分) ∴椭圆C 的方程为 22143x y +=. …………(5分) ⑵由22143x y y kx m ⎧+=⎪⎨⎪=+⎩消去y 并整理,得 222(34)84120k x kmx m +++-=. ∵直线l 与椭圆C 交于两点,∴0∆>,得22430k m -+> (*) 设点A 、B 的坐标分别为1122()()A x y B x y ,,,, 则21212228412 3434km m x x x x k k -+=-⋅=++,. ………………(8分) ∵11A A A B ⊥,∴110A A A B ⋅= .又∵点1A 的坐标为1(2 0)A ,,∴1212(2)(2)0x x y y --+=, 即1212(2)(2)()()0x x kx m kx m --+++=,221212(1)(2)()40k x x km x x m ++-+++=, ∴222224128(1)(2)()403434m km k km m k k-+⋅+--++=++,化简并整理得2271640m km k ++=, 解得2m k =-,或27m k =-,均满足条件(*). ………………(12分) 当2m k =-时,:(2)l y k x =-,所过的定点为(2,0),与1A 重合,不合题意. 当27m k =-时,2:()7l y k x =-,所过的定点为(27,0),符合题意. 综上所述,直线l 经过定点(27,0). ………………(14分)命题人:和县一中 贾相伟含山二中 王 冲审题人:庐江中学 汪京怀。
高二数学试题参考答案及评分标准(理科)一、选择题:(每小题5分,满分50分)CDBAD CBDCA二、填空题:(每小题5分,满分25分)11.真 12.90 13.③④三、解答题(本大题共6小题,满分75分)16.解:∵直线3470x y +-=的斜率为34-,∴直线l 的斜率为34-. ………(3分)设直线l 的方程为34y x b =-+,令0y =,得43x b =;令0x =,得y b =. ………(7分)由于直线l 与两坐标轴围成的三角形的面积是24,∴142423S b b =⋅||⋅||=,解得6b =±, ………(10分)∴直线l 的方程是364y x =-±(或34240x y +±=). ………(12分)17.证明:⑴(必要性)∵⊿ABC 三个内角成等差数列,不妨设这三个内角依次为B B B αα-+,,,由()()180B B B αα-+++= ,得60B = ,∴⊿ABC 有一个内角等于60 . …………(5分)⑵(充分性)若ABC ∆有一个内角为60 ,不妨设60B = ,则180601202A C B +=-== , ∴A B B C -=-,∴三个内角A B C ,,成等差数列. …………(10分) 综合⑴⑵得,⊿ABC 三个内角成等差数列的充要条件是有一个内角等于60 . …………(12分) (说明:混淆了必要性与充分性,或未注明必要性与充分性,扣4分) 18.证明:⑴∵BC ABE ⊥平面,AE ABE ⊂平面,∴AE BC ⊥.又∵BF ACE ⊥平面,AE ACE ⊂平面,∴AE BF ⊥. …………(3分) ∵BF BC B = , ∴AE BCE ⊥平面.又∵BE BCE ⊂平面,∴AE BE ⊥. …………(6分) ⑵取DE 的中点P ,连接PA PN ,.∵点N 为线段CE 的中点,∴PN ∥DC ,且12P N D C =. …………(8分)又∵四边形A B C D 是矩形,点M 为线段AB 的中点,∴AM ∥DC ,且12AM DC =,∴PN ∥AM ,且P N A M =, ∴四边形A M N P 是平行四边形,∴MN ∥AP . …………(10分) ∵AP ⊂平面D A E ,M N ⊄平面D A E ,∴MN ∥平面D A E . …………(12分) 19.解:∵O M O N C M C N ==,,∴OC 垂直平分线段MN . ……………(4分)∵2MN k =-,∴12OC k =,∴直线OC 的方程是12y x =,∴212t t =,解得2t =或2t =-. ……………(8分)⑴当2t =时,圆心C 的坐标为(2,1),半径OC =||此时圆心C 到直线24y x =-+的距离d ==<C 相交,符合题意.⑵当2t =-时,圆心C 的坐标为(-2,-1),半径OC =||此时圆心C 到直线24y x =-+的距离d ==>直线与圆C 相离,不符合题意.………………(11分)综合⑴⑵得,圆C 的方程为22(2)(1)5x y -+-=. ………………(12分) 20.解:⑴如图,取AB 的中点E ,则//DE BC . ∵BC AC ⊥,∴DE AC ⊥.∵1A D ⊥平面ABC ,∴分别以1DE DC DA ,,所在直线为x y z ,,轴建立空间直角坐标系,得()01 0A -,,,()0 1 0C ,,,()2 1 0B ,,,()10 0 A t ,,,()10 2 C t ,,.由21130AC BA t ⋅=-+=,得t =…………(3分)设平面1A AB 的法向量为()1111n x y z =,,.∵(10 1AA = ,,()2 2 0AB = ,,,∴11111110220n AA y n AB x y ⎧⋅==⎪⎨⋅=+=⎪⎩. 设11z =,可得)1n =……………(5分)∴点1C 到平面1A AB的距离111AC n d n ⋅==||||. ……………(7分)(2)再设平面1ABC 的法向量为()2222n x y z =,,.∵(10 1CA =- ,,()2 0 0CB = ,,,∴212222020n CA y n CB x ⎧⋅=-=⎪⎨⋅==⎪⎩. 设21z =,可得()20n =, ……………(9分)∴121212cos ||||n n n n n n ⋅<>==⋅ ,……………(11分)根据法向量的方向可知,二面角1A ABC --. …………(13分) 21.解:⑴根据题意得22121914ab =⎨⎪+=⎪⎩,解得2243.a b ⎧=⎨=⎩,. …………(2分)∴椭圆C 的方程为 22143x y +=. …………(5分)⑵由22143x y y kx m ⎧+=⎪⎨⎪=+⎩消去y 并整理,得 222(34)84120k x kmx m +++-=.∵直线l 与椭圆C 交于两点,∴0∆>,得22430k m -+> (*)设点A 、B 的坐标分别为1122()()A x y B x y ,,,, 则212122284123434km m x x x x k k -+=-⋅=++,. ………………(8分) ∵11A A AB ⊥,∴110A A A B ⋅=. 又∵点1A 的坐标为1(2 0)A ,,∴1212(2)(2)0x x y y --+=, 即1212(2)(2)()()0x x kx m kx m --+++=,221212(1)(2)()40k x x km x x m ++-+++=, ∴222224128(1)(2)()403434m km k km m k k-+⋅+--++=++,化简并整理得2271640m km k ++=, 解得2m k =-,或27m k =-,均满足条件(*). ………………(12分)当2m k =-时,:(2)l y k x =-,所过的定点为(2,0),与1A 重合,不合题意.当27m k=-时,2:()7l y k x=-,所过的定点为(27,0),符合题意.综上所述,直线l经过定点(27,0). ………………(14分)命题人:和县一中贾相伟含山二中王冲审题人:庐江中学汪京怀。
----------------------2007年浙江省普通高校“2+2”联考《高等数学A 》试卷-------------------2007年浙江省普通高校“2+2”联考《高等数学A 》试卷考试说明:1、考试为闭卷,考试时间为150分钟;2、满分为150分;3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;4、密封线左边各项要求填写清楚完整。
一、填空题:(只需在横线上直接写出答案,不必 写出计算过程,本题共有6个小题,每一小题4分,共24分) 1.231sin 53limxx x x -∞→= .2.垂直于直线162=-y x 且与曲线5323-+=x x y 相切的直线方程为 .3.设 ),,(w v u f 为三元可微函数 ,),,(1yy x x yx f z =,则yz∂∂= . 4.幂级数 ∑∞=-1)3(n nn x 的收敛域为 .5.n阶方阵A 满足 0323=+-E A A ,(E 为n 阶单位阵 ) ,则1-A = .6.口袋中有8个标有数字:1,1,2,2,2,3,3,3 的乒乓球,从中随机地取3个, 则这3个球上的数字之和为6的概率是 .姓名:_____________准考证号:______________________报考学校 报考专业: ------------------------------------------------------------------------------------------密封线---------------------------------------------------------------------------------------------------二.选择题. (本题共有6个小题,每一小题4分,共24分,每个小题给出的选项中,只有一项符合要求)1.曲线xx x f 1e ||)(-=的渐近线条数为 ( ). (A )0(B )1(C )2(D )32.设)(x y y =是由方程0d e 12=-⎰+-xy t t x 所确定的隐函数,则0d d =x xy=( ).(A )1e1-(B )1e1+ (C )1e - (D )1e +3.设L 是以三点)0,0(,)0,3(及)2,3(为顶点的三角形正向边界,则曲线积分⎰-+++-Ly x y x y x d )635(d )42( = ( ).(A )6(B )12(C )18(D )244.A 是46⨯矩阵,A 的秩为 2,非齐次方程组 b x =A 有三个线性无关的解 1ξ,2ξ,3ξ ,则方程组0x =A 的通解是( ). (A )332211ξ+ξ+ξk k k(B )3212211)(ξ+-ξ+ξk k k k (C )3222111)(ξ+ξ++ξk k k k(D )3212211)(ξ-+ξ+ξk k k k5.随机变量ξ的概率密度为⎪⎪⎩⎪⎪⎨⎧=∈∈其它,0 , ,)(]8,5[92]2,1[31x x x f ,若32}{=≤ξa P ,则 a =( ).(A ) 2.4(B ) 4.5(C ) 5.6(D ) 6.76.随机变量 ξ 服从参数为),2(p 的二项分布,随机变量 η 服从参数为),3(p 的二项分布, 且2719}1{=≥ηP , 则}1{≥ξP =( ). (A ) 94(B )95(C )31(D )32三.计算题:(计算题必须写出必要的计算过程,只写答案的不给分,本题共8个小题,每小题8分,共64分)1.试确定常数A 、B 、C 的值,使得))1((ln 222-=-++x o x C Bx Ax ,其中))1((2-x o 是当 1→x 时比 2)1(-x 高阶的无穷小 .2.计算 ⎰--++21212d 11ln )sin (x xxx x .3.求由曲面 22y x z += 和 222y x z +-= 所围成的立体的表面积 .4.设)(x f y =为连续函数, 且满足⎰⋅+=xxx x y y 02d e e ,求)(x f y =的表达式.5.计算四阶行列式 xx x xD ++++=11111111111111114 .6.矩阵 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100010011A 满足方程 X A X A 2*1-=-,其中 *A 为 A的伴随矩阵 ,求矩阵X .7.二维离散型随机变量 ),(ηξ 的概率分布为:1.0}0{==η=ξP ,b P ==η=ξ}1,0{,a P ==η=ξ}0,1{,4.0}1{==η=ξP .已知随机事件}1{=η+ξ 与事件}1{=η 相互独立 ,求:(1)b a ,的值 ;(2))(ξE .8.已知二维随机变量),(ηξ的概率密度是⎪⎩⎪⎨⎧<<<<+=其它,010,20 ,)2(),(41y x y x y x f , (1) 判断ξ和η的独立性,并说明理由; (2) 求概率}1|21{=ξ>ηP .四.应用题:(本题共3个小题,每小题9分, 共27分)1.设 ABC ∆ 的三边长分别是 a 、b 、c ,面积为 S .现从 ABC ∆ 的内部一点 P 向三边作三条垂线,求此三条垂线长的乘积的最大值.2.三阶实对称阵A 有三个特征值:1,1-,2-;其中特征值 1 ,2- 对应的特征向量分别为 T)1,0,1(,T)1,0,1(-,求4A .3.某甲驾车从A 地通过高速公路到 B 地 ,在 A 地的高速入口处的等待时间ξ (单位:分) 为一随机变量,其概率密度是:⎪⎩⎪⎨⎧≤>=-0,00,e )(10101x x x f x.若甲在 A 地高速入口处的等待时间超过10分钟时,则返回不再去B 地.现甲到达高速入口处已有4次, 以 η 表示到达 B 地的次数 . 求 η 的分布律 .五.证明题: (本题共2个小题,第一小题6分,第二小题5分,共11分)1.设 )(x f 在 ]2,1[ 上连续 ,在 )2,1( 内可导 ,且 0)2()1(==f f . 试证:至少存一点 )2,1(∈ξ,使得)(2007)(ξ'=ξξf f .2.试证: 若 n 维向量组 k α-α1,k α-α2, ,k k α-α-1,k α 线性无关 ,则向量组 1α,2α, ,k α 也线性无关 .2007年浙江省普通高校“2+2”联考《高等数学B 》试卷考试说明:1、考试时间为150分钟;2、满分为150分;3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;4、密封线左边各项要求填写清楚完整。
报考专业:-------------------------------------------------------------一、填空题:(只需在横线上直接写出答案,不必写出计算过程,本题共有6个小题,每一小题4分,共24分)1. =⋅+∞→x x x x 2)sin(lim 22 . 2 .=+-⎰-2221)1(dx e e x x x . 3 . 级数 +⋅-+-⋅+⋅-+n n n )21()1()21(31)21(2121132的和是 .4. 微分方程 1)1(2)(2)('=-=-⋅⎩⎨⎧y x x y x y x 的解是.5. 已知三阶矩阵 A 的特征值为 1 , 2 , 3 ; E 为三阶单位矩阵 , 则 E A A ++22 = .6. 有两个箱子, 第一个箱子里有3个新球, 2个旧球, 第二个箱子里有4个新球, 5个旧球 . 现从第一个箱子里随机地取出一个球放到第二个箱子里, 再从第二个箱子里取出一个球, 若已知从第二个箱子里取出的球是新球, 则从第一个箱子里取出的是新球的概率为 .二.选择题. (本题共有6个小题,每一小题4分,共24分,每个小题给出的选项中,只有一项符合要求)1.函数 xex x f 1)(-⋅= 有 ( ) 条渐近线 .(A ) 0 (B ) 1 (C ) 2 (D ) 32. 下列级数中 ,( )是条件收敛级数 .(A ) ∑+∞=⋅-1)1(n n n n (B ) ∑+∞=+-112)1(n n n (C ) ∑+∞=-1)1(n n n (D ) ∑+∞=⋅-12sin )1(n n n n . 3.设函数 )(x f y = 在 [ 0 ,1 ] 上可导. 从定性上看,下列三个图像按 ( ) 的排序,依次分别是 )(x f y = 、)('x f y = 和 dt t f y x)(0⎰= 的函数图像 .(A ) 321L L L 和、 (B ) 132L L L 和、 (C ) 213L L L 和、 (D ) 123L L L 和、4. 设 n 维行向量 )21,0,,0,21(⋅⋅⋅⋅⋅⋅=α, 矩阵 A = E + 2ααT , B = E ααT- , 其中 E 为 n 阶单位阵 , 则 A B = ( ) .(A ). O (B ) E (C ) E - (D ) ααTE +5. 设 A 、B 是两个随机事件, 且 0 < P ( A ) < 1 , P ( B ) > 0 , P (A B ) = P (A B ) , 则必有 ( ) .(A ) P ( A B ) = P (B A ) (B ) P ( A B ) = P ( A ) P ( B ) (C ) P ( A ) = P ( B ) (D ) P ( A B ) = )()(A P B P 6. 设随机变量 X 的概率密度为⎪⎩⎪⎨⎧≤≤=其它,00,2cos 21)(πx x x f 对 X 独立地重复观察4次, 用 Y 表示观察值大于 3π 的次数, 则P ( Y = 2 ) = ( ) . (A )21 (B ) 81 (C )85 (D ) 83三.计算题:(计算题必须写出必要的计算过程,只写答案的不给分,本题共8个小题,每小题8分,共64分)1. 设 1→x 时,))1((ln 222-=-++x x C Bx Ax o ,其中 ))1((2-x o 是当 1→x 时比 2)1(-x 高阶的无穷小, 求常数 C B A 、、 之值.2.已知 00,,1arctan )(=≠⎩⎨⎧=x x xx x f , 求 (1) )('x f ; (2) )('x f 在点 0=x 处是否连续 ?为什么 ?3. 设 ),(y x z z = 是由方程 12322=+++z y x z 所确定的二元函数 ; (1) 该二元函数有无极值 ?如有,求出极值点 ;如无,说明理由 .(2) 在约束条件 12=+y x 下,该函数是否还有极值?如有,求出极值点 ;如无,说明理由 .4.设函数 )(x f y = 为连续函数. 对于任意实数a ,如果总成立1)()(+=⎰⎰a f d x f Dσ ,其中 D 为直角坐标系 xoy 中直线a y x y ==, 和0=x 所围的封闭区域 , 求 )(x f 的函数解析表达式 .5. 设 A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---111111111 , 矩阵 B 满足 B A* = A 1- + 2 B , 其中 A* 是 A 的伴随矩阵 , 求B .6. 设矩阵A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----3241223k k , 求常数 k 及可逆阵 P ,使 P 1-AP 为对角阵 .7. 设连续型随机变量 X 的分布函数为⎪⎩⎪⎨⎧≥<<-+-≤=ax a x a a x B A a x x F 1,arcsin 0)( 其中 a > 0 . 求 (1) A 和 B ; (2) 概率密度 )(x f ; (3) )0(>X P .8. 设随机向量的联合概率分布为____________________报考学校 报考专业:-------------------------------密封线---------------------------------------------------------------------------------------------------若 X 与 Y 独立, 求 :(1) α、β ; (2)X 与 Y 的边缘分布 ; (3)X + Y 的分布 .四.应用题: (本题共3个小题,每小题9分,共27分)1.试利用微分学方法 ,根据常数 k 的各种不同取值 , 讨论曲线 k e e y x x +-=2 与曲线 k x e e y x x 2422++-= 的交点个数情况 .2. 问 a 分别为何值时,方程组⎪⎩⎪⎨⎧-=--=+-=--1221455321321321x ax x ax x x x x x有唯一解, 无解, 无穷多解 ? 在有无穷多解的情况下, 用基础解系表示其通解 .3. 某商店每周以每千克200元的价格从生产厂家购进 y 千克某产品,并以每千克 260 元的价格在市场上销售. 规定一周内商店售不完的产品将作为再生原料由厂家回收进行处理,回收价格为每千克180元. 假定该产品每周的市场需求量 X 是服从区间 [ 10 ,30 ] 上均匀分布的随机变量,试确定商店的周进货量 y ,使商店获利的期望值最大 .五.证明题: (本题共2个小题,第一小题6分,第二小题5分,共11分)1. 设函数 )(x f 是 ]1,0[ 上的连续函数 ,0)(10=⎰dt t f . 试证:必至少存在一点)1,0(∈ξ,使得 ⎰=1)()(ξξdt t f f .2. 设 A 是 n ( n ≥ 2 ) 阶方阵且 A 的元素全都是 1 , E 是 n 阶单位阵,证明: A n E A E 11)(1--=-- .2008年浙江省普通高校“2 + 2”联考《 高等数学 》试卷------------------------考试说明:1、考试时间为150分钟; 2、满分为150分;3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;4、密封线左边各项要求填写清楚完整。