直缝焊管机械扩径工艺技术研究
- 格式:pdf
- 大小:220.16 KB
- 文档页数:4
焊管WELDED PIPE AND TUBE第44卷第1期2021年1月Vol.44 No.1Jan. 2021X80钢级囟1 422 mmx38・5 mm 大壁厚 直缝埋弧焊管的开发及性能研究*刘 斌V ,韦 奉V,赵 勇",牛 辉V ,王 琴3(1.宝鸡石油钢管有限责任公司 钢管研究院,陕西宝鸡721008;*基金项目:国家重点研发计划项目野特宽幅X80低温管线钢钢板制造技术”(项目编号2017YFB0304902)。
2.国家石油天然气管材工程技术研究中心,陕西宝鸡721008;3.中国石油西部管道公司,乌鲁木齐830000)摘 要:针对大壁厚直缝焊管的技术要求,通过对焊接、扩径等制造工艺的研究,开发出了 X80钢 级椎1 422 mmx38.5 mm 直缝埋弧焊管,并掌握了 “钢板-钢管”的性能变化规律。
对焊管进行性能 检验,结果表明,焊管管体屈服强度平均值为619~643 MPa ,抗拉强度平均值为692~701 MPa ,屈 强比平均值为0.89~0.92,-22益时DWTT 剪切面积平均值为90%~94%; -10益时管体冲击功平均值为401 J ,焊缝冲击功平均值为165 J ,热影响区冲击功平均值为294J 。
其各项性能均满足Q/SY XG0120.4—2019《西气东输四线天然气管道工程用X80级直缝埋弧焊管技术条件》和《D1 422 mmx 38.5 mm 管材单炉试制程序及要求》的要求。
这将为该焊管产品后续工业化生产提供技术支撑。
关键词:X80;大壁厚;大直径;直缝埋弧焊管中图分类号:TG445文献标识码:A DOI : 10.19291/ki.1001-3938.2021.01.001Development and Performance Study ofX80 椎1 422 mmx38.5 mm Thick Wall SAWL PipeLIU Bin 1 2, WEI Feng 1 2, ZHAO Yong 1 2, NIU Hui 1 2, WANG Qin 3(1. Steel Pipe Research Institute, Baoji Petroleum Steel Pipe Co., Ltd., Baoji 721008, Shaanxi , China; 2. Chinese NationalEngineering Research Center for Petroleum and Natural Gas Tubular Goods, Baoji 721008, Shaanxi, China;3. Petrochina West Pipeline Company, Urumchi 830000, China )Abstract: According to the technical requirements of thick wall submerged arc welded longitudinal (SAWL) pipe , the X80 椎1 422 mm x38.5 mm SAWL pipe was developed through the research on the welding, expansion and other manufacturingprocesses. Moreover, changing rules of mechanical performance of plate -pipe have been mastered. Through the performance test ofwelding pipe , results showed that the average yield strength of welded pipe is between 619~643 MPa, the average tensile strengthis between 692~701 MPa, the average yield ratio is between 0.89~0.92, and the average DWTT shear area is between 90%~94% at-22 益.The average impact energy of welded pipe is 401 J at -10 益,the average impact energy of weld is 165 J, and the average impact energy of HAZ is 294 J. Various performance indicators can meet requirements of Q/SY XG 0120.4——2019 TechnicalSpecifications for X80 SAWL Line Pipes Used in Fourth West-east Gas Pipeline Project and Single Furnace Trial ProductionProcedures and Requirements of D1 422 mmx38.5 mm Line Pipe . It can provide technical support for the subsequent industrialproduction of the welded pipe.Key words: X80; thick wall ; large diameter ; SAWL pipeHAN GUAN・1焊管2021年第44卷0前言我国天然气产业目前已进入快速发展阶段,市场需求也迈入快速增长阶段,预计2025年天然气消费量将达到4500亿m3/a,需要输送的天然气流量越来越大。
焊接钢管机械扩径工艺和水压扩径工艺技术分析摘要:随着陆上和海上石油和天然气的迅速发展。
目前,对管道钢管制造工艺的要求越来越高,延伸工艺是钢管制造标准的要求之一。
本文详细介绍了焊接钢管机械扩径和水压扩径的定义和工作原理。
结合生产实际,从工艺技术角度分析了二者的异同,并对两种胀接设备的选择提出了相应的建议。
关键字:钢管焊接机械扩径水压扩径工艺技术一、钢管焊接概述:(一)焊接方法根据我国管道企业的经济实力、人员技术水平、设备及环境条件,远洋道路设备常用的焊接方法如下:1、手工焊条上焊2、手工焊条下焊3、自容药芯焊丝半自动焊4、RMD-STT气体保护半自动焊5、道全位置自动焊接(二)钢管焊接工艺特点:1.焊接设备简单,只需性能优良的手工弧焊直流电源;2.e8010-g纤维素焊条用于热加油,也具有良好的工作能力,3.e8010纤维素焊条用于焊接,性能良好;9316无损焊接试验比手工上焊合格,根焊道焊接采用E6010纤维素焊条,此焊条的操作性能良好,具有中等操作水平的焊工就可焊出合格的焊缝;4.具有数字预置和焊接电流特性,适用于长电缆焊接、防尘、防砂、防水、抗冲击施工,环境适应性好。
5.填充、盖面焊道采用E8018-G低氢下向焊焊条,此焊条的操作性能较差;6.焊缝无损检测合格率比手工上向焊高,但比纤维素焊条下向焊和药芯焊丝下向焊低;7.焊缝力学性能较好,具有较高的塑韧性和抗裂性。
熊谷长输管道焊接设备之管道下向焊焊机ZX7-400S-X适用焊条电弧焊、简易直流氩弧焊、纤维素焊条下向焊,具有焊接电流数字预设、显示,适合长电缆焊接,防尘、防沙、防水、防震设计,环境适应性好等特点。
二、扩径工艺分析:(一)扩径时钢管轴向收缩对其尺寸、性能的影响钢管轴向收缩对扩径时尺寸和性能的影响,当钢管急剧扩径时,它会轴向收缩以补偿扩径。
是壁厚。
损失。
钢管机械胀接时的外表面和内表面,表面有一定的摩擦力,其方向与钢管的轴向收缩力一致,恰恰相反。
包容其间,启动液压缸使锁模装置锁紧外模,然后由充水端向钢管内部注入高压水,造成超过焊管屈服极限的一定的内压,致使焊管膨胀变形,其外径达到模具内腔尺寸,实现水压对钢管的整体扩径。
为了提高水压扩径焊管的质量,使管端几何尺寸的精度要求达到标准要求,许多厂家对水压扩径机进行不断的改造和完善。
陕京天然气管线中,由美国购进的UoE直缝埋弧焊管大部分都是采用水压扩径生产的。
1.4.2机械扩径设备机械扩径的设备是机械扩径机,如图卜2所示。
机械扩径机由机座、支撑杆、动力、油缸、与油缸活塞连接的长拉杆、在拉杆的尾端固定的扩径头、扩径头支架、支承辊、升降辊道、旋转钢管对准焊缝装置的台车以及液压系统和电控装置组成。
图l-2机械扩径机机械扩径采用斜块扩孔原理,是通过分瓣凸模使管坯产生塑性变形的一种扩径技术,其目的主要在于改善焊管的形状、提高尺寸精度和消除残余应力。
机械扩径是一段一段地进行的。
扩径头【12】(图卜3)是由几个扇形块组成的芯棒安装在楔形体上,而楔形体则固定在液压缸的活塞杆上。
当液压缸活塞和楔形体向右移动时,(图1-2)由于构成芯棒表面的扇形块向外扩展,使得芯棒外圆周扩大,楔形体的力借助斜块通过扇形板作用在焊管内壁上,从而使与芯棒接触的一段焊管得到扩径j图1-3扩径头机械扩径机一般配备四种规格的扩径头:外1.内锥体2.T形压板径24~30in;32~38in;40~46in和48~56in3.扇形板4.外锥体的各有一种。
扇形块是可以更换的,每一种外径及壁厚的焊管都要配上与之相适充分释放。
为此以各应变片的粘贴位置为中心,在该焊管上依次切割出50×50mm的测试块。
切割过程中用冷水降温以避免测试块受热升温。
3.为使测试块上的弹性应变能充分释放,待切割完成1天以后再对各测试块上粘贴的应变片进行应变增量的测量。
l{jj≮坐1圈2_l应变片粘贴位置图2-2粘贴好应变片的直缝焊管2.1.1.3残余应力计算由于大口径的直缝焊管可视为一处于二向应力状态的薄壳结构,因此根据测试块上释放的应变值,可用平面应力问题的广义虎克定律来计算该直缝焊管内、外表面测试点上的周向和轴向残余应力,计算公式为:%=业1型--V2盟(2-1)第四章直缝焊管JCOE成型与焊接过程模拟直缝焊管在制管过程中先要将钢板压制成圆筒状。
X80直缝焊管机械扩径有限元分析的开题报告
一、选题背景
现代工业中使用更广泛的管材类型之一就是焊管,而直缝焊管机械
扩径技术则是其中的一项重要工艺之一。
直缝焊管机械扩径是指使用机
械力量将焊管的直径扩大,使管材更加符合需求。
然而,由于直缝焊管
机械扩径的工艺比较复杂,扩径过程中可能存在各种问题,比如管材变形、管壁厚度均匀性等问题,因此,对扩径过程的机械特性及变形行为
进行研究是非常重要的。
本选题的目的是通过有限元分析的方法,研究直缝焊管机械扩径过
程中的机械特性及变形行为,并探讨如何改进扩径过程,提高管材质量。
二、主要研究内容
1.建立直缝焊管机械扩径的有限元模型。
2.将扩径过程中的材料变形行为加入模型,以分析管材变形情况。
3.分析管材扩径过程中的机械特性,如应力分布、应变分布等。
4.通过分析得出直缝焊管机械扩径过程中的物理特性,探讨如何改
进该工艺。
三、论文的意义
1. 为了提高管材性能,提高扩径工艺的工艺水平。
2. 为应用有限元分析探究直缝焊管机械扩径成形机理提供新思路,
孕育新技术新方案。
3. 广泛运用于工业中,提供技术支撑。