Z
a'
a"
10
X
O
YW
30 a
YH
二、直线的投影分析
1.投影面平行线 投影面平行线——只平行于一个投影面,与另外两个投影面倾斜 的直线。
水平线 正平线 侧平线
2.投影面垂直线
投影面垂直线——垂直于一个投影面,与另外两个投 影面平行的直线。
铅垂线 正垂线 侧垂线
3.一般位置直线 一般位置直线——既不平行也不垂直于任何一个投影面,即与
三个投影面都处于倾斜位置的直线。
三个投影均不反映实长;与投影轴的夹角不反映空间直线对投影面 的倾角。
三、平面的投影分析
1.投影面平行面
投影面平行面——平行于一个投影面,垂直于另外两个投影面的 平面。
正平面 水平面 侧平面
2.投影面垂直面 投影面垂直面——垂直于一个投影面而倾斜于另外两个投影面
圆锥三视图作线绕其直径回转而成。
圆球三视图的形成 圆球三视图作图步骤
一、点的投影分析
1.点的投影规律 (1)点S的V面投影和H面投影的连线垂直于OX轴,即 s's⊥OX。 (2)点S的V面投影和W面投影的连线垂直于OZ轴,即s's''⊥OZ。 (3)点S的H面投影到OX轴的距离等于其W面投影至OZ轴的距离,即 ssX=s''sZ。
2.点的坐标
空间点的位置可由该点的坐标(X,Y,Z)确定,A点三投影的坐标 分别为a(X,Y)、a′(X,Z)、a″(Y,Z)。任一投影都包含了两个坐标, 所以一点的两个投影就包含了确定该点空间位置的三个坐标,即确定了 点的空间位置。
的平面。
铅垂面 正垂面 侧垂面
3.一般位置平面 一般位置平面——与三个投影面都倾斜的平面。