自回归移动平均模型
- 格式:pptx
- 大小:6.33 MB
- 文档页数:104
时间序列分析中的自回归模型和滑动平均模型随着人们对数据分析和预测需求的不断增加,时间序列分析也成为了一个备受关注的领域。
而在时间序列分析中,自回归模型和滑动平均模型是两种重要的预测方法。
自回归模型(Autoregressive Model,AR)是建立在一组时间上的自回归思想中的,其核心是用前一时期的观测值来预测当前时期的观测值。
其数学式表示为:Y_t = c + Σφ_i * Y_t-i + e_t其中,Y_t为当前时期的观测值,c为截距项,φ_i 为 AR 模型中自回归系数,e_t为当前时期的噪声项。
AR 模型存在自相关性的问题,也就是说模型中的一部分误差项与模型中的其他自变量或误差项之间可能存在相关性。
为了解决自相关性问题,滑动平均模型(Moving Average Model,MA)岿然而生。
滑动平均模型是一种使用到多个时间上的滑动平均思想,其核心是对过去一段时间内的噪声项进行平均,作为当前时期噪声项的估计。
MA 模型的数学式表示为:Y_t = c + Σθ_i * e_t-i + e_t其中,θ_i 为 MA 模型中的滑动平均系数,e_t 为当前时期的噪声项。
MA 模型建立在数据中存在噪声项的前提之下,因而只要数据不存在自相关性问题,滑动平均模型就会产生更好的预测结果。
然而,实际情况下,许多时间序列数据中存在着自相关和噪声项的问题,如何有效地处理这些问题,提高模型的预测能力是时间序列分析中的重要课题。
因此,自回归滑动平均模型(Autoregressive Integrated Moving Average Model,ARIMA)应运而生。
ARIMA 模型是将自回归模型和滑动平均模型结合起来,同时加入对时间序列数据的差分,以对误差项中的自相关性和噪声项进行有效建模。
其数学式表示为:Y_t –μ = φ_1 * (Y_t-1 –μ) + θ_1 * e_t-1 + e_t其中,Y_t 为当前时期的观测值,μ为中心化参数,φ_1 为一阶自回归系数,θ_1 为一阶滑动平均系数,e_t 为当前时期的噪声项。
arma模型(自回归移动平均)数学公式ARMA模型是一种常用的时间序列分析方法,它结合了自回归(AR)和移动平均(MA)模型,用于描述时间序列数据的动态特征。
在ARMA模型中,每个观测值被认为是过去观测值的线性组合,其中包括自回归项和移动平均项。
ARMA模型的数学公式可以表示为:y_t = c + ϕ_1*y_(t-1) + ϕ_2*y_(t-2) + ... + ϕ_p*y_(t-p) + ε_t - θ_1*ε_(t-1) - θ_2*ε_(t-2) - ... - θ_q*ε_(t-q)其中,y_t表示时间序列的观测值,c为常数,ϕ_1, ϕ_2, ..., ϕ_p 为自回归系数,ε_t为满足白噪声条件的随机误差,θ_1, θ_2, ..., θ_q为移动平均系数。
ARMA模型的阶数分别为p和q,分别表示自回归项和移动平均项的阶数。
ARMA模型的核心思想是利用过去观测值的线性组合来预测未来观测值。
自回归项描述了当前观测值与过去观测值之间的线性关系,移动平均项描述了当前观测值与过去误差项之间的线性关系。
通过调整自回归系数和移动平均系数的取值,我们可以得到不同的ARMA模型,从而适应不同时间序列数据的特点。
ARMA模型的建立可以通过多种方法,其中一种常用的方法是最大似然估计。
该方法通过最大化观测数据出现的概率来确定模型的参数。
具体而言,我们需要估计自回归系数、移动平均系数和误差项的方差。
通过最大似然估计,我们可以得到最优的参数估计值,从而建立起准确的ARMA模型。
ARMA模型在时间序列分析中具有广泛的应用。
首先,ARMA模型可以用于时间序列数据的预测和预测不确定性的度量。
通过拟合ARMA模型,我们可以根据过去观测值来预测未来观测值,并得到相应的置信区间。
其次,ARMA模型可以用于时间序列数据的平滑和去除季节性因素。
通过去除ARMA模型的季节性分量,我们可以得到更平滑的时间序列数据,从而更好地分析其长期趋势。
自回归AR模型、移动平均MA模型与自回归移动平均ARMA模型的比较分析系统中某一因素变量的时间序列数据没有确定的变化形式,也不能用时间的确定函数描述,但可以用概率统计方法寻求比较合适的随机模型近似反映其变化规律。
(自变量不直接含有时间变量,但隐含时间因素)1.自回归AR(p)模型(R:模型的名称 P:模型的参数)(自己影响自己,但可能存在误差,误差即没有考虑到的因素)(1)模型形式(εt越小越好,但不能为0:ε为0表示只受以前Y的历史的影响不受其他因素影响)yt=φ1yt-1+φ2yt-2+……+φpyt-p+εt式中假设:yt的变化主要与时间序列的历史数据有关,与其它因素无关;εt不同时刻互不相关,εt与yt历史序列不相关。
式中符号:p模型的阶次,滞后的时间周期,通过实验和参数确定;yt当前预测值,与自身过去观测值yt-1、…、yt-p是同一序列不同时刻的随机变量,相互间有线性关系,也反映时间滞后关系;yt-1、yt-2、……、yt-p同一平稳序列过去p个时期的观测值;φ1、φ2、……、φp自回归系数,通过计算得出的权数,表达yt 依赖于过去的程度,且这种依赖关系恒定不变;εt随机干扰误差项,是0均值、常方差σ2、独立的白噪声序列,通过估计指定的模型获得。
(2)识别条件当k>p时,有φk=0或φk服从渐近正态分布N(0,1/n)且(|φk|>2/n1/2)的个数≤4.5%,即平稳时间序列的偏相关系数φk为p步截尾,自相关系数rk逐步衰减而不截尾,则序列是AR(p)模型。
实际中,一般AR过程的ACF函数呈单边递减或阻尼振荡,所以用PACF函数判别(从p阶开始的所有偏自相关系数均为0)。
(3)平稳条件一阶:|φ1|<1。
二阶:φ1+φ2<1、φ1-φ2<1、|φ2|<1。
φ越大,自回归过程的波动影响越持久。
(4)模型意义仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量相互独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由于自变量选择、多重共线性等造成的困难。
ARIMA模型1.理论ARIMA(自回归综合移动平均):是时间系列分析中最常见的模型,又称Box-Jenkins模型或带差分的自回归移动平均模型。
时间系列的模型确定:时间系列必做步骤:定义日期:点击数据、定义日期(根据数据的时间记录方式,后进行对应的方式定义并填入初始时间):若存在数据缺失:可以采用,该列数据的平均值进行填补或者采用临近的均值:(点击转换、替换缺失值),且需要时间顺序的按一定的顺序进行排序的数据才能进行时间序列的分析。
A.模型初步分析:首先通过分析看数据的模型图情况:(点击分析、时间序列分析、系列图(时间变量需要放入定义后的时间变量))平稳性:时间系列数据可以看作随机过程的一个样本,且根据1.:均值不随时间的变化;2.方差不随时间变化;3.自相关关系只与时间间隔有关而以所处的具体时刻无关。
通常情况下数据在一定的范围内(M±2*SD)波动的话属于平稳,并且如果数据有特别的向下或向上的趋势表明不属于平稳。
B.模型识别与定阶:自相关(ACF)和偏相关操作:(点击分析、时间序列、自相关):自相关系数(如果系数迅速减少的表明属于平稳,系数慢慢的减少说明属于非平稳的),ACF图也可以看出。
判断是否平稳后需要进行差分(平稳化的手段:一般差分、季节性差分)处理:(点击分析、时间系列、自相关(定义好差分介数)):ARIMA模型(p (ACF图:从第几个后进入(2*SD)里表明为几介后),d(差分:做几介差分平稳就填入几),q(PCF图:从第几个后进入(2*SD)里表明为几介后)),拖尾:按指数衰减(呈现正弦波形式),截尾:某一步后为零(迅速降为零)。
平稳化处理后,若偏自相关函数是截尾的,而自相关函数是拖尾的,则建立AR模型;若自相关函数是拖尾的,而偏自相关函数是截尾的,则建立MA模型;若偏自相关函数和自相关函数均是拖尾的,则序列适合ARMA模型。
C.模型估计参数:对识别阶段所给初步模型的参数进行估计及假设检验,并对模型的残差序列做诊断分析,以判断模型的合理性。
eviews实验指导ARIMA模型建模与预测在数据分析和时间序列预测的领域中,ARIMA 模型是一种非常强大且实用的工具。
通过eviews 软件来实现ARIMA 模型的建模与预测,可以帮助我们更高效地处理和分析数据,做出更准确的预测。
接下来,让我们逐步深入了解如何使用eviews 进行ARIMA 模型的建模与预测。
首先,我们要明白什么是 ARIMA 模型。
ARIMA 全称为自回归移动平均整合模型(Autoregressive Integrated Moving Average Model),它由三个部分组成:自回归(AR)部分、差分(I)部分和移动平均(MA)部分。
自回归(AR)部分是指当前值与过去若干个值之间存在线性关系。
例如,如果说一个时间序列在 AR(2)模型下,那么当前值就与前两个值有关。
移动平均(MA)部分则表示当前值受到过去若干个随机误差项的线性影响。
差分(I)部分用于将非平稳的时间序列转化为平稳序列。
平稳序列在统计特性上,如均值、方差等,不随时间变化而变化。
在 eviews 中进行 ARIMA 模型建模与预测,第一步是数据的导入和预处理。
打开 eviews 软件后,选择“File”菜单中的“Open”选项,找到我们要分析的数据文件。
数据的格式通常可以是 Excel、CSV 等常见格式。
导入数据后,需要对数据进行初步的观察和分析,了解其基本特征,比如均值、方差、趋势等。
接下来,判断数据的平稳性。
这是非常关键的一步,因为 ARIMA 模型要求数据是平稳的。
我们可以通过绘制时间序列图、计算自相关函数(ACF)和偏自相关函数(PACF)来直观地判断数据的平稳性。
如果时间序列图呈现明显的趋势或周期性,或者自相关函数和偏自相关函数衰减缓慢,那么很可能数据是非平稳的。
对于非平稳的数据,我们需要进行差分处理。
在 eviews 中,可以通过“Quick”菜单中的“Generate Series”选项来实现差分操作。
差分整合移动平均自回归模型差分整合移动平均自回归模型,简称ARIMA模型,是一种常用的时间序列分析方法。
它可以用来对非平稳时间序列进行建模和预测,常用于经济、金融、股票、气象等领域。
本文将介绍ARIMA模型的基本原理、建模方法和应用实例。
一、ARIMA模型的基本原理ARIMA模型是由自回归(AR)、移动平均(MA)和差分(I)三个部分组成的。
其中,自回归部分是指用过去的数据来预测未来的数据,移动平均部分是指用过去的误差来预测未来的数据,差分部分是指对非平稳序列进行差分处理,使其成为平稳序列。
ARIMA模型的一般形式可以表示为ARIMA(p,d,q),其中p是自回归项数,d是差分次数,q是移动平均项数。
ARIMA模型的基本原理是建立在时间序列的平稳性基础上的。
平稳序列是指时间序列的均值、方差和自协方差函数都不随时间发生变化。
在实际应用中,很多时间序列都是非平稳的,例如股票价格、经济增长率等,这时需要对其进行差分处理,使其成为平稳序列。
二、ARIMA模型的建模方法ARIMA模型的建模方法包括模型识别、参数估计、模型检验和预测四个步骤。
1. 模型识别模型识别是指确定ARIMA模型的阶数。
一般采用自相关函数(ACF)和偏自相关函数(PACF)来进行识别。
ACF是指时间序列的自协方差函数,PACF是指在去除其他相关性的影响后,时间序列的自相关函数。
通过观察ACF和PACF的图形,可以确定ARIMA模型的阶数。
一般情况下,如果ACF呈现出指数衰减的趋势,而PACF在某个阶数后截尾,就可以确定AR模型的阶数。
如果ACF和PACF都呈现出指数衰减的趋势,就可以确定MA模型的阶数。
如果ACF呈现出周期性的趋势,就可以确定差分的阶数。
2. 参数估计在确定了ARIMA模型的阶数之后,需要对模型的参数进行估计。
估计方法包括最小二乘估计法、极大似然估计法和贝叶斯估计法等。
其中,最小二乘估计法是指通过最小化残差平方和来估计模型的参数;极大似然估计法是指通过最大化似然函数来估计模型的参数;贝叶斯估计法是指通过贝叶斯公式来估计模型的参数。
eviews实验指导ARIMA模型建模与预测在当今的数据分析领域,时间序列分析是一项至关重要的技术,而ARIMA 模型则是其中的一种常用且强大的工具。
通过 Eviews 软件来进行 ARIMA 模型的建模与预测,可以帮助我们更好地理解和处理时间序列数据,从而为决策提供有力的支持。
接下来,让我们一起深入了解如何使用 Eviews 进行 ARIMA 模型的建模与预测。
一、ARIMA 模型的基本原理ARIMA 模型,全称为自回归移动平均整合模型(Autoregressive Integrated Moving Average Model),它由三个部分组成:自回归(AR)、差分(I)和移动平均(MA)。
自回归(AR)部分表示当前值与过去若干个值之间的线性关系。
简单来说,如果一个时间序列在当前时刻的值受到过去若干个时刻的值的影响,那么就存在自回归关系。
移动平均(MA)部分则反映了随机干扰项对当前值的影响。
它通过将当前值表示为过去若干个随机干扰项的线性组合,来描述时间序列中的随机波动。
差分(I)操作则用于将非平稳的时间序列转化为平稳序列。
平稳性是时间序列分析中的一个重要概念,指的是时间序列的统计特性(如均值、方差等)不随时间变化而变化。
二、Eviews 软件操作环境介绍在开始建模之前,我们先来熟悉一下 Eviews 软件的操作环境。
打开 Eviews 软件,我们会看到一个简洁明了的界面。
菜单栏提供了各种功能选项,如文件操作、数据处理、模型估计等。
工作区用于显示数据、图表和分析结果。
在进行 ARIMA 模型建模时,我们主要会用到“Quick”菜单中的“Estimate Equation”选项,以及“View”菜单中的各种分析功能。
三、数据准备与导入首先,我们需要准备好要分析的时间序列数据。
数据可以以 Excel表格或其他常见的数据格式保存。
在 Eviews 中,可以通过“File”菜单中的“Import”选项将数据导入到软件中。
第二章自回归移动平均模型一些金融时间序列的变动往往呈现出一定的平稳特征,由 模型就是借助时间序列的随机性来描述平稳序列的相关性信息, 行建模和预测。
第一节ARMA 模型的基本原理ARMA 模型由三种基本的模型构成:自回归模型( AR,Auto-regressive Model ),移动平均模型(MA ,Moving Average Model )以及自回归移动平均模型 (ARMA ,Auto-regressive Moving Average Model )。
2.1.1自回归模型的基本原理 1. AR 模型的基本形式AR 模型的一般形式如下:p 模型的系数,t 为白噪声序列。
我们称上述方程为P阶自回归模型,记为 AR(p )。
2. AR 模型的平稳性2,Var(y t ) ,Cov(y t , y s )为了描述的方便,对式(2.1 )的滞后项引入滞后算子。
若 y t X t 1,定义算子“ L ”,使得y tLx t X t 1 L 称为滞后算子。
由此可知, L k X tX t k 。
对于式子(2.1),可利用滞后算子改写为:y t c丄%2L 2y tpL P y tt间序列{%}是平稳的,即E(y t )y t C 1 y t 1 2 y t 2 P y t P t此处的平稳性是指宽平稳,即时间序列的均值, 方差和自协方差均与时刻无关。
即若时Box 和 Jenkins 创立的 ARMA 并由此对时间序列的变化进 其中,C 为常数项,移项整理,可得:(1 1L 2L2p L P)y t c t3. AR 模型的统计性质(1) AR 模型的均值。
因此上式可化简为:所以,(2) AR 模型的方差。
直接计算AR( p )模型的方差较困难,这里引入 Green 函数。
AR(p )模型可以改写成如下形式:y tp 为平稳AR(p )模型的反特征根,则进一步,以Green 函数是呈负指数下降的。
对上式两边取方差,可得:2G j var( t j )j 0AR(p )的平稳性条件为方程11L2L 2pL p 0的解均位于单位圆外。
arima建模的要求ARIMA(自回归移动平均模型)是一种常用于时间序列分析和预测的统计模型。
它可以用于预测未来数据点或分析过去的趋势和周期性。
ARIMA模型的要求包括以下几个方面。
时间序列数据应该是稳定的。
稳定性是指数据的均值和方差在时间上保持不变。
如果数据不稳定,我们可以通过差分操作来使其稳定化。
差分操作是指将每个数据点与前一个数据点之间的差值作为新的数据点。
ARIMA模型要求数据是线性的。
这意味着数据的趋势可以用线性函数来描述。
如果数据不是线性的,我们可以对其进行转换,使其符合线性模型的要求。
ARIMA模型要求时间序列数据之间是相互独立的。
这意味着当前的数据点不会受到过去数据点的影响。
如果数据之间存在依赖关系,我们可以通过引入滞后项或其他变量来建立模型。
ARIMA模型还要求时间序列数据是正态分布的。
正态分布是指数据的分布呈现出钟形曲线,均值和标准差可以完全描述数据的特征。
如果数据不符合正态分布,我们可以对其进行变换或使用非参数方法来建模。
ARIMA模型的建立过程包括模型选择、参数估计和模型诊断。
模型选择是指确定模型的阶数,即AR、MA和差分的阶数。
参数估计是指通过最大似然估计或最小二乘法来估计模型的参数。
模型诊断是指对模型进行检验,判断模型是否合适。
在模型选择中,可以通过观察自相关图(ACF)和偏自相关图(PACF)来确定AR和MA的阶数。
ACF是指时间序列数据与其滞后项之间的相关系数,PACF是指时间序列数据与其滞后项之间的偏相关系数。
通过观察ACF和PACF图,可以判断AR和MA的阶数。
在参数估计中,可以使用最大似然估计或最小二乘法来估计ARIMA 模型的参数。
最大似然估计是指通过最大化似然函数来估计模型的参数,最小二乘法是指通过最小化残差平方和来估计模型的参数。
在模型诊断中,可以通过观察残差序列的自相关图和偏自相关图来判断模型是否合适。
如果残差序列呈现出随机性,说明模型是合适的;如果残差序列呈现出有规律的结构,说明模型还需要改进。