滑动平均模型
- 格式:ppt
- 大小:661.00 KB
- 文档页数:73
时间序列分析中的自回归模型和滑动平均模型随着人们对数据分析和预测需求的不断增加,时间序列分析也成为了一个备受关注的领域。
而在时间序列分析中,自回归模型和滑动平均模型是两种重要的预测方法。
自回归模型(Autoregressive Model,AR)是建立在一组时间上的自回归思想中的,其核心是用前一时期的观测值来预测当前时期的观测值。
其数学式表示为:Y_t = c + Σφ_i * Y_t-i + e_t其中,Y_t为当前时期的观测值,c为截距项,φ_i 为 AR 模型中自回归系数,e_t为当前时期的噪声项。
AR 模型存在自相关性的问题,也就是说模型中的一部分误差项与模型中的其他自变量或误差项之间可能存在相关性。
为了解决自相关性问题,滑动平均模型(Moving Average Model,MA)岿然而生。
滑动平均模型是一种使用到多个时间上的滑动平均思想,其核心是对过去一段时间内的噪声项进行平均,作为当前时期噪声项的估计。
MA 模型的数学式表示为:Y_t = c + Σθ_i * e_t-i + e_t其中,θ_i 为 MA 模型中的滑动平均系数,e_t 为当前时期的噪声项。
MA 模型建立在数据中存在噪声项的前提之下,因而只要数据不存在自相关性问题,滑动平均模型就会产生更好的预测结果。
然而,实际情况下,许多时间序列数据中存在着自相关和噪声项的问题,如何有效地处理这些问题,提高模型的预测能力是时间序列分析中的重要课题。
因此,自回归滑动平均模型(Autoregressive Integrated Moving Average Model,ARIMA)应运而生。
ARIMA 模型是将自回归模型和滑动平均模型结合起来,同时加入对时间序列数据的差分,以对误差项中的自相关性和噪声项进行有效建模。
其数学式表示为:Y_t –μ = φ_1 * (Y_t-1 –μ) + θ_1 * e_t-1 + e_t其中,Y_t 为当前时期的观测值,μ为中心化参数,φ_1 为一阶自回归系数,θ_1 为一阶滑动平均系数,e_t 为当前时期的噪声项。
ARIMA模型(英语:A uto r egressive I ntegrated M oving A verage model),差分整合移动平均自回归模型,又称整合移动平均自回归模型(移动也可称作滑动),是时间序列预测分析方法之一。
ARIMA(p,d,q)中,AR是“自回归”,p为自回归项数;MA为“滑动平均”,q为滑动平均项数,d为使之成为平稳序列所做的差分次数(阶数)。
“差分”一词虽未出现在ARIMA的英文名称中,却是关键步骤。
简介对时间序列数据进行分析和预测比较完善和精确的算法是博克思-詹金斯(Box-Jenkins)方法,其常用模型包括:自回归模型(AR模型)、滑动平均模型(MA模型)、(自回归-滑动平均混合模型)ARMA模型、(差分整合移动平均自回归模型)ARIMA模型。
ARIMA(p,d,q)模型是ARMA(p,q)模型的扩展。
ARIMA(p,d,q)模型可以表示为:其中L是滞后算子(Lag operator),定义非平稳时间序列,在消去其局部水平或者趋势之后,其显示出一定的同质性,也就是说,此时序列的某些部分与其它部分很相似。
这种非平稳时间序列经过差分处理后可以转换为平稳时间序列,那称这样的时间序列为齐次非平稳时间序列,其中差分的次数就是齐次的阶。
将记为差分算子,那么有对于延迟算子,有因此可以得出设有d阶其次非平稳时间序列,那么有是平稳时间序列,则可以设其为ARMA(p,q)模型,即其中,分别为自回归系数多项式和滑动平均系数多项式。
为零均值白噪声序列。
可以称所设模型为自回归求和滑动平均模型,记为ARIMA(p,d,q)。
当差分阶数d为0时,ARIMA模型就等同于ARMA模型,即这两种模型的差别就是差分阶数d是否等于零,也就是序列是否平稳,ARIMA模型对应着非平稳时间序列,ARMA模型对应着平稳时间序列。
建立ARIMA模型的方法步骤1.时间序列的获取时间序列的获取可以通过实验分析获得,亦或是相关部门的统计数据。
ARIMA模型全称为自回归积分滑动平均模型(Autoregressive Integrated Moving Average Model,简记ARIMA),是由博克思(Box)和詹金斯(Jenkins)于70年代初提出一著名时间序列预测方法[1],所以又称为box-jenkins模型、博克思-詹金斯法。
其中ARIMA(p,d,q)称为差分自回归移动平均模型,AR是自回归,p为自回归项;MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数。
所谓ARIMA模型,是指将非平稳时间序列转化为平稳时间序列,然后将因变量仅对它的滞后值以及随机误差项的现值和滞后值进行回归所建立的模型。
ARIMA模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA)、自回归过程(AR)、自回归移动平均过程(ARMA)以及ARIMA过程。
中文名ARIMA模型特点预测对象随时间推移特点企业对未来进行预测模型计量经济模型目录1. 1 基本思想2. 2 预测程序3. 3 案例分析4. 4 相关链接基本思想编辑ARIMA模型的基本思想是:将预测对象随时间推移而形成的数据序列视为一个随机序列,用一定的数学模型来近似描述这个序列。
这个模型一旦被识别后就可以从时间序列的过去值及现在值来预测未来值。
现代统计方法、计量经济模型在某种程度上已经能够帮助企业对未来进行预测。
预测程序编辑ARIMA模型预测的基本程序(一)根据时间序列的散点图、自相关函数和偏自相关函数图以ADF单位根检验其方差、趋势及其季节性变化规律,对序列的平稳性进行识别。
一般来讲,经济运行的时间序列都不是平稳序列。
(二)对非平稳序列进行平稳化处理。
如果数据序列是非平稳的,并存在一定的增长或下降趋势,则需要对数据进行差分处理,如果数据存在异方差,则需对数据进行技术处理,直到处理后的数据的自相关函数值和偏相关函数值无显著地异于零。
(三)根据时间序列模型的识别规则,建立相应的模型。
(转)滑动平均法、滑动平均模型算法(Movingaverage,MA)原⽂链接:https:///qq_39521554/article/details/79028012什么是移动平均法? 移动平均法是⽤⼀组最近的实际数据值来预测未来⼀期或⼏期内公司产品的需求量、公司产能等的⼀种常⽤⽅法。
移动平均法适⽤于即期预测。
当产品需求既不快速增长也不快速下降,且不存在季节性因素时,移动平均法能有效地消除预测中的随机波动,是⾮常有⽤的。
移动平均法根据预测时使⽤的各元素的权重不同 移动平均法是⼀种简单平滑预测技术,它的基本思想是:根据时间序列资料、逐项推移,依次计算包含⼀定项数的序时平均值,以反映长期趋势的⽅法。
因此,当时间序列的数值由于受周期变动和随机波动的影响,起伏较⼤,不易显⽰出事件的发展趋势时,使⽤移动平均法可以消除这些因素的影响,显⽰出事件的发展⽅向与趋势(即趋势线),然后依趋势线分析预测序列的长期趋势。
移动平均法的种类 移动平均法可以分为:简单移动平均和加权移动平均。
⼀、简单移动平均法 简单移动平均的各元素的权重都相等。
简单的移动平均的计算公式如下: Ft=(At-1+At-2+At-3+…+At-n)/n式中, ·Ft–对下⼀期的预测值; ·n–移动平均的时期个数; ·At-1–前期实际值; ·At-2,At-3和At-n分别表⽰前两期、前三期直⾄前n期的实际值。
⼆、加权移动平均法 加权移动平均给固定跨越期限内的每个变量值以不同的权重。
其原理是:历史各期产品需求的数据信息对预测未来期内的需求量的作⽤是不⼀样的。
除了以n为周期的周期性变化外,远离⽬标期的变量值的影响⼒相对较低,故应给予较低的权重。
加权移动平均法的计算公式如下: Ft=w1At-1+w2At-2+w3At-3+…+wnAt-n式中, ·w1–第t-1期实际销售额的权重; ·w2–第t-2期实际销售额的权重; ·wn–第t-n期实际销售额的权 ·n–预测的时期数;w1+ w2+…+ wn=1 在运⽤加权平均法时,权重的选择是⼀个应该注意的问题。
自回归滑动平均模型法
第1页:
自回归滑动平均模型(ARIMA)是一种应用于时间序列预测的重要统计模型,它有三个维度:自回归(AR),差分(I)和移动平均(MA)。
ARIMA的主要目标是拟合一个模型,用来描述一个时间序列的趋势和周期性,并可以用来预测未来的数据。
它是一种基于历史数据的建模方法,通过对时间序列进行分析并建立模型,以获得一个准确的预测。
自回归滑动平均模型的基本步骤如下:
(1)收集历史数据。
确定要预测的变量(即时间序列),并从每一个阶段收集足够的数据。
(2)检查时间序列数据的平稳性、趋势和季节性(如果存在)。
(3)确定ARIMA模型的参数。
(4)使用调整最小二乘法(OLS)或其他统计估计方法来估计ARIMA模型的参数。
(5)使用正态诊断检查拟合程度,确保拟合效果良好。
(6)通过模型预测未来时间序列的值,并评价预测精度。
(7)评估模型的有效性,加以改进,进行循环处理,以提高预测精度。
ARIMA模型的一个重要特点是,它是一个极具灵活性和适应性的模型,不仅可以用于单变量时间序列的预测,也可以用于多变量时间序列的预测。
因此,ARIMA模型在预测和分析给定数据的可能性方面拥有较强的威力。
常见时间序列算法模型
1. AR模型(自回归模型):AR模型是一种基本的时间序列模型,它假设当前时刻的观测值与过去时刻的观测值之间存在线性关系。
AR模型根据过去的一系列观测值来预测未来的观测值。
2. MA模型(滑动平均模型):MA模型也是一种基本的时间序列模型,它假设当前时刻的观测值与过去时刻的误差项之间存在线性关系。
MA模型根据过去的一系列误差项来预测未来的观测值。
3. ARMA模型(自回归滑动平均模型):ARMA模型结合了AR模型和MA模型的特点,它假设当前时刻的观测值既与过去时刻的观测值有关,又与过去时刻的误差项有关。
ARMA 模型根据过去的观测值和误差项来预测未来的观测值。
4. ARIMA模型(自回归积分滑动平均模型):ARIMA模型是对ARMA模型的扩展,它引入了差分操作,用来对非平稳时间序列进行平稳化处理。
ARIMA模型根据差分后的时间序列的观测值和误差项来预测未来的观测值。
5. SARIMA模型(季节性自回归积分滑动平均模型):SARIMA模型是对ARIMA模型的扩展,用于处理具有季节性的时间序列。
SARIMA模型基于季节性差分后的观测值和误差项来预测未来的观测值。
6. LSTM模型(长短期记忆网络):LSTM模型是一种递归神经网络模型,它通过学习时间序列中的长期依赖关系来进行预测。
LSTM模型能够捕捉到时间序列中的复杂模式,适用于处理非线性和非稳定的时间序列。
以上是几种常见的时间序列算法模型,可以根据具体问题选择合适的模型进行建模和预测。
时间序列中的ARIMA模型时间序列指的是一组按时间顺序排列的数据,这些数据通常都带有某种趋势、周期或季节性变化。
时间序列经常用于分析股票市场、商品价格、销售量等等。
因为随时间变化的规律性,使得时间序列分析成为了一种非常有效的预测方法。
而ARIMA模型则是对时间序列进行分析和预测的重要工具之一。
ARIMA模型(Autoregressive Integrated Moving Average Model)又称为差分自回归滑动平均模型,是一种以时间序列自身的滞后值和移动平均值为基础,对时间序列进行拟合和预测的统计模型。
ARIMA模型是其他一些时间序列分析工具的基础,比如自回归移动平均模型(ARMA)和指数平滑模型等等。
通常情况下,一个时间序列中包含以下三个方面的变化情况:1.趋势变化(Trend):即随着时间变化呈现的长期趋势,比如一个公司销售量的增长或下降趋势。
2.季节性变化(Seasonality):即固定周期性的变化,比如圣诞节或节假日前后销售量的高峰期。
3.不规则变化(Residual):即与时间没什么关系的随机波动,比如房价因为某些非时间相关的事件而突然上涨或下跌。
基于这些变化情况, ARIMA模型主要有以下三个参数:1.p:表示时间序列的滞后(Lag)阶数,即AR模型的自回归项数。
p越大,模型就会考虑越多的过去数据,但是过度拟合也会带来过多的噪音。
2.d:表示进行差分(隔期间差异)的次数,即使时间序列具有平稳性(Stationary)的一阶差分系列,d=1;否则,需要再进行差分,直到为平稳性。
3.q:表示滑动平均(MA)模型中移动平均项数,即在随机波动中引入前q个误差项。
实际应用中,ARIMA模型常常需要经过以下步骤:首先,检查时间序列数据是否平稳(Stationary),如果不是平稳状态,就需要对其进行处理,通常需要差分(Differencing)操作。
因为ARIMA模型只有在平稳性条件下才能产生可靠的估计结果。
arfima模型定义
ARFIMA模型是一种时间序列模型,也称为自回归分数积分滑动平均模型。
该模型用于描述具有长期记忆性的时间序列数据,其特点是能够同时考虑时间序列的长期依赖性和短期波动性。
ARFIMA模型的名称由自回归项(AR)、分数积分项(FI)和滑动平均项(MA)三个部分组成。
其中,自回归项用于描述时间序列的短期依赖性,即时间序列的当前值与其过去值之间的关系;分数积分项用于描述时间序列的长期记忆性,即时间序列的当前值与其过去长期状态之间的关系;滑动平均项用于描述时间序列的噪声成分,即时间序列中的随机波动。
在ARFIMA模型中,自回归项、分数积分项和滑动平均项的阶数可以自由设定,并且可以通过参数估计来确定这些阶数。
模型的参数估计通常采用最大似然估计法或最小二乘法等统计方法。
ARFIMA模型的应用非常广泛,它可以用于描述股票市场指数、汇率、债券价格等金融时间序列数据,也可以用于描述气温、降水等自然时间序列数据。
通过ARFIMA模型,可以对时间序列数据进行预测、分析和建模,从而为决策提供依据和支持。
需要注意的是,ARFIMA模型是一种比较复杂的模型,需要一定的统计和编程知识才能正确应用。
同时,由于模型的参数估计涉及到大量的计算和优化,因此也需要较高的计算能力和技术水平。
ARIMA模型自回归滑动平均模型(ARMA 模型,Auto-Regressive and Moving Average Model)是研究时间序列的重要方法,由自回归模型(简称AR模型)与滑动平均模型(简称MA模型)为基础“混合”构成。
在市场研究中常用于长期追踪资料的研究,如:Panel研究中,用于消费行为模式变迁研究;在零售研究中,用于具有季节变动特征的销售量、市场规模的预测等。
基本原理将预测指标随时间推移而形成的数据序列看作是一个随机序列,这组随机变量所具有的依存关系体现着原始数据在时间上的延续性。
一方面,影响因素的影响,另一方面,又有自身变动规律,假定影响因素为x1,x2,…,xk,由回归分析,其中Y是预测对象的观测值,Z为误差。
作为预测对象Yt受到自身变化的影响,其规律可由下式体现,误差项在不同时期具有依存关系,由下式表示,由此,获得ARMA模型表达式:基本形式AR模型如果某个时间序列的任意数值可以表示成下面的回归方程,那么该时间序列服从p阶的自回归过程,可以表示为AR(p):可以发现,AR模型利用前期数值与后期数值的相关关系(自相关),建立包含前期数值和后期数值的回归方程,达到预测的目的,因此成为自回归过程。
这里需要解释白噪声,大家可以将白噪声理解成时间序列数值的随机波动,这些随机波动的总和会等于0。
VAR模型MA模型如果某个时间序列的任意数值可以表示成下面的回归方程,那么该时间序列服从q阶的移动平均过程,可以表示为MA(q):可以发现,某个时间点的指标数值等于白噪声序列的加权和,如果回归方程中,白噪声只有两项,那么该移动平均过程为2阶移动平均过程MA(2)。
比较自回归过程和移动平均过程可知,移动平均过程其实可以作为自回归过程的补充,解决自回归方差中白噪声的求解问题,两者的组合就成为自回归移动平均过程,称为ARMA模型。
ARMA模型自回归移动平均模型由两部分组成:自回归部分和移动平均部分,因此包含两个阶数,可以表示为ARMA(p,q),p是自回归阶数,q为移动平均阶数,回归方程表示为:从回归方程可知,自回归移动平均模型综合了AR和MA两个模型的优势,在ARMA模型中,自回归过程负责量化当前数据与前期数据之间的关系,移动平均过程负责解决随机变动项的求解问题,因此,该模型更为有效和常用。
时间序列分析模型时间序列分析模型是一种通过对时间序列数据进行建模和分析的方法,旨在揭示数据中的趋势、季节性、周期和不规则波动等特征,并进行预测和决策。
时间序列分析模型在经济、金融、市场、气象、医学等领域都有广泛的应用。
本文将介绍几种常见的时间序列分析模型。
1. 移动平均模型(MA)移动平均模型是时间序列分析中最简单的模型之一。
它基于一个基本假设,即观察到的时间序列数据是对随机误差的线性组合。
该模型表示为:y_t = c + e_t + θ₁e_(t-1) + θ₂e_(t-2) + … + θ_qe_(t-q)其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,θ₁,θ₂,…,θ_q 是移动平均项的参数,q 是移动平均项的阶数。
2. 自回归模型(AR)自回归模型是基于一个基本假设,即观察到的时间序列数据是过去若干时间点的线性组合。
自回归模型表示为:y_t = c + ϕ₁y_(t-1) + ϕ₂y_(t-2) + … + ϕ_p y_(t-p) + e_t其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,ϕ₁,ϕ₂,…,ϕ_p 是自回归项的参数,p 是自回归项的阶数。
3. 自回归移动平均模型(ARMA)自回归移动平均模型将自回归模型和移动平均模型结合在一起,用于处理同时具有自相关和移动平均性质的时间序列数据。
自回归移动平均模型表示为:y_t = c + ϕ₁y_(t-1) + ϕ₂y_(t-2) + … + ϕ_p y_(t-p) + e_t +θ₁e_(t-1) + θ₂e_(t-2) + … + θ_qe_(t-q)其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,ϕ₁,ϕ₂,…,ϕ_p 是自回归项的参数,θ₁,θ₂,…,θ_q 是移动平均项的参数,p 是自回归项的阶数,q 是移动平均项的阶数。
4. 季节性自回归移动平均模型(SARIMA)季节性自回归移动平均模型是自回归移动平均模型的扩展,用于处理具有季节性和趋势变化的时间序列数据。
arima模型原理详解ARIMA模型(Autoregressive Integrated Moving Average Model)是指自回归滑动平均模型,是一种有效的时间序列分析模型,适用于预测时间序列数据。
ARIMA模型的核心思想是,通过对时间序列数据的分析和拟合,找到一个可以描述数据规律的数学模型,从而实现对未来数据的预测。
其模型的基本包括三个部分:自回归、差分和滑动平均。
自回归(AR)是指当前的数值是由前面值的加权和和随机误差项决定,它是利用时间序列数据的历史信息来预测未来数据。
AR模型可以表示为:Y(t)=β0+β1Y(t-1)+β2Y(t-2)+...+βpY(t-p)+εt。
其中,Y(t)表示时间t的数据值,p为自回归阶数,β0-βp为回归系数,εt为误差项,它们符合一个均值为0,方差为常数的正态分布。
差分(I)是为了消除时间序列数据的非平稳性,使其满足平稳性假设。
平稳性假设是指时间序列数据具有相同的均值和方差,且其自协方差函数只与时间间隔有关,而不与时间本身有关。
差分操作具体表现为:在原始序列上减去前一个值,以此类推,得到的序列就是差分序列。
标准的差分算子是Δ,代表一次差分:I(ΔY(t))=Y(t)-Y(t-1)。
滑动平均(MA)是指当前的数据取决于过去几个时间点的随机误差,也就是当前值等于过去若干个随机误差之和乘以对应的权重系数。
MA模型可以表示为:Y(t)=μ+εt+θ1εt-1+θ2εt-2+...+θqεt-q。
其中,μ为均值,q为滑动平均阶数,θ1-θq为权重系数,εt为随机误差项。
ARIMA模型的总体表达式为:ARIMA(p,d,q)。
其中,p表示自回归阶数,d表示差分阶数,q表示滑动平均阶数。
举例说明,如果一个时间序列需要差分一次才能满足平稳性,需要使用滞后1期的自回归模型和滞后1期的滑动平均模型,则该序列符合ARIMA (1,1,1)模型。
换句话说,ARIMA模型对时间序列数据的处理和建模过程可以总结为:首先对原始序列进行差分或取对数等处理,使其满足平稳性假设;然后,通过对处理后的序列拟合自回归、滑动平均模型,完成时间序列的预测。
移动平均法and指数平滑法感谢:⼀、移动平均法(Moving average , MA)移动平均法⼜称滑动平均法、滑动平均模型。
⽤处:⼀组最近的实际数据值->[预测]->未来⼀期或⼏期内公司产品需求量/公司产能。
分类:简单移动平均和加权移动平均思想:根据时间序列资料,逐项推移,依次计算包含⼀定项数的序时平均值,以反映长期趋势。
好处:时间序列数值受周期变动和随机波动影响起伏较⼤,不容易显⽰事件发展趋势, MA可以消除这些因素影响。
(⼀)简单移动平均法各个元素的权重相等。
公式如下:Ft=(At-1 + At-2 + At-3 + ... + At-n) / n[简单的滑动窗⼝](⼆)加权移动平均法加权移动平均给固定跨越期限内的每个变量值以不同的权重。
其原理是:历史各期产品需求的数据信息对预测未来期内的需求量的作⽤不⼀样。
Ft=w1At-1 + w2At-2 + w3At-3 + ... + wnAt-n⼆、指数平滑法(Exponential Smoothing, ES)指数平滑法认为时间序列的态势具有稳定性或规则性,所以时间序列可被合理地顺势推延;他认为最近的过去态势,在某种程度上会持续到最近的未来,所以将较⼤的权数放在最近的资料。
指数平滑法是⽣产预测中常⽤的⼀种⽅法,⽤于中短期经济发展趋势预测,所有预测⽅法中指数平滑⽤得最多。
简单的全期平均法:全部平均。
移动平均法:不考虑较远期数据,并在加权移动平均法中给予近期资料更⼤权重。
指数平滑法:兼容全期平均和移动平均所长,不舍弃过去的数据,仅给予逐渐减弱的影响程度,即随着数据的远离,赋予逐渐收敛为零的权数。
指数平滑法在移动平均法基础上发展起来的⼀种时间序列分析预测法,通过计算指数平滑值,配合⼀定的时间序列预测模型对现象的未来进⾏预测。
任⼀期的指数平滑值都是本期实际观察值与前⼀期指数平滑的加权平均。
(⼀)指数平滑法的公式S_t = a \c dot y_t + (1-a)S_{t-1}S_t:时间t的平滑值y_t: 时间t的实际值S_t-1: 时间t-1的平滑值a--平滑常数,取值范围[0, 1](⼆)指数平滑的预测公式根据平滑次数不同,指数平滑法分为:⼀次指数平滑法、⼆次指数平滑法和三次指数平滑法等(1)⼀次指数平滑y_t+1(predict) = a* y_t(actual) + (1-a) * y_t(predict)(2)⼆次指数平滑预测yt+m=(2+am/(1-a))yt'-(1+am/(1-a))yt=(2yt'-yt)+m(yt'-yt) a/(1-a)其中yt= ayt-1'+(1-a)yt-1,就是⼀次指数平滑的再平滑。
自回归滑动平均模型自回归滑动平均模型(ARMA)是一种常用的时间序列模型,用于预测未来值的方法。
它结合了自回归模型(AR)和滑动平均模型(MA),能够更好地捕捉时间序列数据的特征。
自回归模型是基于过去的观察值来预测未来值的模型。
它假设未来值和过去值之间存在相关性,即当前值与之前的若干值相关联。
自回归模型将过去的观察值作为自变量,当前值作为因变量,通过调整自变量系数来预测未来值。
滑动平均模型是通过给定的窗口大小,在当前值与其前面若干值的线性组合的基础上,对未来值进行预测的模型。
滑动平均模型认为当前值的变动由之前几个值的加权平均引起,权重通过最小化预测误差来确定。
ARMA模型结合了自回归模型和滑动平均模型的优点,既可以捕捉时间序列数据的历史趋势,也可以考虑数据的随机波动。
ARMA模型的一般形式为ARMA(p,q),其中p是自回归模型的阶数,q是滑动平均模型的阶数。
使用ARMA模型进行预测时,首先需要确定模型的阶数。
可以通过观察自相关函数(ACF)和偏自相关函数(PACF)来确定。
ACF和PACF可以展现数据的相关性和延迟效应,根据它们的曲线图可以估计出ARMA模型的阶数。
确定了模型的阶数后,就可以使用最小二乘法或极大似然法来估计模型的系数。
然后,可以利用估计出的系数进行模型的拟合和预测。
如果模型的残差序列与随机序列相似,说明模型的预测效果较好。
总之,自回归滑动平均模型是一种常用的时间序列预测方法,它综合考虑了过去观察值的相关性和随机波动,可以较好地捕捉时间序列数据的特征。
但在使用ARMA模型进行预测时,需要注意选择适当的阶数,并根据模型的残差序列来评估预测效果。
自回归滑动平均模型(ARMA)是时间序列分析中的一种重要工具,常用于预测未来的数值或观测序列。
该模型结合了自回归(AR)和滑动平均(MA)两种模型的优点,既能考虑序列的历史信息,又能捕捉随机波动的特征,使得预测结果更加准确和可靠。
在ARMA模型中,自回归(AR)部分用于描述当前值与历史值之间的相关性,滑动平均(MA)部分用于描述当前值与误差(即残差)之间的相关性。
前提:所有对于时间序列的研究都是基于对自相关性的追求ARIMA,就是autoregressive integrated moving-average model,中文应该叫做自动回归积分滑动平均模型,它主要使用与有长期趋势与季节性波动的时间序列的分析预测中。
ARIMA有6个参数,ARIMA (p,d,q)(sp,sd,sq),后三个是主要用来描述季节性的变化,前三个针对去除了季节性变化后序列。
为了避免过度训练拟合,这些参数的取值都很小。
p与sp的含义是一个数与前面几个数线性相关,这两参数大多数情况下都取0, 取1的情况很少,大于1的就几乎绝种了。
d与sd是差分,difference,d是描述长期趋势,sd是季节性变化,这两个参数的取值几乎也都是0,1,2,要做几次差分就取几作值。
q与sq是平滑计算次数,如果序列变化特别剧烈,就要进行平滑计算,计算几次就取几做值,这两个值大多数情况下总有一个为0,也很少超过2的。
ARIMA的思路很简单,首先用差分去掉季节性波动,然后去掉长期趋势,然后平滑序列,然后用一个线性函数+白噪声的形式来拟合序列,就是不断的用前p个值来计算下一个值。
用SPSS来做ARIMA大概有这些步骤:1定义日期,确定季节性的周期,菜单为Data-Define dates2画序列图来观察数值变化,菜单为Graph-sequence / Time Series - autoregressive3若存在季节性波动,则做季节性差分,Graph- Time Series - autoregressive,先做一次,返回2观察,如果数列还存在季节性波动,就再做一次,需要做几次,sd就取几4若观察到差分后的数列中有某些值远远大于平均值,则需要做平滑,做几次sq就取几5然后看是否需要做去除长期趋势的差分,确定p与sp6然后在ARIMA模型中测试是否存在其他属性影响预测属性,如果Approx sig接近0,则说明该属性可以加入模型,作为独立变量,值得注意的是,如果存在突变,可以根据情况自定义变量,这个在判断突变的原因比重时特别有用。
移动平均法移动平均法又称滑动平均法、滑动平均模型法(Moving average,MA)什么是移动平均法?移动平均法是用一组最近的实际数据值来预测未来一期或几期内公司产品的需求量、公司产能等的一种常用方法。
移动平均法适用于即期预测。
当产品需求既不快速增长也不快速下降,且不存在季节性因素时,移动平均法能有效地消除预测中的随机波动,是非常有用的。
移动平均法根据预测时使用的各元素的权重不同移动平均法是一种简单平滑预测技术,它的基本思想是:根据时间序列资料、逐项推移,依次计算包含一定项数的序时平均值,以反映长期趋势的方法。
因此,当时间序列的数值由于受周期变动和随机波动的影响,起伏较大,不易显示出事件的发展趋势时,使用移动平均法可以消除这些因素的影响,显示出事件的发展方向与趋势(即趋势线),然后依趋势线分析预测序列的长期趋势。
移动平均法的种类移动平均法可以分为:简单移动平均和加权移动平均。
一、简单移动平均法简单移动平均的各元素的权重都相等。
简单的移动平均的计算公式如下:Ft=(At-1+At-2+At-3+…+At-n)/n式中,∙Ft--对下一期的预测值;∙n--移动平均的时期个数;∙At-1--前期实际值;二、加权移动平均法加权移动平均给固定跨越期限内的每个变量值以不同的权重。
其原理是:历史各期产品需求的数据信息对预测未来期内的需求量的作用是不一样的。
除了以n为周期的周期性变化外,远离目标期的变量值的影响力相对较低,故应给予较低的权重。
加权移动平均法的计算公式如下:Ft=w1At-1+w2At-2+w3At-3+…+wnAt-n式中,∙w1--第t-1期实际销售额的权重;∙w2--第t-2期实际销售额的权重;∙wn--第t-n期实际销售额的权∙n--预测的时期数;w1+ w2+…+ wn=1在运用加权平均法时,权重的选择是一个应该注意的问题。
经验法和试算法是选择权重的最简单的方法。
一般而言,最近期的数据最能预示未来的情况,因而权重应大些。