解一元一次方程(二)——去括号与去分母 优秀教案设计
- 格式:pdf
- 大小:110.33 KB
- 文档页数:4
3.3 解一元一次方程(二)——去括号与去分母教学设计1教学目标知识目标:学会解一元一次方程的方法,掌握一元一次方程解法的一般步骤。
情感目标:通过创设新情境,引入新问题,激发学生的求知欲。
能力目标:通过学生观察方程,发现并解决问题,培养他们主动获取知识的能力及概括能力。
德育目标:通过教学,对学生进行事物之间是相互联系的辨证唯物主义观点的教育。
2学情分析让学生理解如何去分母,去分母时的注意事项;学生前面已掌握了解一元一次方程的步骤。
在本节课中继续强化,特别是每一个步骤的关键点别犯错。
通过小组讨论,交流等方式让学生明白如何用去分母的方法来转化为我们前面尝过的知识。
3重点难点去分母解一元一次方程,掌握一元一次方程解法的一般步骤。
4教学过程一、创设情境,引入新课1、提出问题我校逸夫楼前小广场地板铺设工作,甲单独做需要15天完成,乙单独做需要12天完成。
现在甲先单独做1天,接着乙又单独做4天,剩下的工作再由甲、乙两人合做, 问再合做多少天可以完成全部工作任务?2、分析问题甲单独做需要15天完成,那么每天完成_____,甲共做了___天,所以甲的工作量为______。
乙单独作需要2天完成,乙共做了____天,同样可以得到乙的工作量为_______。
3、学生找出等量关系并列出方程。
等量关系:甲的工作量+乙的工作量=工作总量1设合做x天可以完成全部工作量,列出方程得:置疑:本方程如何解?与前面学过的方程有何区别?活动2【练习】知识回顾二、知识回顾1、解一元一次方程的步骤:①去括号②移项③合并同类项④系数化为12、温故而知新(1)5(x+8)-2(x-2)=6变形正确的是()A、5x+8-2x+2=6B、5x+40-2x-4=6C、5x+8-2x-2=6D、5x+40-2x+4=6(2)解方程:2(2x-1)=6+3(x-1)解:去括号,得 4x-2=6+3x-3移项,得4x-3x=6-3+2 (移项要变号)合并同类项,得x=5活动3【讲授】去分母三、初探新知1、例题:解:去分母5(3x+1)-20=(3x-2)-2(2x+3)去括号: 15x+5-20=3x-2-4x-6移项: 15x+4x-3x =-2-6-5+20合并同类项: 16x=7系数化为1:2、及时小结:去分母时不含分母的项也要乘以所有分母的最小公倍数;分子是多项式时,去分母时要注意加上括号。
教学设计:2024秋季七年级数学上册第三章一元一次方程《解一元一次方程(二):去括号与去分母——去括号》教学目标(核心素养)1.知识与技能:学生能够理解并掌握解一元一次方程中“去括号”的步骤和方法,能够准确地将含有括号的一元一次方程转化为无括号的形式。
2.数学思维:培养学生的代数运算能力和逻辑推理能力,通过去括号的过程,理解方程中符号变化规则。
3.情感态度:激发学生对数学学习的兴趣,培养耐心、细致的学习态度和解决问题的能力。
教学重点•掌握去括号的方法,即将含有括号的一元一次方程转化为无括号的形式。
•理解去括号过程中符号变化的规则。
教学难点•正确处理括号前为负号时,括号内各项符号的变化。
•在复杂方程中准确识别并应用去括号的方法。
教学资源•多媒体课件(包含含括号的一元一次方程示例、去括号步骤演示、练习题)•黑板及粉笔(用于板书关键概念和例题)•学生笔记本(用于记录课堂笔记和练习)•实物教具(如括号形状的卡片,用于直观展示去括号过程)教学方法•讲授法:结合具体例子,详细讲解去括号的方法和步骤。
•演示法:利用多媒体课件或实物教具,逐步演示去括号的过程。
•练习巩固法:通过分层练习,巩固学生对去括号方法的掌握。
•合作学习法:组织小组讨论,让学生共同解决去括号过程中遇到的问题。
教学过程要点导入新课•复习引入:回顾一元一次方程的基本概念和上一节学习的简单方程解法,引出当方程中出现括号时,需要采用新的策略来求解。
•情境导入:通过一个实际问题(如购物找零、分配任务等),引导学生发现方程中的括号,并思考如何去除括号以简化方程。
新课教学•去括号的方法:•基本规则:明确去括号时,如果括号前是正号,则括号内各项符号不变;如果括号前是负号,则括号内各项符号都要改变。
•示例讲解:选取几个典型例题,逐步演示去括号的过程,强调符号变化的规则。
•复杂情况:介绍含有多个括号或嵌套括号的方程,引导学生理解并应用去括号的规则。
•注意事项:提醒学生在去括号过程中注意符号的正确性,特别是括号前为负号时的情况。
人教版数学七年级上册3.3《解一元一次方程(二)——去括号与去分母》教学设计一. 教材分析《人教版数学七年级上册3.3解一元一次方程(二)——去括号与去分母》这一节主要是让学生掌握解一元一次方程中的一种方法——去括号与去分母。
在学习了解一元一次方程的基础知识之后,本节内容是对学生解题能力的进一步提升。
通过本节内容的学习,学生能够熟练掌握去括号与去分母的步骤和技巧,为后续的学习打下坚实的基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于解一元一次方程的基本步骤和方法已经有了一定的了解。
但是,学生在实际操作中可能会遇到去括号和去分母的困惑。
因此,在教学过程中,教师需要引导学生理解去括号和去分母的原理,并通过大量的练习让学生熟练掌握操作步骤。
三. 教学目标1.让学生掌握去括号与去分母的步骤和技巧。
2.培养学生解决实际问题的能力,提高学生的数学素养。
3.通过对本节内容的学习,使学生能够灵活运用所学的知识,解决更复杂的问题。
四. 教学重难点1.去括号与去分母的步骤和技巧。
2.在实际问题中,如何正确运用去括号与去分母的方法。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题引导学生思考,提供典型案例让学生分析,小组讨论使学生相互学习,共同提高。
六. 教学准备1.PPT课件2.教学案例七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容,让学生思考如何解决这类问题。
2.呈现(10分钟)呈现去括号与去分母的步骤和技巧,引导学生理解并掌握。
3.操练(10分钟)学生分组进行练习,教师巡回指导,及时解答学生的疑问。
4.巩固(10分钟)针对学生练习中出现的问题,进行讲解和总结,使学生加深对去括号与去分母方法的理解。
5.拓展(5分钟)提供一些拓展问题,让学生思考如何在实际问题中运用去括号与去分母的方法。
6.小结(5分钟)对本节内容进行总结,强调重点和难点,提醒学生注意事项。
7.家庭作业(5分钟)布置一些练习题,让学生巩固所学知识。
教学准备1. 教学目标知识与技能:①掌握去括号解一元一次方程的方法,能熟练求解一元一次方程(数字系数),并判别解的合理性。
②会用去分母的方法解一元一次方程,通过去分母解方程,让学生了解数学中的“化归”思想。
③会根据实际问题中数量关系列方程解决问题,提高数学建模能力,熟练掌握一元一次方程的解法。
过程与方法:①会将实际问题抽象为数学问题,进而通过列方程解决问题,逐步渗透方程思想和化归思想。
②经历把“实际问题抽象为方程”的过程,发展用方程的方法分析解决问题的能力。
情感态度与价值观:①增强数学的应用意识,激发学习数学的热情。
②让学生了解数学的辉煌历史,培养学生热爱数学,勇于探索的精神。
2. 教学重点/难点教学重点①去括号解方程,将实际问题抽象为方程,列方程解应用题。
②会用去分母的方法解方程。
教学难点①将实际问题抽象为方程的过程中,如何找出等量关系。
②实际问题中如何建立等量关系,并根据等量关系列出方程。
3. 教学用具4. 标签教学过程1 要点回顾一元一次方程的解法我们学了哪几步?每一步都要注意哪些问题?【教师说明】总结同学们的答案,指出以前学过的解方程的步骤为:移项合并同类项系数化为1.移项时应注意:移项要变号。
合并同类项应注意:只是把同类项的系数相加作为所得项的系数,字母部分不变。
系数化为1时应注意:要方程两边同时除以未知数前面的系数。
2 问题引入问题一:某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?【教师说明】若设上半年每月平均用电x度,则下半年每月平均用电 x-2000 度,上半年共用电 6x 度,下半年共用电 6(x-2000) 度。
因为全年共用了15万度电,所以,可列方程 6x+6(x-2000) =150000 .【板书】 6x+6(x-2000) =150000去括号,得: 6x+6x-12000=150000移项,得: 6x+6x=150000+12000合并同类项,得: 12x=162000系数化为1,得: x=13500答:这个工厂去年上半年每月平均用电13500度。
《解一元一次方程(二)——去括号与去分母》公开课教案XX中学王老师教学目标1. 知识与技能:掌握一元一次方程中去括号与去分母的基本方法与步骤。
2. 过程与方法:通过实际例子和互动,培养学生的逻辑思维能力和问题解决能力。
3. 情感态度与价值观:增强学生学习数学的兴趣和信心,体会数学在日常生活中的应用。
教学重点与难点教学重点:理解并掌握去括号和去分母的方法。
教学难点:灵活运用去括号和去分母解决实际问题。
教学过程一、导入故事引入:讲述一个生活中的小故事,比如小华和小刚分饼干,小华分了两次,每次分一半,结果发现总量没有变化。
引导学生思考:这和我们今天要学习的去括号与去分母有什么关系?二、新课讲授1. 去括号定义:去括号是指把括号内的项通过分配律展开。
举例:例如3(2x + 4),我们可以展开为6x + 12。
互动:提问学生:如果是4(3y 2),我们该如何去括号?2. 去分母定义:去分母是指通过乘以方程的最小公倍数,使分母消失。
举例:例如方程1/2x + 1/3 = 5,如何去分母?步骤:1. 找到最小公倍数:62. 方程两边都乘以6:6(1/2x + 1/3) = 653. 化简:3x + 2 = 30互动:让学生尝试解方程2/(3x) 1/4 = 1,讨论他们的步骤和方法。
3. 实际应用情境设置:假设你和朋友一起做了一个项目,收入按比例分配。
你们一起赚了240元,你得到的比例是1/3,你朋友得到的比例是1/2。
设你朋友的收入为x元,列出方程并解答。
学生讨论:x/2 + x/3 = 240,解方程。
三、练习巩固1. 课堂练习解以下方程,并去括号与去分母:1. 5(2x 3) = 42. 1/3y + 1/2 = 5互动:学生解答后,同桌互相检查,并讨论解决过程中的难点。
2. 教师讲解针对学生易错点进行讲解和纠正。
四、回顾反思、课堂小结总结:今天我们学习了去括号和去分母的方法,这些方法在解一元一次方程中非常重要。
解一元一次方程(二)——去括号与去分母教案《解一元一次方程(二)——去括号与去分母教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!作业内容解一元一次方程(二)教学设计【课标目标】(1)掌握去括号法则.(2)熟练掌握解一元一次方程的一般步骤.【教学重点】重点:通过“去括号”解一元一次方程.难点:探究通过“去括号”的方程解一元一次方程.【教学设计】一、创设情景,引入新课[活动1]问题(1)某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电15万度,这个工厂去年每月平均用电多少度?能不能用方程解决这个问题?教师口述,学生思考并回答问题.教师对学生的回答进行总结:设上半年每月平均用电X度,则下半年每月平均用电(X-2000)度,上半年共用电6X度,下半年共用电6(X-2000)度由题意列方程6x+6(x-2000)=150000二、实践探索,揭示新知1.问题(2)能尝试解这个方程吗?学生独立完成解方程教师巡视,观察学生的解题方法,并请学生表述解法及解法依据.(1)去括号;(2)移项;(3)合并同类项;(4)系数化为1.本次活动中,教师应重点关注:(1)学生能否体会到“去括号”的必要性(2)学生是否能明确“去括号”的可行性(3)学生能否总结出“去括号”的步骤(4)学生能否正确表达自己的想法,能否倾听、思考、理解他人的想法2.[活动2]问题(1)解方程3x-7(x-1)=3-2(x+3)应该怎样求解?学生观察方程的特点,回答问题教师提出问题并对学生的回答进行总结:先去括号问题(2)怎样去括号在独立思考的基础上,学生分组交流,总结去括号的正确方法.教师深入小组参与活动,指导、倾听学生的交流.归纳去括号的方法:括号前面的数分别乘以括号里的数,然后再把积相加.3.例题讲解:例1.解方程:3x-7(x-1)=3-2(x+3)本例师生共同完成,教师要给学生一个完整规范的示例,告诉学生完整规范的过程可以避免许多不必要的错误.4.练习P971,2P1024三、课堂小结谈一谈你对形如6x+6(x-2000)=150000的方程的解法的认识.说一说你分析列方程解应用题的思路.四、作业五、设计意图本课时主要是讲授去括号法则,以及解一元一次方程的程序.教师在讲授新课是都可以通过一些具体的实例来引入课题,再逐步的把知识灌给学生.本课时是通过用电问题列出一元一次方程,通过要求方程的解来把去括号法则这知识传授给学生.在掌握了具体知识的基础上再通过讲授例题加深对知识的巩固.本节内容是去括号解一元一次方程,方程是代数学的核心内容,从学生生活的常见游戏和生活中的实例入手,引起学生的学习兴趣,激发学生钻研问题的能力,进而进入知识的学习,从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础.解一元一次方程(二)——去括号与去分母教案这篇文章共3283字。
《解一元一次方程(二)——去括号去分母》教案【教学目标】1.掌握解一元一次方程的基本步骤,理解去括号和去分母的作用和意义。
2.学会通过去括号和去分母来解一元一次方程,提高分析问题和解决问题的能力。
3.培养学生的数学思维能力和解决问题的能力,激发学生对数学的兴趣。
【教学重点】掌握解一元一次方程的基本步骤,理解去括号和去分母的原理和方法。
【教学难点】去括号和去分母的技巧和方法,解实际问题的能力。
【教具准备】多媒体课件、小黑板、练习纸。
【教学过程】一、导入新课通过回顾上节课学过的内容,引出去括号和去分母的概念和方法,以及解一元一次方程的基本步骤。
然后通过实例引导学生理解去括号和去分母的作用和意义。
最后引出本节课的主题:解一元一次方程(二)——去括号去分母。
二、探索新知1.去括号:通过讲解和实例演示,让学生掌握去括号的原理和方法。
具体步骤是:括号前面是正号,去掉括号不变号;括号前面是负号,去掉括号要变号。
通过练习题让学生掌握去括号的技巧。
2.去分母:通过讲解和实例演示,让学生掌握去分母的原理和方法。
具体步骤是:在方程两边同时乘以各分母的最小公倍数,去掉分母。
通过练习题让学生掌握去分母的技巧。
3.解一元一次方程的基本步骤:通过讲解和实例演示,让学生掌握解一元一次方程的基本步骤。
具体步骤是:去括号、去分母、移项、合并同类项、系数化为1。
通过练习题让学生掌握解一元一次方程的技巧。
4.解实际问题的能力:通过讲解和实例演示,让学生掌握解实际问题的能力。
具体步骤是:分析问题中的等量关系,设未知数、列方程、解方程并检验。
通过练习题让学生掌握解实际问题的技巧。
三、巩固提高1.通过一系列的练习题,让学生进一步巩固所学的知识。
2.通过一些实际问题,让学生应用所学的知识解决实际问题。
3.通过一些拓展性问题,激发学生的思维能力和创新能力。
四、课堂小结1.回顾本节课所学的知识点,让学生再次明确去括号和去分母的原理和方法以及解一元一次方程的基本步骤。
人教版数学七年级上册 3.3《解一元一次方程(二)—去括号与去分母》(去分母)教学设计1一. 教材分析《解一元一次方程(二)—去括号与去分母》是人教版数学七年级上册第三章第三节的内容。
这一节主要让学生掌握解一元一次方程的基本技巧。
在学习了《解一元一次方程(一)—解方程》的基础上,学生已经掌握了基本的解方程方法,这一节将重点介绍如何去括号和去分母。
去括号和去分母是解一元一次方程的重要步骤,也是解决实际问题的必要手段。
这一节的内容不仅为后续的方程求解和实际应用打下基础,也为学生进一步学习代数和函数提供了必要的工具。
二. 学情分析学生在学习这一节的内容时,需要具备基本的代数运算能力,能够进行简单的加减乘除运算。
同时,学生需要具备一定的逻辑思维能力,能够理解去括号和去分母的原理,并能够运用到实际问题中。
在学习过程中,学生可能对去括号和去分母的规则理解不够深入,容易在实际操作中出错。
因此,教师需要通过生动的例子和实际问题,帮助学生理解和掌握这一节的内容。
三. 教学目标1.知识与技能目标:使学生掌握去括号和去分母的方法,能够运用这些方法解一元一次方程。
2.过程与方法目标:通过实例分析和练习,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和积极进取的精神。
四. 教学重难点1.重点:去括号和去分母的方法。
2.难点:如何将实际问题转化为方程,并运用去括号和去分母的方法解决。
五. 教学方法采用问题驱动法、实例分析法、小组合作法等教学方法。
通过生动有趣的例子和实际问题,引导学生思考和探索,激发学生的学习兴趣。
在教学过程中,注重学生的参与和互动,培养学生的逻辑思维能力和解决问题的能力。
六. 教学准备1.准备相关的实例和实际问题,用于引导学生思考和探索。
2.准备PPT,用于展示和讲解去括号和去分母的方法。
3.准备练习题,用于巩固学生对去括号和去分母的掌握。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何将问题转化为方程,并引入去括号和去分母的概念。
解一元一次方程(二)——去括号与去分母(第1课时)教学目标1.掌握利用去括号法则解含括号的一元一次方程的方法.2.掌握解含括号的一元一次方程的一般步骤.3.能够找出实际问题中的已知量和未知量,根据相等关系列出方程,能够利用一元一次方程解决实际问题,提高根据实际问题建立方程模型的能力.教学重点解含有括号的一元一次方程.教学难点选择合适的相等关系,用方程模型表示问题中的相等关系.教学过程知识回顾1.求出未知数并说明解题步骤.(1)若5x-4=-9+3x,则x=________.(2)若7x+6=16-3x,则x=_________.【师生活动】教师提问:如何解上面方程?学生回答:可以利用移项的方法解方程.教师追问:利用移项解一元一次方程的基本步骤是什么?学生回答:移项;合并同类项;系数化为1.【答案】(1)52(2)12.化简下列整式并说明你的依据.(1)2(6x+5)=_______________.(2)-3(7x-5)=_____________.【师生活动】教师提问:如何进行整式的化简?学生回答:(1)有括号,先去括号;(2)有同类项,再合并同类项,化简的最终结果不含同类项.【答案】(1)12x+10(2)-21x+15【设计意图】带领学生复习已学过的解方程和去括号知识,为引出本节课“利用去括号解一元一次方程”作铺垫.新知探究一、探究学习【问题】某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2 000 kW·h(千瓦·时),全年用电15万kW·h.这个工厂去年上半年每月平均用电量是多少?【师生活动】教师提问:问题中涉及了哪些量?学生回答:上半年月平均用电量,下半年月平均用电量,全年用电量.教师提问:这些量之间有怎样的关系?学生回答:6×上半年月平均用电量+6×下半年月平均用电量=全年用电量.教师总结:在列方程时,“总量=各部分量的和”是一个基本的相等关系.学生尝试作答.解:设上半年每月平均用电x kW·h,则下半年每月平均用电(x-2 000) kW·h;上半年共用电6x kW·h,下半年共用电6(x-2 000) kW·h.根据全年用电15万kW·h,列方程,得6x+6(x-2 000)=150 000.教师追问:如何解这个方程?教师提示:如果去括号,就能简化方程的形式.学生尝试作答.解:去括号,得6x+6x-12 000=150 000.移项,得6x+6x=150 000+12 000.合并同类项,得12x=162 000.系数化为1,得x=13 500.教师总结:方程中有带括号的式子时,去括号是常用的化简步骤.教师提问:本题还有其他列方程的方法吗?用其他方法列出的方程应怎样解?学生回答:可以根据“表示同一个量的两个式子相等”来列方程.(1)下半年月平均用电量=上半年月平均用电量-2 000;(2)下半年月平均用电量=16(全年用电量-上半年用电量).【答案】解:设上半年每月平均用电x kW·h,由题意,得16(150 000-6x)=x-2 000.去括号,得25 000-x=x-2 000.移项,得-x-x=-25 000-2 000.合并同类项,得-2x=-27 000.系数化为1,得x=13 500.答:这个工厂去年上半年每月平均用电13 500 kW·h.【新知】利用去括号解一元一次方程的基本步骤:(1)去括号;(2)移项;(3)合并同类项;(4)系数化为1.【设计意图】从学生熟悉的列方程知识入手,提出问题“如何解方程”,激发学生的学习兴趣,学生通过观察、发现原方程与目标之间的差异,能分析、寻找消除差异的方法,初步体会转化的数学思想方法的应用.二、典例精讲【例1】解下列方程:(1)2x-(x+10)=5x+2(x-1);(2)3x-7(x-1)=3-2(x+3).【答案】解:(1)去括号,得2x-x-10=5x+2x-2.移项,得2x-x-5x-2x=-2+10.合并同类项,得-6x=8.系数化为1,得43x=-.(2)去括号,得3x-7x+7=3-2x-6.移项,得3x-7x+2x=3-6-7.合并同类项,得-2x=-10.系数化为1,得x=5.【例2】一艘船从甲码头到乙码头顺流而行,用了2 h;从乙码头返回甲码头逆流而行,用了2.5 h.已知水流的速度是3 km/h,求船在静水中的平均速度.【师生活动】教师提问:一般情况下可以认为这艘船往返的路程相等,由此填空:顺流速度____顺流时间____逆流速度____逆流时间.顺流速度=静水速度____水流速度.逆流速度=静水速度____水流速度.学生回答:顺流速度×顺流时间=逆流速度×逆流时间.顺流速度=静水速度+水流速度.逆流速度=静水速度-水流速度.【答案】解:设船在静水中的平均速度为x km/h,则顺流速度为(x+3) km/h,逆流速度为(x-3) km/h.根据往返路程相等,得2(x+3)=2.5(x-3).去括号,得2x+6=2.5x-7.5.移项及合并同类项,得0.5x=13.5.系数化为1,得x=27.答:船在静水中的平均速度为27 km/h.【设计意图】通过例题1、例题2的练习与讲解,巩固学生对已学知识的理解及应用.课堂小结板书设计一、利用去括号解一元一次方程二、列方程课后任务完成教材第95页练习(1)~(4)小题.。
第三章一元一次方程3.3 解一元一次方程(二)——去括号与去分母第2课时一、教学目标【知识与技能】1.掌握含有分母的一元一次方程的解法;2. 进一步掌握利用一元一次方程解决实际问题【过程与方法】经历分析“工程问题”中数量关系过程,培养分析问题和解决问题的能力.【情感态度与价值观】1.归纳解一元一次方程的步骤,体会转化的思想方法。
2. 让学生了解数学的渊源及辉煌的历史,激发学生的学习热情;二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】掌握含有以常数为分母的一元一次方程的解法.【教学难点】加深学生对一元一次方程概念的理解,并总结出解一元一次方程的步骤.五、课前准备教师:课件、三角尺、等式的性质等。
学生:三角尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课下面是一道著名的求未知数的问题. (出示课件2-4)一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,求这个数.教师问1:思考题中涉及到哪些数量关系和相等关系?学生回答:它的三分之二+它的一半+它的七分之一+它的全部=33教师问2:引进什么样的未知数,能根据这样的相等关系列出方程呢?学生回答:设这个数为x. 根据题意,得23x+12x+17x+x=33.教师问3:这个方程与前面学过的一元一次方程有什么不同?学生回答:这个方程含有分母.教师:怎样解这个方程呢?这节课我们就来学习怎样解答这类方程。
(二)探索新知1.师生互动,探究含有分母的一元一次方程的解法解方程:3x+12−2=3x−210−2x+35(出示课件6)教师问4:若使方程的系数变成整系数方程,方程两边应该同乘什么数?学生讨论后回答:两边同乘以分母的最小公倍数.教师问5:去分母时要注意什么问题?学生回答:分子是多项式的要加括号,等式里的整数不要漏乘.教师问6:哪位同学试着解答一下?学生小组讨论后,师生共同解答如下:(出示课件7)教师问7:下列方程的解法对不对?如果不对,你能找出错在哪里吗?(出示课件8)解方程:2x−13−x+22=1解:去分母,得 4x -1-3x + 6 = 1 ①移项,合并同类项,得 x=4 ②学生回答:总结点拨:解一元一次方程的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1。
3 解一元一次方程(二)——去括号与去分母【优质一等奖创新教案】班海数学精批——一本可精细批改的教辅3.3 解一元一次方程(二)——去括号与去分母第1课时教学目标1.知识与技能掌握用一元一次方程解决实际问题的方法,会用分配律,去括号解决关于含括号的一元一次方程.2.过程与方法.经历应用方程解决实际问题的过程,发展分析问题,解决问题的能力,进一步体会方程模型的作用.3.情感态度与价值观关注学生在建立方程和解方程过程中的表现,发展学生积极思考的学习态度以及合作交流的意识.重、难点与关键1.重点:列方程解决实际问题,会解含有括号的一元一次方程.2.难点:列方程解决实际问题.3.关键:建立等量关系.教具准备投影仪.教学过程一、引入新课我们已经学习了运用一元一次方程解决一些比较简单的实际问题.本节继续讨论如何列、解一元一次方程的问题.当问题中数量关系较复杂时,列出的方程的形式也会较复杂,解方程的步骤也相应更多些.问题:某工厂加强节能措施,•去年下半年与上半年相比,•月平均用电量减少2000度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?你会用方程解这道题吗?教师操作投影仪,提出问题,学生思考,并与同伴交流,探索列方程思路.在学生充分思考、交流后,教师引导学生作以下分析:1.本问题的等量关系是什么?2.如果设上半年每月平均用电x度,那么怎样表示下半年每月平均用电量、上半年共用电量和下半年共用电量.3.根据等量关系,列出方程.4.怎样解这个方程.思路点拨:本问题的等量关系是:上半年用电量(度)+下半年用电量(度)=150000设上半年每月平均用电x度,则下半年每月平均用电(x-2000)度,•上半年共用电6x度,下半年共用电6(x-2000)度,列方程6x+6(x-2000)=150000去括号,得6x+6x-12000=150000移项,得6x+6x=150000+12000合并同类项,得12x=162000系数化为1,得x=13500因此,这个工厂去年上半年平均每月用电13500度.思考:本题还有其他列方程的方法吗?用其他方法列出的方程应怎样解?点拨:如果设去年下半年平均每月用电x度,那么怎样列方程呢?•这个方程的解是问题的答案吗?设去年下半年平均每月用电x度,则上半年平均每月用电(x+2000)度,列方程,6(x+2000)+6x=150000.解方程,得x=11500,那么上半年平均每月用电量为11500+2000=13500(度).方法一叫直接设元法,方程的解就是问题的答案;方法二是间接设元法,方程的解并不是问题答案,需要根据问题中的数量关系求出最后答案.方程中有带括号的式子时,利用分配律去括号是常用的化简步骤.二、范例学习例1.解方程:3x-7(x-1)=3-2(x+3).解法见课本强调去括号时,要注意的事项.三、巩固练习课本第95页练习,第98页习题3.3第5题.1.解:(2)去括号,得4x+6x-9=12-x-4移项,得4x+6x+x=12-4+9合并,得11x=17系数化为1,得x=(3)去括号,得3x-24+2x=7-x+1移项,得3x+2x+x=7+1+24合并,得5x=32系数化为1,得x=6思路点拨:用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号.方程中有多重括号时,一般应按先去小括号,再去中括号,再去大括号的顺序去括号.2.解:设甲用x分登山.由甲先出发30分钟,甲、乙同时到达山顶,则乙用_______•分登山;•甲每分登高10米,则这座山高表示为______米,乙每分登高15米,•那么这座山高又表示为______米,相等关系为________.列方程10x=15(x-30)去括号,得10x=15x-450移项,得10x-15x=-450合并,得-5x=-450系数化为1,得x=90把x=90代入10x=900答:甲用90分登山,这座山高为900米.四、课堂小结本节课我们继续讨论列方程解决实际问题,同时学习了如何解含有括号的方法,解此类方程,一般地先去括号,后移项,合并,系数化为1,•并且注意去括号时易出错的问题.五、作业布置1.课本第98页习题3.3第1、2、4、6题.2.选用课时作业设计.第2课时教学内容课本第94页至第95页.教学目标1.知识与技能进一步掌握列一元一次方程解应用题的方法步骤.2.过程与方法通过分析行程问题中顺流速度、逆流速度、水流速度、静水中的速度的关系,以及零件配套问题中的等量关系,进一步经历运用方程解决实际问题的过程,体会方程模型的作用.3.情感态度与价值观培养学生自主探究和合作交流意识和能力,体会数学的应用价值.重、难点与关键1.重点:分析问题中的数量关系,找出能够表示问题全部含义的相等关系,•列出一元一次方程,并会解方程.2.难点:找出能够表示问题全部含义的相等关系,列出方程.3.关键:找出能够表示问题全部含义的相等关系.教学过程一、复习提问1.行程问题中的基本数量关系是什么?路程=速度×时间可变形为:速度= "www./" EMBED Equation.DSMT4 .2.相遇问题或追及问题中所走路程的关系?相遇问题:双方所走的路程之和=全部路程+原来两者间的距离.(原来两者间的距离)追及问题:快速行进路程=慢速行进路程+原来两者间的距离或快速行进路程-慢速行进路程=原路程(原来两者间的距离).二、新授例2:一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时,已知水流的速度是3千米/时,求船在静水中的平均速度.分析:(1)顺流行驶的速度、逆流行驶的速度、水流速度,船在静水中的速度之间的关系如何?顺流行驶速度=船在静水中的速度+水流速度逆流行驶速度=船在静水中的速度-水流速度(2)设船在静水中的平均速度为x千米/时,由此填空(课本第97页).(3)问题中的相等关系是什么?解:一般情况下,船返回是按原路线行驶的,因此可以认为这船的往返路程相等,由此,列方程:2(x+3)=2.5(x-3)去括号,得2x+6=2.5x-7.5移项及合并,得-0.5x=-13.5系数化为1,得x=27答:船在静水中的平均速度为27千米/时.说明:课本中,移项及合并,得0.5x=13.5是把含x的项移到方程右边,常数项移到左边后合并,得13.5=0.5x,再根据a=b就是b=a,即把方程两边同时对调,这不是移项.例3:某车间22•名工人生产螺钉和螺母,•每人每天平均生产螺钉1200•个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,•应该分配多少名工人生产螺钉,多少名工人生产螺母?分析:已知条件:(1)分配生产螺钉和生产螺母人数共22名.(2)每人每天平均生产螺钉1200个,或螺母2000个.(3)一个螺钉要配两个螺母.(4)为使每天的产品刚好配套,应使生产的螺母数量与螺钉数量之间有什么样关系?螺母的数量应是螺钉数量的两倍,这正是相等关系.解:设分配x人生产螺钉,则(22-x)人生产螺母,由已知条件(2)得,每天共生产螺钉1200x个,生产螺母2000(22-x)个,由相等关系,列方程2×1200x=2000(22-x)去括号,得2400x=44000-2000x移项,合并,得4400x=44000x=10所以生产螺母的人数为22-x=12答:应分配10名工人生产螺钉,12名工人生产螺母.本题的关键是要使每天生产的螺钉、螺母配套,弄清螺钉与螺母之间的数量关系.三、巩固练习课本第99页第7题.解法1:本题求两个问题,若设无风时飞机的航速为x千米/时,那么与例1类似,可得顺风飞行的速度为(x+24)千米/时,逆风飞行的速度为(x-24)千米/时,根据顺风飞行路程=逆风飞行路程,列方程:2(x+24)=3(x-24)去括号,得"www./" EMBED Equation.DSMT4 x+68=3x-72 移项,合并,得-x=-140系数化为1,得x=840两城之间的航程为3(x-24)=2448答:无风时飞机的航速为840千米/时,两城间的航程为2448千米.解法2:如果设两城之间的航程为x千米,你会列方程吗?这时相等关系是什么?分析:由两城间的航程x千米和顺风飞行需2小时,逆风飞行需要3小时,可得顺风飞行的速度为千米/时,逆风飞行的速度为千米/时.在这个问题( http: / / zk. / " \o "欢迎登陆全品中考网)中,飞机在无风时的速度是不变的,即飞机在顺风飞行和逆风飞行中,无风时的速度相等,根据这个相等关系,列方程:-24=+24化简,得x-24=+24移项,合并,得"www./" EMBED Equation.DSMT4 x=48系数化为1,得x=2448即两城之间航程为2448千米.无风时飞机的速度为=840(千米/时)比较两种方法,第一种方法容易列方程,所以正确设元也很关键.四、课堂小结通过以上问题( http: / / zk. / " \o "欢迎登陆全品中考网)的讨论,我们进一步体会到列方程解决实际问题( http: / / zk. / " \o "欢迎登陆全品中考网)的关键是正确地建立方程中的等量关系.另外在求出x值后,一定要检验它是否合理,•虽然不必写出检验过程,但这一步绝不是可有可无的.五、作业布置1.课本第99页习题( http: / / zk. / " \o "欢迎登陆全品中考网)3.3第6题( http: / / zk. / " \o "欢迎登陆全品中考网).2.选用课时作业设计.第二课时作业设计一、填空题( http: / / zk. / " \o "欢迎登陆全品中考网).1.行程问题( http: / / zk. / " \o "欢迎登陆全品中考网)有三个基本量分别是______,_______,_______,•它们之间的关系有_________,________,_________.2.A、B两地相距480千米,一列慢车从A地开出,每小时走60千米,一列快车从B地开出,每小时走65千米.(1)两车同时开出,相向而行,x小时相遇,则列方程为________.(2)两车同时开出,•相背而行,•x•小时之后,•两车相距620•千米,•则列方程为__.(3)慢车先开出1小时,相背而行,慢车开出x小时后,两车相距620千米,则列方程为________.二、解答题( http: / / zk. / " \o "欢迎登陆全品中考网).3.一架飞机在两城市之间飞行,无风时飞机每小时飞行552千米,•在一次往返飞行中,飞机顺风飞行用去5小时,逆风飞行用了6小时,求这次飞行时的风速?4.2001年对甲、乙两所学校学生的身体素质进行测评,•结果两校学生达标人数共1500人,2002年甲校达标人数增加10%,乙校学生达标人数增加15%,•两校达标总人数比2001年增加12%,问2001年两校学生达标人数各多少?答案:一、1.略2.(1)60x+65x=480 (2)65x+60x+480=620 (3)60x+65(x-1)=620-480二、3.24千米/时,设这次飞行风速为x千米/时,5(552+x)=6(552-x)4.900人,600人,设甲校2001年学生达标x人,(1500-x)·15%+10%x=12%×1500.第3课时教学内容课本第95页至97页.教学目标1.知识与技能使学生掌握去分母解方程的方法,总结解方程的步骤.2.过程与方法经历去分母解方程的过程,体会把“复杂”转化为“简单”,把“新”转化为“旧”的转化的思想方法.3.情感态度与价值观培养学生自觉反思、检验方程的解是否正确的良好习惯.重、难点与关键1.重点:掌握去分母解方程的方法.2.难点:求各分母的最小公倍数,以及去分母时,有时要添括号.3.关键:正确利用等式性质,把方程去分母.教具准备投影仪.教学过程一、复习提问1.去括号时应该注意什么?2.等式的性质2是怎样叙述的?3.求12,4,9的最小公倍数.二、新授下面我们来讨论英国伦敦博物馆保存的一部极其珍贵的文物──纸莎草文书中的一个有关数学的问题.问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,你知道这个数是多少?用现在的数学符号表示,这道题就是方程:x+x+x+x=33当时的埃及人如果把问题写成这种形式,它一定是“最早”的方程.上面这个方程中有些系数是分数,如果能化去分母,把系数化成整数,则可使解方程中的计算更方便些.只要将方程两边同乘以42,就可化去方程中的分母.42×x+42×x+42×x+42x=42×33即28+21x+6x+42x=1386系数化为1,得x=为更全面地讨论问题,再以方程-2=为例,•看看解有分数系数的一元一次方程的步骤.我们知道,等式两边乘同一个数,结果仍相等,由此能否去掉这个方程的所有分母呢?要乘的这个数是多少比较合适呢?这个数就是方程中各分母的最小公倍数10,方程两边同乘以10.于是方程左边变为:10×(-2)=10×-10×2=5(3x+1)-10×2去了分母,方程右边变为什么?你算一算.下面的框图表示了解这个方程的具体过程.(见课本第100页)解:去分母,得5(3x+1)-10×2=(3x-2)-2(2x+3)去括号,得15x+5-20=3x-2-4x-6移项,得15x-3x+4x=-2-6-5+20合并,得16x=7系数化为1,得x=思路点拨:(1)去分母所选的乘数应是所有分母的最小公倍数,不应遗漏;(2)用分母的最小公倍数去乘方程的两边时,•不要漏掉等号两边不含分母的项,如上面方程中的“2”.(3)去掉分母以后,分数线也同时去掉,分子上的多项式用括号括起来.回顾解以上方程的全过程,表示了一元一次方程解法的一般步骤,通过去分母──去括号──移项──合并──系数化为1等步骤,•就可以使一元一次方程逐步向着x=a的形式转化.这个过程主要依据等式的性质和运算律等.三、巩固练习课本第98页练习.(3)去分母,得3(5x-1)=6(3x+1)-4(2-x);去括号,得15x-3=18x+6-8+4x,移项,合并,得-7x=1,x=-.(4)去分母,得10(3x+2)-20=5(2x-1)-4(2x+1)去括号,得30x+20-20=10x-5-8-8x-4;移项,合并,得28x=-9,x=-.四、课堂小结1.解方程的思路:解一元一次方程实际上就是将一个方程利用等式性质和运算律进行一系列的变形,最终化为x=a,一般地,先去分母,然后移项、合并,最后系数化为1,当然这些步骤并不是一成不变的,要灵活运用这些步骤.2.去分母就是根据等式性质2,在方程两边都乘以分母的最小公倍数,常犯错误是漏乘不含有分母的项,再一个容易错误的地方是对分数线的理解不全面,分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.五、作业布置1.课本第98页习题3.3第3、9题.2.选用课时作业设计.第三课时作业设计一、下列方程的解法对不对?如果不对,错在哪里?应当怎样改正?1.=-1解:去分母,得2x-1=x+2-1移项,合并,得x=22.解:去分母,得2x-1-x+2=12-x移项,合并,得2x=11系数化为1,得x=二、解方程.答案:一、1.错,改正略.2.错,改正略.二、3.(1)y= "www./" EMBED Equation.DSMT4 (2)x=-7 (3)x=-2 (4)x=-2.感谢您下载使用【班海】教学资源。
解一元一次方程(二)——去括号与去分母
【课时安排】
2课时
【第一课时】
【教学目标】
1.知识目标:
(1)通过运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更简洁明了,省时省力。
(2)掌握去括号解一元一次方程的方法,能熟练求解一元一次方程(数字系数),并判别解的合理性。
2.能力目标:
(1)通过学生观察、独立思考等过程,培养学生归纳、概括的能力。
(2)进一步让学生感受到并尝试寻找不同的解决问题的方法。
3.情感目标:
(1)激发学生浓厚的学习兴趣,使学生有独立思考、勇于创新的精神,养成按客观规律办事的良好习惯。
(2)培养学生严谨的思维品质。
(3)通过学生间的互相交流、沟通,培养他们的协作意识。
【教学重难点】
教学重点:弄清列方程解应用题的思想方法,用去括号解一元一次方程。
教学难点:括号前面是“-”号,去括号时,应如何处理,括号前面是“-”号的,去括号时,括号内的各项要改变符号;在小学根深蒂固用算术方法解应用题的基础上,让学生逐步树立列方程解应用题的思想。
【教学过程】
一、创设情境,提出问题。
问题:我手中有6.x、30三张卡片,请同学们用他们编个一元一次方程,比一比看谁编的又快又对。
学生思考,根据自己对一元一次方程的理解程度自由编题。
问题:解方程528x -=()
解:582,2x x =+=,看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的奥秘。
问题:某工厂加强节能措施,去年下半年与上半年相比,月平均用电减少2000度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?
(教学说明:给学生充分的交流空间,在学习过程中体会“取长补短”的涵义,以求在共同学习中得到进步,同时提高语言组织能力及逻辑推理能力。
)
二、探索新知,情境解决。
问题:设上半年每月平均用电x 度,则下半年每月平均用电_____度;上半年共用电_____度,下半年共用电_____度。
问题:教师引导学生寻找相等关系,列出方程。
根据全年用电15万度,列方程,得()662000150000x x +-=。
问题:怎样使这个方程向x a =的形式转化呢?
()662000150000
x x +-=去括号
6612000150000
x x +-=移项
6615000012000x x +=+
合并同类项
12162000
x =系数化为1
13500
x =问题:本题还有其他列方程的方法吗?
用其他方法列出的方程应怎样解?
设下半年每月平均用电x 度,则()662000150000x x +-=。
(学生自己进行解题)
归纳结论:方程中有带括号的式子时,根据乘法分配律和去括号法则化简。
(括号前面是“+”号,把“+”号和括号去掉,括号内各项都不改变符号;括号前面是“-”号,把“
-”号和括号去掉,括号内各项都改变符号。
)
去括号时要注意:(1)不要漏乘括号内的任何一项;(2)若括号前面是“-”号,记住去括号后括号内各项都变号。
解一元一次方程——去括号。
例题:解方程()()
--=-+
x x x
371323
解:去括号,得377326
-+=--
x x x
移项,得372367
-+=--
x x x
合并同类项,得210
-=-
x
系数化为1,得5
x=
三、课堂总结。
本节课突出数学的应用意识。
教师首先用学生感兴趣的游戏和实际问题引入课题,然后逐步给出答案。
在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论,进行学习。
【第二课时】
【教学目标】
1.会从实际问题中抽象出数学模型,会用一元一次方程解决一些实际问题.
2.通过观察、实践、讨论等活动经历从实际中抽象数学模型的过程.
3.在积极参与教学活动过程中,初步体验一元一次方程的使用价值,形成实事求是的态度和独立思考的习惯。
【教学重难点】
教学重点:寻找实际问题中的等量关系,建立数学模型。
教学难点:弄清题意,用列方程解决实际问题。
【教学过程】
一、复习巩固
1.解下列方程:
(1)10x-4(3-x)-5(2+7x)=15x-9(x-2)
(2)3(2-3x)-3[3(2x-3)+3]=5
2.一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时.已知水流的速度是3千米/小时,求船在静水中的平均速度.
二、提出问题、探究新知
问题1:某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1 200个或螺母2 000个,一个螺钉要配两个螺母.为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?
解决问题的关键:
1.如果设x名工人生产螺钉,则名工人生产螺母;
2. 为了伸每天的产品刚好配套.应使生产的螺母恰好是螺钉数量的
练习1:某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?
问题2:要用20张白卡纸做包装盒,每张白卡纸可以做盒身两个,或者做盒底盖3个.如果
一个盒身和两个底盖可以做成一个包装盒,那么能否把这白卡纸分成两部分,一部分做盒身,一部分做底盖,使做成的盒身和盒底盖正好配套?请设计一种分法.
(想一想:如果一张白卡纸可以适当的套裁出一个盒身和一个盒底盖,那么,怎样分这些白卡纸,才能既使做出的盒身和盒底盖配套,又能充分地利用白卡纸?)
练习2:
1.用白铁皮做罐头盒,每张铁片可制盒身16个或制盒底43个一个盒身与两个盒底配成一套罐头盒.现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分地利用白铁皮?
2.某车间每天能生产甲种零件120个,或者乙种零件100个.甲、乙两种零件分别取3个、2个才能配成一套.要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?。