f
(k )
(k = 0 , 1 , 2 , … , n) (0) sin(x k ) 2 x 0
k si n 2
0 ,
k = 2m
(-1)m , k = 2m+1
数学分析(上)
可得
x sin x x 3!
3
3
(1)
5
n 1
x n cos x 2 n 1 (1) x (2n 1)! (2n 1)!
数学分析(上)
x 0 I, 设 f ( x ) 在区间 I 上具有 n+1 阶导数,
多项式 ( n) f ( x0 ) n Pn ( x ) f ( x0 ) f ( x0 )( x x0 ) ( x x0 ) n! 称为 f ( x )在x0处 n次Taylor多项式,公式(1)称为 f ( x ) 按 ( x x0 ) 的幂展开的 n阶泰勒公式, Rn ( x ) 称为拉格朗日型余项 . 注 1) n = 0 时 , 得到 Lagrange 中值定理 . 因此 Taylor公式是 Lagrange 定理的推广 . 2) n = 1 时 , 得到微分近似计算公式 .
2 n 1
x x sin x x 3! 5!
2 4
(1)
n 1
x 2 n 1 o x (2n 1)!
2n
2 n 1
x x n x 2 n 1 cos x 1 (1) o( x ) 2! 4! (2n)!
o( x )
数学分析(上)
Rn
( n 1 )
( x) f
( n 1 )
( x)
( n)
令 g(x)= ( x -x0 )n+1 , 则