必修4第一单元检测题
- 格式:doc
- 大小:37.00 KB
- 文档页数:4
Unit 1 ( Book 4) 复习测试题Class:_________ Name:_____________ No:_________Ⅰ. 单词拼写(20分)1.Genius is 10%_____________(灵感)and 90%perspiration.2.I was ______________(资助,支持)by my parents when I was studying at collage.3.We have been told to show _____________(尊敬)for our elders.4.Tom, the top student of our class, thinks studying is a very _________(值得的)work.ing top in such an important exam is quite a(n) ____________ (成就).6.Their _______________ (行为)towards me shows that they do not like me.7.He was under _______________ (观察)by the police.8. Why are you _________________(和...争论)with your brother?9.A cancer research ________________ (协会)has been founded.10. A cinema is a place of _________________ (娱乐).11.In his speech, he ________________(谈到) to a recent trip to Canada.12.The newly-published story book ________________ (计划,打算)for children .13. The union leaders are_____________________ (作战,参加运动) for better working conditions.14.Sweet memories ______________ (挤满,使拥挤) in on me when I heard the song.15. A postman is a man who ______________ (接生,递送) letters and parcels.16.Please stop your _______________ (争辩) with me and do what you are told .17.They are sitting in the ____________ (阴凉处) of a tree, talking happily.18. We shall give careful ________________ (考虑) to your request.19. She is very ________________ (谦虚的) about the prizes she has won.20.If you meet an _____________ (突发事件) , you should ask the police for help.Ⅱ. 补全句子(20分)1.直到回到家我才发现我把钥匙留在办公室了。
⾼中⼈教版英语必修四Unit1-5同步练习题及单元检测题含答案【20份】2017年春⾼中⼈教版英语必修四Unit 1-5同步练习题及单元检测题含答案⽬录SectionⅠWarming Up,Pre-reading,Reading&Comprehending课时训练Ⅰ基础夯实Ⅰ.根据句意、汉语提⽰或⾸字母,写出单词的正确形式1.He is a little boy,but he b as if he were an adult.2.On summer afternoons,the old men sit in the s of the tree drinking tea.3.As we all know,WTO stands for World Trade O .4.I hope his success will i all of you to greater efforts.5.As we all know,Yuan Longping is a s in rice.6.China has made great scientific (成就) in outer space.7.A cinema is a public place of (娱乐).8.Through careful (观察) he found the secret of the birds’ life.9.He is an (直率的)person,and I like to make friends with him.10.After the violent (争论),an agreement was reached at last.Ⅱ.单句改错1.She was devoted to improve her spoken English.2.You have no time to get change because they are waiting for you.3.She argued me with buying that coat.4.After by this means can the problem be solved.5.All kinds of troublesome things crowded through my mind at the same time.Ⅲ.完成句⼦1.When your teacher doesn’t give you clearexplanations,you .当你的⽼师没有给你解释清楚问题时,你不应该跟他争论。
一、选择题1.哲学基本问题又称哲学的根本问题、哲学的最高问题。
这一问题包括()①物质与意识的辩证关系问题②思维与存在何者是本原的问题③思维与存在有没有同一性的问题④唯物主义与唯心主义关系问题A.①②B.②③C.③④D.①③解析:选B。
哲学基本问题包括两个方面的内容:一是思维和存在何者是本原的问题,二是思维和存在有没有同一性的问题,②③入选。
2.唯物主义是哲学上两个敌对的基本派别之一,是同唯心主义相对立的思想体系。
划分唯物主义和唯心主义的唯一标准是()A.物质和意识的关系问题B.客观与主观的关系问题C.思维和存在何者是本原的问题D.思维和存在有没有同一性的问题解析:选C。
对思维和存在何者是本原问题的不同回答,是划分唯物主义和唯心主义的唯一标准,C项入选。
3.习近平强调,独特的文化传统、独特的历史命运、独特的国情,注定了中国必定走适合自己特点的进展道路。
从哲学上看,这一论断体现了()A.世界观与方法论的关系问题B.思维与存在的关系问题C.个人与社会的关系问题D.眼前利益与长远利益的关系问题解析:选B。
“独特的文化传统、独特的历史命运、独特的国情,注定了中国必定走适合自己特点的进展道路”,体现了存在打算思维,B项符合题意。
A、C、D三项与题意不符。
4.“二月春分八月秋分昼夜不长不短;三年一闰五年再闰阴阳无差无错。
”这副对联从一个侧面反映了()①思维和存在具有同一性②生疏与自然的吻合具有必定性③生疏以实证和猜想为基础④意识活动具有主动性和制造性A.①③B.②④C.①④D.②③解析:选C。
材料反映人们可以生疏和把握自然界的运动规律,表明思维和存在具有同一性,也说明意识活动具有主动性和制造性,①④符合题意。
生疏与自然的吻合不具有必定性,②错误。
实践是生疏的基础,③错误。
5.2021年10月29日,党的十八届五中全会打算,坚持方案生育的基本国策,完善人口进展战略,全面实施一对夫妇可生育两个孩子政策,乐观开展应对人口老龄化行动。
第一章综合检测题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.若α是第二象限角,则180°-α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角[答案] A[解析] α为第二象限角,不妨取α=120°,则180°-α为第一象限角.2.sin(-600°)=( )A.12B.32 C .-12 D .-32 [答案] B3.已知角α的终边经过点P (3,-4),则角α的正弦值为( ) A.34 B .-4 C .-45 D.35 [答案] C[解析] x =3,y =-4,则r =x 2+y 2=5, 则sin α=y r =-45.4.函数y =tan ⎝ ⎛⎭⎪⎫x -π4的定义域是( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π4B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠-π4C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x ≠k π+π4,k ∈ZD.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π+3π4k ∈Z[答案] D[解析] 要使函数有意义,则有x -π4≠π2+k π,k ∈Z ,即x ≠3π4+k π,k ∈Z .5.已知sin(π+α)=13,则cos ⎝ ⎛⎭⎪⎫3π2-α等于( )A .-13 B.13 C .-33 D.33[答案] B[解析] sin(π+α)=-sin α=13,则sin α=-13,cos ⎝ ⎛⎭⎪⎫3π2-α=-sin α=13. 6.函数y =sin ⎝ ⎛⎭⎪⎫2x +π6的一个单调递减区间为( ) A.⎝ ⎛⎭⎪⎫π6,2π3 B.⎝ ⎛⎭⎪⎫-π3,π6 C.⎝ ⎛⎭⎪⎫-π2,π2 D.⎝ ⎛⎭⎪⎫π2,2π3 [答案] A[解析] 令π2+2k π≤2x +π6≤3π2+2k π(k ∈[]),整理得π6+k π≤x ≤2π3+k π,所以仅有⎝ ⎛⎭⎪⎫π6,2π3是单调递减区间.7.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ等于( ) A .-43 B.54 C .-54 D.45[答案] D[解析] sin 2θ+sin θcos θ-2cos 2θ =sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ=tan 2θ+tan θ-21+tan 2θ=45. 8.将函数y =sin(x -π3)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向右平移π3个单位,得到的图象对应的解析式是( )A .y =sin 12xB .y =sin(12x -π2)C .y =sin(12x -π6)D .y =sin(2x -π6)[答案] B[解析] y =sin(x -π3)――→横坐标伸长为原来的2倍y =sin(12x -π3)错误!y=sin[12(x -π3-π3]=sin(12x -π2).9.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π2(x ∈R ),下面结论错误的是( )A .函数f (x )的最小正周期为2πB .函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上是增函数 C .函数f (x )的图象关于直线x =0对称 D .函数f (x )是奇函数[答案] D[解析] ∵f (x )=sin ⎝ ⎛⎭⎪⎫x -π2=-cos x (x ∈R ), ∴T =2π,在⎣⎢⎡⎦⎥⎤0,π2上是增函数. ∵f (-x )=-cos(-x )=-cos x =f (x ).∴函数f (x )是偶函数,图象关于y 轴即直线x =0对称. 10.已知某帆船中心比赛场馆区的海面上每天海浪高度y (米)可看作是时间t (0≤t ≤24,单位:小时)的函数,记作y =f (t ),经长期观测,y =f (t )的曲线可近似地看成是函数y =A cos ωt +b ,下表是某日各时的浪高数据:A .y =12cos π6t +1B .y =12cos π6t +32C .y =2cos π6t +32D .y =12cos6πt +32[答案] B[解析] ∵T =12-0=12,∴ω=2πT =2π12=π6.又最大值为2,最小值为1,则⎩⎪⎨⎪⎧A +b =2,-A +b =1,解得A =12,b =32,∴y =12cos π6t +32.11.已知函数f (x )=A cos(ωx +φ)的图象如图所示,f ⎝ ⎛⎭⎪⎫π2=-23,则f (0)等于( )A .-23B .-12 C.23 D.12[答案] C[解析] 首先由图象可知所求函数的周期为T =2⎝ ⎛⎭⎪⎫11π12-7π12=2π3,故ω=2π2π3=3.将⎝ ⎛⎭⎪⎫11π12,0代入解析式, 得A cos ⎝ ⎛⎭⎪⎫3×11π12+φ=0,即cos ⎝ ⎛⎭⎪⎫11π4+φ=0,∴11π4+φ=π2+2k π,k ∈Z , ∴φ=-9π4+2k π(k ∈Z ).令φ=-π4,代入解析式得f (x )=A cos ⎝ ⎛⎭⎪⎫3x -π4.又∵f ⎝ ⎛⎭⎪⎫π2=-23, ∴f ⎝ ⎛⎭⎪⎫π2=-A sin π4=-22A =-23∴A =232,∴f (0)=232cos ⎝ ⎛⎭⎪⎫-π4=232cos π4=23.12.已知函数f (x )=sin(ωx +φ)(ω>0,0≤φ≤π)是R 上的偶函数,其图象关于点M (3π4,0)对称,且在区间[0,π]上是单调函数,则ω+φ=( )A.π2+23B.π2+2 C.π2+32 D.π2+103[答案] A[解析] 由于f (x )是R 上的偶函数,且0≤φ≤π,故φ=π2.图象关于点M (3π4,0)对称,则f (3π4)=0,即sin(3π4ω+π2)=0,所以cos 3ωπ4=0.又因为f (x )在区间[0,π]上是单调函数,且ω>0, 所以ω=23.故ω+φ=π2+23.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.某人的血压满足函数式f (t )=24sin160πt +110,其中f (t )为血压,t 为时间,则此人每分钟心跳的次数为________.[答案] 8014.化简1-2sin4cos4=________. [答案] cos4-sin4[解析] 原式=sin 24+cos 24-2sin4cos4=(sin4-cos4)2=|sin4-cos4|.则sin4<cos4,所以原式=cos4-sin4.15.定义在R 上的函数f (x )既是偶函数,又是周期函数.若f (x )的最小正周期是π,且当x ∈[0,π2]时,f (x )=sin x ,则f (5π3)的值为________.[答案] 32[解析] ∵T =π,∴f (5π3)=f (π+2π3)=f (23π)=f (π-π3)=f (-π3)=f (π3)=32.16.已知函数f (x )=sin ⎝ ⎛⎭⎫2x -π4,在下列四个命题中:①f (x )的最小正周期是4π;②f (x )的图象可由g (x )=sin2x 的图象向右平移π4个单位长度得到;③若x 1≠x 2,且f (x 1)=f (x 2)=-1,则x 1-x 2=k π(k ∈Z ,且k ≠0); ④直线x =-π8是函数f (x )图象的一条对称轴.其中正确命题的序号是________(把你认为正确命题的序号都填上).[答案] ③④[解析] f (x )的最小正周期是T =2π2=π,所以①不正确;f (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π8, 则f (x )的图象可由g (x )=sin2x 的图象向右平移π8个单位长度得到,所以②不正确;当f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4=-1时,有2x -π4=-π2+2k π(k ∈Z ),则x =-π8+k π(k ∈Z ),又x 1≠x 2,则x 1=-π8+k 1π(k 1∈Z ),x 2=-π8+k 2π(k 2∈Z ),且k 1≠k 2,所以x 1-x 2=(k 1-k 2)π=k π(k ∈Z 且k ≠0),所以③正确;当x =-π8时,f (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫-π8-π4=-1,即函数f (x )取得最小值-1,所以④正确.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分12分)设f (θ)= 2cos 3θ+sin 2(2π-θ)+sin (π2θ)-32+2sin 2(π2+θ)-sin (3π2-θ),求f (π3)的值.[解析] 解法一:f (π3)=2cos 3π3+sin 2(2π-π3)+sin (π2+π3)-32+2sin 2(π2+π3)-sin (32π-π3)=2cos 3π3+sin 25π3+sin 5π6-32+2sin 25π6-sin7π6=2×18+34+12-32+2×14+12=-12.解法二:∵f (θ)=2cos 3θ+sin 2θ+cos θ-32+2cos 2θ+cos θ =2cos 3θ+1-cos 2θ+cos θ-32+cos θ+2cos 2θ=2cos 3θ-2-(cos 2θ-cos θ)2+cos θ+2cos 2θ =2(cos 3θ-1)-cos θ(cos θ-1)2+2cos 2θ+cos θ=(cos θ-1)(2cos 2θ+cos θ+2)2cos 2θ+cos θ+2=cos θ-1,∴f (π3)=cos π3-1=-12.18.(本题满分12分)(2011~2012·山东济南一模)已知sin θ=45,π2<θ<π.(1)求tan θ;(2)求sin 2θ+2sin θcos θ3sin 2θ+cos 2θ的值. [解析] (1)∵sin 2θ+cos 2θ=1,∴cos 2θ=1-sin 2θ=925.又π2<θ<π, ∴cos θ=-35.∴tan θ=sin θcos θ=-43. (2)sin 2θ+2sin θcos θ3sin 2θ+cos 2θ=tan 2θ+2tan θ3tan 2θ+1=-857.19.(12分)已知x ∈[-π3,2π3],(1)求函数y =cos x 的值域;(2)求函数y =-3sin 2x -4cos x +4的值域.[解析] (1)∵y =cos x 在[-π3,0]上为增函数,在[0,2π3]上为减函数,∴当x =0时,y 取最大值1; x =2π3时,y 取最小值-12.∴y =cos x 的值域为[-12,1].(2)原函数化为:y =3cos 2x -4cos x +1, 即y =3(cos x -23)2-13,由(1)知,cos x ∈[-12,1],故y 的值域为[-13,154].20.(本题满分12分)已知函数f (x )=3sin ⎝ ⎛⎭⎪⎫12x +π4-1,x ∈R . 求:(1)函数f (x )的最小值及此时自变量x 的取值集合; (2)函数y =sin x 的图象经过怎样的变换得到函数f (x )=3sin ⎝ ⎛⎭⎪⎫12x +π4-1的图象? [解析] (1)函数f (x )的最小值是3×(-1)-1=-4,此时有12+π4=2k π-π2,解得x =4k π-3k π2(k ∈Z ), 即函数f (x )的最小值是-4,此时自变量x 的取值集合是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =4k π-3π2,k ∈Z . (2)步骤是:①将函数y =sin x 的图象向左平移π4个单位长度,得到函数y =sin ⎝ ⎛⎭⎪⎫x +π4的图象; ②将函数y =sin ⎝ ⎛⎭⎪⎫x +π4的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y =sin ⎝ ⎛⎭⎪⎫12x +π4的图象; ③将函数y =sin ⎝ ⎛⎭⎪⎫12x +π4的图象上所有点的纵坐标伸长为原来的3倍(横坐标不变),得到函数y =3sin ⎝ ⎛⎭⎪⎫12x +π4的图象; ④将函数y =3sin ⎝ ⎛⎭⎪⎫12x +π4的图象向下平移1个单位长度,得函数y =3sin ⎝ ⎛⎭⎪⎫12+π4-1的图象. 21.(本题满分12分)已知函数f (x )=A sin(ωx +φ),x ∈R (其中A >0,ω>0,0<φ<π2)的周期为π,且图象上一个最低点为M (2π3,-2). (1)求f (x )的解析式;(2)当x ∈[0,π12]时,求f (x )的最值.[解析] (1)由最低点为M (2π3,-2),得A =2. 由T =π,得ω=2πT =2ππ=2. 由点M (2π3,-2)的图象上,得2sin(4π3+φ)=-2, 即sin(4π3+φ)=-1. 所以4π3+φ=2k π-π2,(k ∈Z ). 故φ=2k π-11π6(k ∈Z ). 又φ∈(0,π2), 所以φ=π6.所以f (x )=2sin(2x +π6). (2)因为x ∈[0,π12],所以2x +π6∈[π6π3]. 所以当2x +π6=π6,即x =0时,f (x )取得最小值1; 当2x +π6=π3,即x =π12时,f (x )取得最大值 3. 22.(本题满分12分)已知f (x )=2sin(2x +π6)+a +1(a 为常数). (1)求f (x )的单调递增区间;(2)若当x ∈[0,π2]时,f (x )的最大值为4,求a 的值; (3)求出使f (x )取得最大值时x 的取值集合.[解析] (1)由2k π-π2≤2x +π6≤2k π+π2,k ∈Z ,得k π-π3≤x ≤k π+π6,k ∈Z ,所以f (x )的单调递增区间为[k π-π3,k π+π6](k ∈Z ).(2)当x ∈[0,π2]时,2x +π6∈[π6,76π], 故当2x +π6=π2,即x =π6时,f (x )有最大值a +3=4,所以a =1. (3)当sin(2x +π6)=1时f (x )取得最大值, 此时2x +π6=2k π+π2,k ∈Z ,即x =k π+π6,k ∈Z ,此时x 的取值集合为{x |x =k π+π6,k ∈Z }.。
第一单元探索世界与把握规律第1课第二框哲学的基本问题一、基础巩固1.(2020重庆云阳江口中学高二月考)有人说哲学应该研究宇宙中的大问题,有人说哲学应该研究人生问题,也有人说哲学应该研究人类的认识问题。
哲学研究的问题有很多,但_____问题是哲学的基本问题。
A.世界观和方法论的关系B.唯物主义和唯心主义C.思维和存在的关系D.物质和意识的辩证关系【答案】C【解析】哲学的基本问题是思维和存在的关系问题,也就是意识和物质的关系问题,C符合题意;世界观和方法论的关系问题不是哲学的基本问题,A不符合题意;唯物主义和唯心主义是哲学的基本派别,不是哲学的基本问题,B不符合题意;物质和意识的辩证关系问题不是哲学的基本问题,D不符合题意。
本题选C。
2.天气预报可以帮助农户有效规避自然灾害,从哲学的基本问题看,这主要涉及A.思维与存在的辩证关系问题B.哲学是世界观和方法论的统C.思维与存在有没有同一性D.思维与存在何者为本原【答案】C【解析】思维与存在的辩证关系问题并不是哲学的基本问题,A项排除;B项不符合题意,排除;天气预报帮助农户有效规避自然灾害这说明人的思维能正确反映存在,涉及思维和存在有没有同一性的问题,C 项正确;材料与思维和存在何者为本原无关,D项不选。
3. 如果只用一个问题就把唯心主义与唯物主义区分开,那么这个问题是A.世界上先有鸡还是先有蛋B.思维和存在何者是本原C.人真的可以认识客观世界吗D.世界是我们所认识的那样吗【答案】B【解析】唯物主义和唯心主义的分歧,是围绕物质和意识谁是本源的问题展开的。
因此答案为B。
4. 恩格斯说,全部哲学,特别是近代哲学的重大的基本问题,是思维和存在的关系问题。
下列能支持恩格斯观点的理由是A.社会主义社会首先要回答思维和存在的关系问题B.任何真正的哲学都必须回答思维和存在的辩证关系问题C.唯物主义和唯心主义都不能回避思维和存在的关系问题D.思维和存在的关系问题贯穿哲学发展的始终【答案】C【解析】思维和存在的关系问题,首先是人们在生活和实践活动中遇到的和无法回避的基本问题,答案选C。
雷雨(时间:45分钟满分:60分)积累与运用1.下列词语中加点字注音完全有误的一项是( )(3分)A.慰藉(jí) 谛听(dì) 仆人(pú) 汗涔涔(cén)B.昧心(mèi) 呆板(dāi) 逮捕(dǎi) 给养(jǐ)C.臭名(chòu) 服帖(tiē) 处置(chǔ) 连累(lěi)D.佣人(yōng) 弥补(mí) 伺候(sì) 忏悔(chàn)解析A项“藉”应读“jiè”;B项“逮”应读“dài”;D项“伺”应读“cì”。
答案 C2.下列词语中没有错别字的一项是( )(3分)A.惊谔皱纹贤惠无赖B.见地半响交涉戳穿C.耽搁卑鄙敲诈圆满D.孽根诅咒压榨烦燥解析A项“惊谔”应为“惊愕”; B项“半响”应为“半晌”;D项“烦燥”应为“烦躁”。
答案 C3.依据句意,下列横线上依次填入的词语正确的一项是( )(3分)(1)三十年的________你还是找到这儿来了。
(2)命,不公平的命我________来的!(3)你这么只凭________是不能交涉事情的。
(4)如果你觉得心里有________,这么大年纪,我们先可以不必哭哭啼啼的。
A.工夫指使义气委曲B.功夫支使意气委屈C.功夫支使义气委曲D.工夫指使意气委屈解析功夫:是指本领、造诣;工夫:时间(指占用的时间)。
指使:出主意去叫别人做某事;支使:命令人做事。
意气:意志及气概;义气:指由于私人关系而甘于承担风险或牺牲自己利益的气概。
委屈:受到不应该有的指责或待遇,心里难受;委曲:事情的底细或原委。
答案 D4.下面破折号用法分类正确的一项是( )(3分)①你——你贵姓?②在无锡有一件很出名的事情——③后来,后来,——你知道么?④哦,你,你,你是——⑤你的生日——四月十八——每年我总记得。
⑥我——我——我只要见见我的萍儿。
⑦你现在没有资格跟我说话——矿上已经把你开除了。
(时间:150分钟,分数:150分)第Ⅰ卷(阅读题,共70分)甲必考题一、现代文阅读(9分,每小题3分)阅读下面的文字,完成1~3题。
一切事物都有几种看法。
你说一件事物是美的或是丑的,这也只是一种看法。
换一种看法,你说它是真的或是假的;再换一种看法,你说它是善的或是恶的。
同是一件事物,看法有多种,所看出来的现象也就有多种。
实用的态度以善为最高目的,科学的态度以真为最高目的,美感的态度以美为最高目的。
在实用态度中,我们的注意力偏在事物对于人的利害,心理活动偏重意志;在科学的态度中,我们的注意力偏在事物间的互相关系,心理活动偏重抽象的思考;在美感的态度中,我们的注意力专在事物本身的形象,心理活动偏重直觉。
真善美都是人所定的价值,不是事物所本有的特质。
离开人的观点而言,事物都混然无别,善恶、真伪、美丑就漫无意义。
就“用”字的狭义说,美是最没有用处的。
科学家的目的虽只在辨别真伪,他所得的结果却可效用于人类社会。
美的事物如诗文、图画、雕刻、音乐等等都是寒不可以为衣,饥不可以为食的。
从实用的观点看,许多艺术家都是太不切实用的人物。
然则我们又何必来讲美呢?人性本来是多方的,需要也是多方的。
真善美三者俱备才可以算是完全的人。
人性中本有饮食欲,渴而无所饮,饥而无所食,固然是一种缺乏。
人性中本有求知欲而没有科学的活动,本有美的嗜好而没有美感的活动,也未始不是一种缺乏。
真和美的需要也是人生中的一种饥渴——精神上的饥渴。
疾病衰老的身体才没有口腹的饥渴。
同理,你遇到一个没有精神上的饥渴的人或民族,你可以断定他的心灵已到了疾病衰老的状态。
人所以异于其他动物的就是于饮食男女之外还有更高尚的企求,美就是其中之一。
是壶就可以贮茶,何必又求它形式、花样、颜色都要好看呢?吃饱了饭就可以睡觉,何必又呕心血去做诗、画画、奏乐呢?“生命”是与“活动”同义的,活动愈自由生命也就愈有意义。
人的实用的活动全是有所为而为,是受环境需要限制的,人的美感的活动全是无所为而为,是环境不需要他活动而他自己愿意去活动的。
语文必修4第一单元练习编稿人:汪盛立审稿人:肖志国1.下列各组中加点字读音全都正确的一项是(B)A.笑靥.(yàn)瓦砾.(lì)霎.(shà)时刽.(kuài)子手B.嗟.(jiē)怨连累.(lěi)谛.听(dì)汗涔.涔(cãn)C.绣衾.(jīn)奇葩.(pā)吁.(xū)气哥哥行.(háng)D.信笺.(jiān)神龛.(kān)熨.(yùn)平白泠.(líng)泠B(A靥yâ C衾qīn D熨yù)2. 下列句子中有错别字的一项是(B)A.你待要笙歌引至画堂前,我道这姻缘敢落在他人后。
B.念窦娥伏侍婆婆这几年,遇时节将碗凉桨奠;你去那受刑法尸骸上烈些纸钱,只当是把你亡化的孩儿荐。
C.像他这一类靠着一些繁文缛节撑撑场面的家伙,正是愚妄的世人所醉心的。
D.梅家的一个年轻的小姐,很贤惠,也很规矩。
B(桨—浆)3.下列有关文学常识的表述,有误的一项是( D )A.外,外末的简称,扮演老年男子;净,俗称“花脸”,扮演性格刚烈或粗暴的男子。
B.曹禺(1910--1996),原名万家宝。
现代著名剧作家。
代表作有《雷雨》《日出》《北京人》《原野》等剧作,其中《雷雨》创作于20世纪30年代,写了周鲁两家八个人物由于血缘纠葛和命运巧合而造成的矛盾冲突。
C.莎士比亚(1464--1616),欧洲文艺复兴时期英国伟大的诗人和戏剧家。
他的剧本流传下来的有三十多种,其中著名的有《李尔王》《哈姆雷特》《奥赛罗》《罗密欧与朱丽叶》等。
D.折,相当于现代的“幕”,所有的杂居都只能是四折。
杂剧规定,每一折戏,唱词一套曲子,每一支曲子用一个宫调。
D(有的是四折一楔子。
)4. 下列各句中标点符使用无误的一项是( D )A.按照中国医学传统理论,在正常情况下,风是自然界“六气”之一(风、寒、暑、湿、燥、火)。
在异常情况下,风又是一种致病的因素。
班级姓名考号必修4第一章《三角函数》章末检测(时间:120分钟满分:150分)一、选择题(本大题共10小题,每小题5分,共50分)1.sin 600°+tan 240°的值是()A.-32 B.32C.-12+ 3 D.12+ 32.把-114π表示成θ+2kπ(k∈Z)的形式,使|θ|的最小的θ值是()A.-34πB.-π4 C.π4 D.3π43.设α角属于第二象限,且⎪⎪⎪⎪cosα2=-cosα2,则α2角属于()A.第一象限B.第二象限C.第三象限D.第四象限4.已知tan α=34,α∈⎝⎛⎭⎫π,32π,则cos α的值是()A.±45 B.45C.-45 D.355.已知一扇形的弧所对的圆心角为54°,半径r=20 cm,则扇形的周长为() A.6π cm B.60 cmC.(40+6π) cm D.1 080 cm6.若点P(sin α-cos α,tan α)在第一象限,则在[0,2π)内α的取值范围是() A.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫π,5π4B.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4C.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫5π4,3π2D.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫3π4,π7.下列四个命题中,正确的是()A.函数y=tan⎝⎛⎭⎫x+π4是奇函数B.函数y=⎪⎪⎪⎪sin⎝⎛⎭⎫2x+π3的最小正周期是πC.函数y=tan x在(-∞,+∞)上是增函数D.函数y=cos x在区间⎣⎡⎦⎤2kπ+π,2kπ+74π(k∈Z)上是增函数8.为了得到函数y=sin⎝⎛⎭⎫2x-π6的图象,可以将函数y=cos 2x的图象() A.向右平移π6个单位长度B.向右平移π3个单位长度C.向左平移π6个单位长度D.向左平移π3个单位长度9.已知a是实数,则函数f(x)=1+a sin ax的图象不可能是()第9题 第13题10.把函数y =cos ⎝⎛⎭⎫x +4π3的图象向左平移φ (φ>0)个单位,所得的函数为偶函数,则φ的最小值是( )A.4π3B.2π3C.π3D.5π3二、填空题(本大题共5小题,每小题5分,共25分)11.已知tan α=2,则sin αcos α+2sin 2α的值是________. 12.函数f (x )=|sin x |的单调递增区间是________________.13.已知函数f (x )=2sin(ωx +φ)的图象如上图所示,则f (7π12)=___ ____.14.已知函数y =sin π3x 在区间[0,t ]上至少取得2次最大值,则正整数t 的最小值是____ __.15.方程sin πx =14x 的解的个数是 .三、解答题(本大题共6小题,共75分) 16.(本小题12分)求函数y =3-4sin x -4cos 2x 的最大值和最小值,并写出函数取最值时对应的x 的值.17.(本小题12分)求函数12y=log sin 2x 3π⎛⎫-⎪⎝⎭的单调递增区间.18.( 本小题12分)已知函数y =a cos ⎝⎛⎭⎫2x +π3+3,x ∈⎣⎡⎦⎤0,π2的最大值为4,求实数a 的值.19.(本小题12分)已知α是第三象限角,f (α)=sin (π-α)·cos (2π-α)·tan (-α-π)tan (-α)·sin (-π-α).(1)化简f (α);(2)若cos ⎝⎛⎭⎫α-32π=15,求f (α)的值;(3)若α=-1860°,求f (α)的值.20.( 本小题13分)在已知函数f (x )=A sin(ωx +φ),x ∈R ⎝⎛⎭⎫其中A >0,ω>0,0<φ<π2的图象与x 轴的交点中,相邻两个交点之间的距离为π2,且图象上一个最低点为M ⎝⎛⎭⎫2π3,-2. (1)求f (x )的解析式;(2)当x ∈⎣⎡⎦⎤π12,π2时,求f (x )的值域.21.(本小题14分)已知函数f (x )=A sin(ωx +φ) (A >0且ω>0,0<φ<π2)的部分图象,如图所示.(1)求函数解析式;(2)若方程f (x )=a 在⎝⎛⎭⎫0,5π3上有两个不同的实根,试求a 的取值范围.必修4第一章《三角函数》章末检测参考答案1.B 2.A 3.C 4.C.5.C.6.B 7.D.8.B 9.D 10.B11.2 12.⎣⎡⎦⎤k π,k π+π2,k ∈Z 13.0 14.8 15. 716.解 y =3-4sin x -4cos 2x=4sin 2x -4sin x -1=4⎝⎛⎭⎫sin x -122-2, 令t =sin x ,则-1≤t ≤1,∴y =4⎝⎛⎭⎫t -122-2 (-1≤t ≤1). ∴当t =12,即x =π6+2k π或x =5π6+2k π(k ∈Z )时,y min =-2;当t =-1,即x =3π2+2k π (k ∈Z )时,y max =7.17.解 y =log 2⎣⎡⎦⎤-sin ⎝⎛⎭⎫2x -π3log 212=-log 2⎣⎡⎦⎤-sin ⎝⎛⎭⎫2x -π3, ∵2>1,由复合函数的单调性知,要求sin ⎝⎛⎭⎫2x -π3的单调递增且小于0恒成立. ∴2x -π3在第四象限.∴2k π-π2<2x -π3<2k π(k ∈Z ).解得:k π-π12<x <k π+π6(k ∈Z ).∴原函数的单调递增区间为⎝⎛⎭⎫-π12+k π,π6+k π,k ∈Z .18.解 ∵x ∈⎣⎡⎦⎤0,π2,∴2x +π3∈⎣⎡⎦⎤π3,4π3, ∴-1≤cos ⎝⎛⎭⎫2x +π3≤12. 当a >0,cos ⎝⎛⎭⎫2x +π3=12时,y 取得最大值12a +3, ∴12a +3=4,∴a =2. 当a <0,cos ⎝⎛⎭⎫2x +π3=-1时,y 取得最大值-a +3, ∴-a +3=4,∴a =-1,综上可知,实数a 的值为2或-1.19.解 (1)f (α)=sin α·cos (-α)·[-tan (π+α)]-tan α[-sin (π+α)]=-sin α·cos α·tan α-tan α·sin α=cos α.(2)∵cos ⎝⎛⎭⎫α-32π=cos ⎝⎛⎭⎫32π-α=-sin α,又cos ⎝⎛⎭⎫α-32π=15,∴sin α=-15. 又α是第三象限角,∴cos α=-1-sin 2α=-265,∴f (α)=-265.(3)f (α)=f (-1 860°)=cos(-1 860°)=cos 1 860°=cos(5×360°+60°)=cos 60°=12.20.解 (1)由最低点为M ⎝⎛⎭⎫2π3,-2得A =2.由x 轴上相邻两个交点之间的距离为π2,得T 2=π2,即T =π,∴ω=2πT =2ππ=2.由点M ⎝⎛⎭⎫2π3,-2在图象上得2sin ⎝⎛⎭⎫2×2π3+φ=-2,即sin ⎝⎛⎭⎫4π3+φ=-1, 故4π3+φ=2k π-π2(k ∈Z ),∴φ=2k π-11π6(k ∈Z ).又φ∈⎝⎛⎭⎫0,π2,∴φ=π6,故f (x )=2sin ⎝⎛⎭⎫2x +π6. (2)∵x ∈⎣⎡⎦⎤π12,π2,∴2x +π6∈⎣⎡⎦⎤π3,7π6, 当2x +π6=π2,即x =π6时,f (x )取得最大值2;当2x +π6=7π6,即x =π2时,f (x )取得最小值-1,故f (x )的值域为[-1,2].21.解 (1)由图象易知函数f (x )的周期为T =4⎝⎛⎭⎫7π6-2π3=2π,A =1,所以ω=1.方法一 由图可知此函数的图象是由y =sin x 的图象沿x 轴负方向平移π3个单位得到的,故φ=π3,其函数解析式为f (x )=sin ⎝⎛⎭⎫x +π3. 方法二 由图象知f (x )过点⎝⎛⎭⎫-π3,0,则sin ⎝⎛⎭⎫-π3+φ=0, ∴-π3+φ=k π,k ∈Z .∴φ=k π+π3,k ∈Z ,又∵φ∈⎝⎛⎭⎫0,π2,∴φ=π3, ∴f (x )=sin ⎝⎛⎭⎫x +π3. (2)方程f (x )=a 在⎝⎛⎭⎫0,5π3上有两个不同的实根等价于y =f (x )与y =a 的图象在⎝⎛⎭⎫0,5π3上有两个交点,在图中作y =a 的图象,如图为函数f (x )=sin ⎝⎛⎭⎫x +π3在⎝⎛⎭⎫0,5π3上的图象, 当x =0时,f (x )=32,当x =5π3时,f (x )=0,由图中可以看出有两个交点时,a ∈⎝⎛⎭⎫32,1∪(-1,0).。
三角函数(必修4第一章)过关检测题时间:90分钟 满分:100分一、选择题(每小题4分,共40分) 1.下列各角中与-30°角终边不相同的是( ) A .330° B .-750° C .1 770° D .-1 410° 2.若-π2<α<0,则点(tanα,cosα)位于( )A .第一象限B .第二象限C .第三象限D .第四象限 3.已知α∈(π2,3π2),tan(α-3π)=-34,则sin(π-α)+sin(π2+α)的值为( )A .±15B .-15 C.15 D .-754.sin(π+α)+cos(π2+α)=-m ,则cos(3π2-α)+2sin(6π-α)等于( )A .-2m 3B .-3m 2 C.2m 3 D.3m25.将函数y =sin4x 的图象向左平移π12个单位,得到y =sin(4x +φ)的图象,则φ等于( )A .-π12B .-π3 C.π3 D.π126.已知函数f(x)=2sin(ωx +φ)(ω>0,-π2≤φ≤π2)的图象与y =2直线相交的两个相邻交点间的距离为π,且f(0)=3,则( )A .ω=12,φ=π6B .ω=12,φ=π3C .ω=2,φ=π6D .ω=2,φ=π37.已知函数f(x)=sin(2π-2x),则该函数的图象( ) A .关于点(π4,0)对称 B .关于点(π2,0)对称C .关于直线x =3π4对称 D .关于直线x =π对称8.已知函数y =3sin2x 的值域为[3,3],则下列范围可作为该函数定义域的为( ) A .[0,5π12] B .[π12,2π3] C .[-π12,π12] D .[π12,5π12]9.函数y =|tanx|·cosx(0≤x <32π且x ≠π2)的图象是( )10.给定函数:①f(x)=xcos(3π2+x),②g(x)=1+sin 2(π+x),③p(x)=cos(cos(π2+x))中,偶函数的个数是( )A .3B .2C .1D .0 二、填空题(每小题4分,共28分)11.若扇形圆心角的弧度数为2,且扇形弧所对的弦长也是2,则这个扇形的面积为________.12.设0≤θ<2π,如果sinθ<0且cos2θ<0,则θ的取值范围是________.13.已知tanα=2,则sin 2α+2sinαcosα=________.14.若α是第三象限角,则1-2sin (π-α)cos (π-α)=________.15.已知函数y =2sinωx(ω>0)的图象与直线y +2=0的相邻的两个公共点之间的距离为2π3,则ω的值为________. 16.已知函数f(x)=3sin(ωx -π6)(ω>0)和g(x)=2cos(2x +φ)+1的图象的对称轴完全相同,若x ∈[0,π2],则f(x)的取值范围是________.17.定义在R 上的函数f(x):当sinx ≤cosx 时,f(x)=cosx ;当sinx >cosx 时,f(x)=sinx.给出以下结论: ①f(x)是周期函数; ②f(x)的最小值为-1;③当且仅当x =2kπ(k ∈Z )时,f(x)取最大值; ④当且仅当2kπ-π2<x <(2k +1)π(k ∈Z )时,f(x)>0;⑤f(x)的图象上相邻最低点的距离是2π.其中正确命题的序号是________(把你认为正确命题的序号都填上).三、解答题(第18题10分,第19题10分,第20题12分,共32分) 18.已知0<α<π2,若cos α-sin α=-55,求2cos αsin α-cos α+11-tan α的值.19.1+tan (π+α)1+tan (2π-α)=3+22,求cos 2(π-α)+sin (3π2+α)·cos (π2+α)+2sin 2(α-π)的值.20.已知函数f (x )=2sin(2x +π6)(1)求f (x )的单调减区间;(2)求f (x )图象上与原点最近的对称中心的坐标.答案详细解析1、解析:∵330°=360°-30°,-750°=-2×360°-30°,1 770°=5×360°-30°,-1 410°=-4×360°+30°. ∴与-30°角终边不相同的是-1 410°. 答案:D2、解析:∵-π2<α<0,∴α为第四象限角,∴tanα<0,cosα>0.∴(tanα,cosα)是第二象限的点. 答案:B3、解析:∵tan(α-3π)=-tan(3π-α)=-tan(π-α)=tanα, ∴tanα=-34.∵α∈(π2,3π2),∴sinα=35,cosα=-45.∴sin(π-α)+sin(π2+α)=sinα+co sα=-15.答案:B4、解析:由已知得:-sinα-sinα=-m ,∴sinα=m2,所求式子=-(sinα+2sinα)=-3sinα=-3m2.因此B 项对.答案:B5、解析:y =sin4x 的图象向左平移π12个单位后,得到y =sin4(x +π12),即y =sin(4x +π3),即φ=π3.因此C 项对.答案:C6、解析:由已知f(x)的最小正周期为π,则2πω=π,∴ω=2,则f(x)=2sin(2x +φ).又∵f(0)=3,则f(0)=2sinφ=3,∴sinφ=32, ∵-π2≤φ≤π2,∴φ=π3.答案:D7、解析:由已知f(x)=-sin2x ,令2x =kπ,k ∈Z ,得x =kπ2,k ∈Z ,则对称中心为(kπ2,0),k ∈Z ,故B 项正确.令2x =kπ+π2,k ∈Z ,x =kπ2+π4,k ∈Z ,即对称轴为x =kπ2+π4,k∈Z ,故C 、D 两项不正确.答案:B8、解析:由已知3≤3sin2x ≤3,∴12≤sin2x ≤1.∴2kπ+π6≤2x ≤2kπ+5π6,k ∈Z ,∴kπ+π12≤x ≤kπ+5π12,k ∈Z .从而D 项正确.答案:D9、解析:由已知y =|tanx|cosx(0≤x <3π2且x ≠π2)可化为y =⎩⎨⎧sinx (0≤x <π2或π≤x <3π2)-sinx (π2<x <π).从而C 项正确.答案:C10、解析:①f(x)=xsinx ,f(-x)=-xsin(-x)=xsinx ,∴f(x)为偶函数.②g(x)=1+sin 2x ,g(-x)=1+sin 2(-x)=1+sin 2x =g(x),∴g(x)为偶函数.③p(x)=cos[cos(π2+x)]=cos(-sinx)=cos(sinx),p(-x)=cos[sin(-x)]=cos(-sinx)=cos(sinx)=p(x).∴p(x)为偶函数.答案:A11、解析:由题意得扇形的半径为1sin 1,由扇形面积公式S =12αr 2得S =12×2×1sin 21=1sin 21. 答案:1sin 2112、解析:∵0≤θ<2π,且sinθ<0,∴π<θ<2π,由cos2θ<0得2kπ+π2<2θ<2kπ+3π2,即kπ+π4<θ<kπ+3π4(k ∈Z ),∵π<θ<2π,∴k =1,θ的取值范围是5π4<θ<7π4.答案:(5π4,7π4)13、解析:sin 2α+2sinαcosα=sin 2α+2sinαcosαsin 2α+cos 2α=tan 2α+2tanα1+tan 2α=4+41+4=85.答案:8514、解析:1-2sin (π-α)cos (π-α)=1+2sinαcosα =sin 2α+cos 2α+2sinαcosα=|sinα+cosα|, 又α在第三象限,∴sinα<0,cosα<0, ∴|sinα+cosα|=-(sinα+cosα). 答案:-(sinα+cosα)15、解析:依题意可知:y =2sinωx(ω>0)的图象与直线y +2=0的相邻的两个公共点之间的距离即为y =2sinωx(ω>0)的图象上两个最小值之间的距离,而y =2sinωx(ω>0)的图象上两个最小值之间的距离为一个周期,由T =2πω=2π3ω=3.答案:316、解析:∵f(x)与g(x)的对称轴完全相同, ∴f(x)与g(x)的周期相同. 知ω=2,∴f(x)=3sin(2x -π6),当x ∈[0,π2]时,2x -π6∈[-π6,56π],sin(2x -π6)∈[-12,1]f(x)的取值范围是[-32,3].答案:[-32,3]17、解析:f(x)=⎩⎪⎨⎪⎧sinx ,sinx >cosxcosx ,sinx ≤cosx ,其图象如图所示:观察图象可知f(x)是以2π为最小正周期的周期函数,故①正确;最小值为-22,当x =2kπ+π2时,f(x)也取最大值,故②③错误;观察图象知④⑤正确.答案:①④⑤18、解:将cos α-sin α=-55两边平方,得1-2sin αcos α=15, 则sin αcos α=25.∴(sin α+cos α)2=1+2sin αcos α=1+2×25=95.又0<α<π2,则sin α+cos α=355.解方程组⎩⎨⎧sin α+cos α=355cos α-sin α=-55,得sin α=255,cos α=55,tan α=sin αcos α=2.故2cos αsin α-cos α+11-tan α=2×25-55+11-2=5-95.19、解:由已知得1+tan α1-tan α=3+22,∴tan α=2+224+22=1+22+2=22,∴cos 2(π-α)+sin (3π2+α)cos (π2+α)+2sin 2(α-π)=cos 2α+(-cos α)·(-sin α)+2sin 2α=cos 2α+sin αcos α+2sin 2α =cos 2α+sin αcos α+2sin 2αsin 2α+cos 2α=1+tan α+2tan 2α1+tan 2α=1+22+11+12=4+23. 20、解:因为f (x )=2sin(2x +π6).所以(1)由2k π+π2≤2x +π6≤2k π+3π2(k ∈Z )得,k π+π6≤x ≤k π+2π3(k ∈Z ).∴f (x )的单调减区间为[k π+π6,k π+2π3](k ∈Z ).(2)由sin(2x +π6)=0得2x +π6=k π(k ∈Z ),即x =k π2-π12(k ∈Z ).∴f (x )图象上与原点最近的对称中心坐标是(-π12,0).。
必修4第一单元检测题答案一、单项填空1. ---I forgot the name of an old school friend at the party.--- . It must have been very embarrassing.A. That’s too badB. Nothing seriousC. Take it easyD. Don’t mention it2. Dissatisfied with busy life he leads, he has decided to go to the beach for break.A. the; /B. the; aC. a; aD. a; /3. I don’t think the chair can take your weight; it’s children.A. traded withB. referred toC. connected toD. intended for4. The city government is planning to start a (n) against smoking in public.A. competitionB. campaignC. battleD. argument5. Mrs. Smith is quite a (n) person; she often points out the shortcomings of her friends without considering how they feel.A. seriousB. modestC. considerateD. outspoken6. The number of employers in our company , so a great number of new desks .A. are increasing; is neededB. have increased; are neededC. has increased; is neededD. is increasing; are needed7. A few minutes later, the signal was given and the train started to .A. move offB. move inC. move outD. move up8. ---How did you manage to get such a valuable painting? ---Oh, just .A. in personB. by chanceC. by mistakeD. in a hurry9. The 2010 Winter Olympic Games were held in Vancouver, is a coastal city in southern Canada.A. thatB. whereC. whichD. what10. ---I’ll ring you at six tomorrow morning. ---Oh, that’s too early. The whole family then.A. sleepB. will be sleepingC. have been sleepingD. would sleep11. Don’t worry; ten minutes enough for us to dress up for the show tonight.A. areB. has beenC. isD. have been12. ---Eric, as well as his friends, taking the trip. ---That’s not surprising. The final examination is coming.A. is againstB. are againstC. are forD. is for13. Every means tried to save the patient, but he still died.A. have beenB. would beC. wasD. were14. is surprising is that his son is so well-behaved, while his daughter is very naughty.A. ItB. WhatC. AsD. That15. Only when the police showed her the evidence that she had stolen the money.A. she admittedB. admitted sheC. she did admitD. did she admit二、完形填空Natisha Luke lost her hearing when she was born. Luke likes dancing and singing, and 16 as a cashier (收银员) for a large company. She’s also the new Miss Deaf Utah for 2009. The 19-year-old girl 17 in Utah, and not only won the crown (桂冠) but was also 18 “Miss Photogenic (最上镜小姐)”. Luke was pretty 19 not just because she’d won a $2, 000 award.Next month she’ll be competing for the title Miss Deaf America. “I want to take part in it 20 it will open so many doors for me, and it’ll be a great 21 ,” she says. “It will also help me get closer to my 22 , which is to enter a nursing school.” She has always had deep 23 for child care and medicine. She hasn’t let deafness stop her from 24 her dreams.Luke studied at the Desert Hills Ward Church for years, and it 25 influenced her decisions and her 26of life. It helped her 27 the challenges she faced because of her hearing 28 . What’s more, as a spokesperson for the 29 , Luke believes she can 30 her message of hope more effectively (有效地). She believes in the positive nature of life. “I focus on my abilities 31 my disability. I look forward to showing other deaf girls how to be positive and love 32 for who they are,” she says. “I hope I can 33 others to think positively. 34 my example of positive thinking, I know I can 35 and change others’ lives.” What a warm-hearted girl!16. A. turns B. acts C. works D. trains17. A. traveled B. competed C. performed D. appeared18. A. admitted B. received C. named D. replaced19. A. excited B. relaxed C. faithful D. modest20. A. but B. while C. or D. for21. A. purpose B. experience C. opinion D. skill22. A. point B. goal C. duty D. style23. A. need B. idea C. pity D. love24. A. satisfying B. considering C. enjoying D. realizing25. A. highly B. strongly C. seriously D. extremely26. A. view B. memory C. sense D. position27. A. turn down B. deal with C. care about D. look into28. A. limit B. death C. danger D. loss29. A. weak B. poor C. deaf D. blind30. A. spread B. spare C. collect D. divide31. A. better than B. other than C. rather than D. less than32. A. herself B. himself C. ourselves D. themselves33. A. warn B. expect C. encourage D. force34. A. Under B. Across C. Through D. Upon35. A. influence B. predict C. choose D. break三、阅读理解AIt was 1994, and a new mother took her sick baby to the doctor. After being tested, the child was diagnosed (诊断) with CF (包裹纤维化), a serious disease. The girl would be lucky to survive into her twenties. The woman and her husband did not know what to do.She turned to two friends —football star Boomer Esiason and his wife Cheryl, who knew a lot about CF since they had a son with it. They’d been trying to raise money for the CF Foundation (基金会), and they were heading their own foundation then. The woman called the Esiasons right away, and they shared with her everything they knew about the illness.She was changed, and put her whole heart into understanding CF. She learned how to use the treatments that would best give her daughter hope. She learned about other challenges about CF. Though 30, 000 Americans suffer from the illness, the number was too small to motivate (激励) drug companies to do research. The CF market could not get enough investment (投资) for the government to make up the millions needed to develop new drugs.So she gave up her job and jumped into the CF business full time. She now takes part in events organized by the CF Foundation, and gives speeches wherever she can. The money she raises goes to the CF Foundation, letting it employ scientists to study the disease. Her name is Angela Kinney. Thanks to the many people just like her, the average lifespan (寿命) of a child born with CF has jumped to 36.5 years.36. From the passage we can learn that Cheryl was .A. a doctor studying CFB. a football starC. a person with CFD. a member of the CF Foundation37. What did the Esiasons do to help Angela Kinney?A. They offered her a job.B. They offered her money.C. They told her what they knew about CF.D. They taught her how to comfort the child.38. Why wasn’t there enough research on CF?A. There were no researchers studying it.B. The number of CF patients was too small.C. Drug companies found it hard to do research.D. The government was unwilling to invest in it.39. Which of the following best describes Angela Kinney?A. Clever and changeable.B. Brave and warm-hearted.C. Helpful and open-minded.D. Responsible and honest.BScience experiments are a fun way for kids to learn all about science. In this article, a few great experiments will be shown to teach your child all about the wonders of inertia (惯性).Coin ShootYou’ll need some coins, at least 11, and a table with a flat and smooth surface. Stack (堆叠) all but one of the coins on the smooth table, making sure that the “high-rise”is straight. Coins with wide edges make the experiment easy to do. Flick (轻弹) the extra coin sharply towards the bottom of the stack so that it hits the bottom coin. The bottom coin from the stack should shoot out from under the other coins without disturbing the rest of the stack. Because the inertia of the stack of coins is so great, the force from the single flicked coin is not big enough to make the whole stack move or fall down.The Pencil StandingPlace a piece of paper on a smooth table. Hold the paper so that most of the piece hangs off the table. Place an unused wooden pencil on the paper so that it is standing upright. Now, slowly try to pull the paper out from under the pencil. What happens? Set up the paper and the pencil one more time, and give the paper a fast, sharp pull. What happens to the pencil this time?Since the still pencil wants to stay at rest, the pencil will prevent the fast movement of the paper. This means that when the paper is moved rapidly out from under the pencil, the pencil remains standing straight. Otherwise, it will fall down.40. Which of the following is used in both of the experiments?A. A piece of paper.B. A table with a flat and smooth surface.C. A new wooden pencil.D. A number of coins with wide edges.41. How do you arrange the eleven coins on the smooth table for the first experiment?A. Stack the eleven coins in two high-rises.B. Stack all the coins and have them stand straight.C. Stack ten coins straight and set one aside.D. Stack all of the eleven coins as you like.42. What will happen if you move the paper slowly in the second experiment?A. The pencil will fall down.B. The paper will fall down.C. The paper will be disturbed.D. The pencil will stand straight.43. What keeps the pencil standing straight after the paper under it is pulled quickly?A. The fast movement of the paper.B. The weight of the paper.C. The smooth surface of the table.D. The inertia of the pencil.四、写作高尔基曾说过:“世界上的一切光荣和骄傲,都来自母亲”。