电抗器铁心叠装工艺
- 格式:doc
- 大小:63.00 KB
- 文档页数:4
电磁装置设计原理课程设计(二)铁心电抗器设计班级:主要参数心柱直径D(mm) 中心距Mo (mm ) 铁心饼高度H C (mm)气隙数N气隙长度δ(mm)总匝数W 190 495 80 7 7.5 68 层数N H每层匝数W H线圈高度HHH(mm) 线圈外径D H (mm) 导线规格A B(mm) 铁心磁密B m (T) 3 7.5 543 450 3.55×8.0O0.89电流密度J(A/mm 2) 主电抗X m (Ω) 漏电抗X T (Ω) 负载损耗W K (W) 铁耗P Fe (W) 温升T X (K)1.521.0160.1952845 505 86.46一、 技术要求:1、 额定容量KVA S N 360=2、 线两端电压KV U l 10=3、 额定电压V U N 381=4、 相数3=m5、 额定电流A I N 315=6、 损耗W P P k 40000≤+7、 线圈温升K T K 09<二、 铁芯参数选择铁芯直径m m S K D D 189.03/36057.0/44=⨯==,选择m D 310190-⨯= 采用30133-DQ 硅钢片,查表(5-1)得: 铁芯叠压系数:95.0=dp K 心柱有效截面面积:24105.238m A z -⨯=轭有效截面面积:24104.258m A e -⨯=角重:kg G 0.62=∆铁芯最大片宽:m B M 185.0= 铁芯总叠厚:m M 16.0=∆ 铁轭片高:m b em 17.0=三、 设计线圈时电压、电流的选择每段电抗值Ω===210.1315/381/1N N k I U X , 设计线圈时的电压和电流分别是V U N 381=,A I N 315=四、 线圈匝数初选48.0,89.0'==m k T B ,匝7.86105.23889.050238148.0'24=⨯⨯⨯⨯⨯==-ππZ m A fB V k W ,取整得:匝86=W 五、 主电抗计算1、 初选单个气隙长度m 3105.7-⨯=δ,初选铁芯饼高度m H B 31008-⨯=2、 气隙磁通衍射宽度:m H B 331065.55700.008.05700.0ln 105.7)ln(--⨯=⎪⎭⎫ ⎝⎛+⨯=+=πδδπδε3、 气隙磁通衍射面积:23621003.410)16018565.52(65.52)2(2mm b A M M --⨯=⨯++⨯⨯=∆++=εεδ4、 气隙等效导磁面积: 221029.01000/30.495.002385.0mm A K A A dp Z =+=+=δδ 5、 主电抗,取n=7,Ω=⨯⨯⨯⨯⨯⨯=⨯=-160.110105.770292.0865081087322722πδπδn A fW X m 6、 主电抗压降V X I U m N m 2.203160.1315=⨯== 7、 磁密T VfWA U B Zm 0.8902385.0865022.20321=⨯⨯⨯==ππ六、 线圈设计1、 线圈高度估计值:m H n H n H A B l 224.011.05700.0708.0)17()1(=-⨯+⨯-=-+-=δ2、初选导线:23363.29,108.51055.3mm S mm b mm a L =⨯=⨯=--,带绝缘导线 1a =4.05⨯10-3mm 1b =9.00⨯10-3mm3、并绕根数:初取电密 'J =1.5⨯106A/m 208.7105.11063.291315'.'661=⨯⨯⨯⨯==-J S pp I M L ,取整得:M=7则电流密度准确值为:2661/1052.11063.2971315mm A M S pp I J L ⨯=⨯⨯⨯=⋅=4、 线圈高度:取每层匝数匝5.7=h Wmm b M W HHH h 543.50.97)15.7(015.1)1(015.111=⨯⨯+⨯=+=线圈电抗高度:mm b M W H h x 479.60.975.7015.1015.111=⨯⨯⨯== 5、 分成四层:3+3+3层,线圈幅向高度:mmN a MN B H H H 331111100.5110)36.0)13(50.431(05.1)36.0)1((05.1--⨯=⨯⨯-+⨯⨯⨯=⨯-+⨯=mm B H 32105.01-⨯= mm B H 33105.01-⨯=七、 绝缘设计查表4-16,线圈至上铁轭距离:m H S 075.01=线圈至下铁轭距离:m H S 075.02= 相间距离:mm C x 45=八、 绝缘半径计算线圈n 与线圈n+1之间有气道mm SS 161=,线圈n 外置mm 2绝缘层,线圈n+1内置mm 2绝缘层,线圈各半径计算如下:1、 铁芯半径:m D R 095.02/190.020===铁芯外径到线圈1内径间绝缘距离为mm 45,含线圈1内置mm 2的绝缘层 2、 线圈1内半径:m C R R 14.0045.0095.0001=+=+= 3、 线圈1外半径:m B R R H 515.0501.014.0112=+=+= 4、 线圈2内半径:m SS R R 717.002.0515.020123=+=++=δ 5、 线圈2外半径:m B R R H 921.0501.0717.0234=+=+=6、 线圈3内半径:m SS R R 122.002.0921.020145=+=++=δ7、 线圈3外半径:m B R R H 522.00135.0122.0356=+=+=8、 线圈直径:m R D 54.0522.02261=⨯==9、 铁芯柱中心距:m C D M x 594.0045.054.010=+=+=九、 线圈漏抗压降线圈平均半径:m R R R P 18.02/)522.014.0(2/)(61=+=+=线圈幅向厚度:m R R B H 508.014.0522.016=-=-= 线圈漏磁等效面积:22210685.095.002385.014.018.0508.03232m K A R R B A dp Z P H Q =-⨯+⨯⨯=-+=ππππ 洛氏系数:58.0543.0)095.0522.0(21)(2106=--=⋅--=ππρx L H R R线圈漏电抗:Ω=⨯⨯⨯⨯⨯=⨯=961.010543.08506.058.086508108722722πρπσx a L H A fW X 漏电抗压降:V X I U N q 61.6961.0315=⨯==σ十、 各分接总电抗及其压降总电抗:Ω=+=+=212.1961.0160.1σX X X m k总电抗压降:V X X I U U U m N q m k 81.73212.1315)(=⨯=+=+=σ 各分接总电抗误差:符合要求%,5.2%0.1621.1212.11.2111<=-=-=k kk e X X X K十一、 线圈导线总长线圈平均匝长:m R l p p 1304.118.022=⨯==ππ总长:,6.878.1861304.1'm l Wl l p =+⨯=+=其中m l 8.1'=十二、 线圈损耗电阻:Ω=⨯⨯⨯⨯⨯=⋅=--79600.01063.29716.8710021.066L MS pp l r ρ电阻损耗:W r mI P r 371279600.0315322=⨯⨯==线圈损耗:W P k P r FS k 284526232.1=⨯==十三、 线圈导线重量裸导线重量:kg S M pp ml G L c 435109.863.29716.87331=⨯⨯⨯⨯⨯⨯=⋅⋅=-ρ, 绝缘导线重量:m k alc 3105.0,17-⨯=∆=87.11063.2910)2/5.057.15.855.3(2/5.017/)257.1(266=⨯⨯⨯++⨯⨯=∆⨯++∆⋅=--L alc c S a b k k kg G k G c c cu 443435%)78.11(%)1(=⨯+=⨯+=十四、 铁芯窗高线圈至上铁轭距离:m H S 075.01=线圈至下铁轭距离:m H S 075.02= 铁芯窗高:m H H H H S S L 693.0543.0075.0075.0210=++=++=十五、 铁芯损耗铁心柱重量:kg A n H K G Fe Z P Z 54.431065.702385.0)0065.07693.0(3)(30=⨯⨯⨯⨯-=-=ρδ铁轭重量:kg A M K G Fe e Pe 4.9131065.7104.258594.0444340=⨯⨯⨯⨯⨯=-=-ρ铁芯重:kg G G G G e Z 745.86291.4354.43=++=++=∆ 查表4-9,得kg W p kg W p e z /47733.0,/34773.0== 铁芯损耗:WG G p G G p K P A e e A Z z Fe 505))2/6291.43(47733.0)2/6254.43(34773.0(8.1))2/()2/((0=+⨯++⨯⨯=+++=总损耗:W P P P Fe k 350350528451=+=+=十六、 线圈温升计算mm K A D dp Z x 0.17995.05.2383.113.11=== mmn SS n D R ss ss x 08.19)12/()1622/)2/179140(()1/()2/)2/((1=+⨯+-=+⋅+-=δ7237.03.55408.1956.056.046.146.1===HHH K δα25432112.83554.0)9.0)122.0921.0717.0515.0(14.0(6)9.0)(22(3mH R R R R R S X=⨯⨯++++⨯=⨯⨯++++=πππ262305.23554.0522.02323m H R S X =⨯⨯⨯=⨯⨯=ππ 221983.5305.22.87237.0m S S K S =+⨯=+=αW P P P Fe k 569050535.1284535.1221=+⨯=+⨯=KS P T k 86.46983.5569033.033.08.08.01=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=十七、 成本计算成本=44380+745.835=61543元十八、 附图。
油浸式并联电抗器结构分析及设计优化措施作者:宫林平来源:《科技创新导报》2019年第09期摘要:本文以油浸式并联电抗器产品结构分析为出发点,阐述了在并联电抗器结构设计方面可采取的优化措施,通过研究并联电抗器产品的结构特点,并在并联电抗器的产品设计中加以运用,已经有国内外多台并联电抗器产品的成功投运。
在总结了这些产品取得的研究成果的基础上,进行结构设计优化,使我公司的并联电抗器技术性能指标达到同行业先进水平。
关键词:并联电抗器结构特点优化措施中图分类号:TM472 文献标识码:A 文章编号:1674-098X(2019)03(c)-0096-02我公司生产制造电压等级从10kV到1100kV,容量从10kvar到200Mvar的电抗器类产品。
从国内电抗器产品在结构设计过程中,经过了认真的验证和评审,保证了后续生产的顺利实施和产品试验一次合格。
通过一系列国内电抗器项目产品的试验,为我公司承接出口国外大批量电抗器的产品结构定型,打下了坚实的基础。
电抗器的总体结构方案都进行了严格的验证计算,同时在设计过程中严格考虑产品在运输及运行过程中的安全可靠性。
1 产品结构特点在保证绝缘性能长期运行可靠的情况下,电抗器类产品的特点是振动、噪声和局部过热,因此我公司产品结构特性主要保证振动、噪声和局部过热,下面将从上述几个方面进行分析。
1.1 铁心结构铁心结构是产品磁路的基本保证,同时更是保证电抗器产品损耗、振动和噪声指标的关键,为了使结构设计、生产过程中得到更好的管控,经过分析并联电抗器的产品结构特点,制定了以下方案及措施。
1.1.1 厚轭结构铁芯结构采用大厚度铁轭结构,端部没有大饼,器身端部磁屏蔽结构,用铁轭厚度来屏蔽主漏磁空道。
如图1所示,图中铁芯饼和线圈之间的距离为主漏磁空道,多数漏磁通在这个空道中流通。
当加厚铁轭后,铁轭将吸引这些漏磁通,阻止漏磁通流向别处。
防止由漏磁通引起的局部过热现象,并大大降低了产品的损耗。
三相五柱式电抗器心柱和拉杆受力分析作者:刘均菲曲光磊邢军强王菲来源:《中国化工贸易·中旬刊》2018年第06期摘要:本文以三相五柱式电抗器结构为例,对电抗器铁心压紧和器身压紧过程后心柱的实际受力情况,以及心柱拉杆、旁轭拉杆、相间拉杆的受力情况进行了分析。
关键词:三相五柱式电抗器;铁心压紧力;拉杆受力1 引言带气隙电抗器的噪声主要来源于交变磁通在各铁心饼间的电磁力作用和硅钢片的磁滞伸缩。
那么对心柱施加适当的作用力以抵消心柱电磁力是解决噪声问题的途径之一。
目前抵消心柱电磁力主要采用的方法是利用心柱中心的拉杆和旁轭、相间的拉杆对心柱进行压紧。
但是因为在三相五柱式结构中心柱、旁轭、相间拉杆所处位置不同、施力的过程也不同。
本文将按照电抗器心柱实际加压过程利用ANSYS软件对心柱和各处拉杆的受力情况进行分析,得到心柱和各处拉杆实际的受力情况,为后续心柱压紧力的大小和各处拉杆强度的选取提供参考,并有针对性的优化加压过程。
2 心柱压紧过程简要说明对心柱的加压过程主要是以下几个步骤:①铁心饼在下铁轭上叠装后未套线圈前进行预压,主要目的是为了将各铁心饼带胶后预压到要求的高度并粘牢。
②线圈套装、安装上铁轭。
安装完上铁轭后,利用三个心柱中心的拉杆对心柱进行加压。
在此过程中因为未插旁轭小片可以将上铁轭看成是一个自由活动的部件。
③加压完成后,插旁轭小片,夹紧,再安装旁轭和相间拉杆。
相间拉杆暂不进行加压处理。
④器身进行干燥处理,干燥后利用心柱中心的拉杆对心柱进行二次加压。
⑤心柱二次加压后,对旁轭和相间拉杆进行加压,完成整个心柱的加压过程。
需要注意的是此时旁轭小片已经夹紧,其摩擦力很大。
⑥整个心柱加压过程完成后,需对器身进行加压根据要求值压紧器身。
此时旁轭小片处于夹紧状态,心柱拉杆与旁轭、相间拉杆也处于拉紧状态。
完成以上操作过程后,心柱与各处拉杆将处于一个平衡的受力状态,这也将是产品运行时的最终状态。
3 电抗器心柱和各处拉杆受力分析的仿真计算仿真计算是力学分析的一个重要手段,本文采用ANSYS软件的有限元分析方法,根据上述工艺步骤中的三个加压过程,对心柱和各处拉杆的受力情况进行分析,总体模型如图1所示。
第二章铁芯制造工艺第一节裁剪一、剪切剪切是指用剪床和剪刀加工工件的工作。
按照剪刀的安装方法,分为平口剪和斜口剪两种。
平口剪的上下剪刃平行,一般用于剪切窄而厚的材料。
斜口剪的上刀刃相对下刀刃有一个斜角。
用于剪切宽而薄的板料。
由于斜口剪上剪刃只有一点与板材接触,随着上刀刃下降,逐渐将板材剪成两部分;而平口剪剪刀全部与板材接触,在全宽范围内一下剪成两部分,因而斜口剪比平口剪省力,所以现在几乎全部采用斜口剪。
由于斜口剪上剪刃与下剪刃有斜角φ,因而在侧向产生一个推力,所以角第一不宜过大,一般在10°~15°;第二在剪切时,在剪刃开口的一边加一挡料板,其用途有两点;一是档料和抵消推力,二是用作剪切定位,如图1-1a所示。
图1-1 斜口剪切示意图a)斜口剪切示意图b)剪刃形状及有关角度图1-1b所示为剪刃形状的有关角度,其中δ角称为剪刃角,它是直接影响刀刃的强度、锐利程度、剪切力大小和剪切质量好坏的重要因素。
剪切硅钢片时,根据剪刀材质的不同,可在75°~85°之间选择。
为了减少剪刃上部与材料之间的摩擦,在上下剪刃靠近材料一侧,磨出一个1.5°~3°的后角α。
为了减少剪刃与剪切后的材料见的摩擦起见,在垂直材料的方向上,对上下刀刃各磨出一个1°~1.5°的前角γ。
刃角δ为β角和前角γ之差。
由于卷料硅钢片的问世,原有的一般剪床已无法加工,因而产生了用圆盘滚刀来进行剪切,这就是滚剪。
滚剪刀具理论上后角α=0°,前角γ=0°。
实际在刃磨时,后角α=0°,前角γ=1°,上下刃重合度为板厚的50%~70%,间隙为板厚的2.5%~5%。
剪切可按剪切刃与冷轧钢带的轧制方向的相对位置来分。
在硅钢带剪切中,一般可分为纵剪、90°横剪和45°剪三种。
纵剪,就是采用上述的圆盘滚剪刀,在纵滚生产线上。
第二章变电站一次主设备变电站中凡直接用来接受与分配电能以及与改变电能电压相关的所有设备,均称为一次设备或主设备。
由于大都承受高电压,故也多属高压电器或设备。
它们包括主变压器、断路器、隔离刀闸、母线、互感器、电抗器、补偿电容器、避雷器以及进出变电所的输配电线路等。
由一次设备连接成的系统称电气一次系统或电气主接线系统。
第一节电力变压器变压器是一种静止的电气设备,属于一种旋转速度为零的电机。
电力变压器在系统中工作时,可将电能由它的一次侧经电磁能量的转换传输到二次侧,同时根据输配电的需要将电压升高或降低。
故它在电能的生产输送和分配使用的全过程中,作用十分重要。
整个电力系统中,变压器的容量通常约为发电机容量的3倍以上。
变压器在变换电压时,是在同一频率下使其二次侧与一次侧具有不同的电压和电流。
由于能量守恒,其二次侧与一次侧的电流与电压的变化是相反的,即要使某一侧电路的电压升高时,则该侧的电流就必然减小。
变压器并不是也决不能将电能的“量”变大或变小。
在电力的转换过程中,因变压器本身要消耗一定能量,所以输入变压器的总能量应等于输出的能量加上变压器工作时本身消耗的能量。
由于变压器无旋转部分,工作时无机械损耗,且新产品在设计、结构和工艺等方面采取了众多节能措施,故其工作效率很高。
通常,中小型变压器的效率不低于95%,大容量变压器的效率则可达80%以上。
一、电力变压器分类及工作原理(一)电力变压器的分类根据电力变压器的用途和结构等特点可分如下几类:(1)按用途分有:升压变压器(使电力从低压升为高压,然后经输电线路向远方输送);降压变压器(使电力从高压降为低压,再由配电线路对近处或较近处负荷供电)。
(2)按相数分有:单相变压器;三相变压器。
(3)按绕组分有:单绕组变压器(为两级电压的自耦变压器);双绕组变压器;三绕组变压器。
(4)按绕组材料分有:铜线变压器;铝线变压器。
(5)按调压方式分有:无载调压变压器;有载调压变压器。
浅析电力变压器铁心结构形式及优缺点一、前言众所周知,电力变压器是根据电磁感应原理制造的,磁路是电能转换的媒介,电力变压器铁心是电力变压器的磁路部分,是主磁通的通道,电力变压器的铁心是由磁导率很高的冷扎硅钢片制成。
另外,铁心还是电力变压器的内部骨架,它的心柱上套装各个绕组,支持着引线、木件、分接开关和其他一些组件。
因此,电力变压器铁心设计的好坏直接影响电力变压器的电磁性能、机械强度和电力变压器的噪声等整体性能。
本文主要针对电力变压器铁心结构及材料进行了简要的介绍。
电力变压器铁心从结构型式上来分,有壳式铁心和心式铁心;壳式铁心一般是水平放置的,铁心截面为矩形,每柱有两个旁轭,铁心包围绕组,所以成为壳式。
这种铁心片的规格少,铁心紧固方便,漏磁通有闭合回路,附加损耗小。
但与其匹配的矩形绕组制造困难,短路时绕组易变形。
心式铁心一般是垂直放置的,铁心截面为分级圆柱形,绕组包围心柱,所以称为心式。
心式铁心片规格较多,绑扎和夹紧要求较高。
但与其匹配的圆筒形绕组制造方便,短路时稳定性好。
所以,我国现在绝大多数铁心都是心式铁心。
心式铁心主要包括单相二柱式、单相单柱旁轭式、单相二柱旁轭式、三相三柱式、三相五柱式五种结构。
单相电力变压器用单相铁心,三相电力变压器用三相铁心。
一般来说,铁心是由剪切后的铁心片叠积而成的。
但是由于出现了成卷电工钢片,为了充分利用磁性的取向性能,产生了由电工钢带卷绕而成的卷铁心。
由于卷铁心需要在卷绕机上进行绕制,不可能做的太大,因此只适用于小型电力变压器、互感器和调压器。
二、铁心结构介绍为了便于读者对铁心结构有一个全面的认识,接下来针对常用的各种心式铁心结构进行简要的介绍。
(一)单相电力变压器双柱铁心单相电力变压器双柱铁心如图1所示,在众多心式铁心结构里是最简单的一种,对于这种结构可以在一个柱套装高压、低压绕组,或将绕组分为两部分,分别套装在两个铁心柱上。
如果在铁心上套装两个绕组,则绕组可以方便地连接成串联或并联,一般用于单相的各种电力变压器及互感器。
- 53 -工 业 技 术近几年来,随着人们对于生活水平要求的提高,对于电抗器的噪声问题尤为关注,电抗器的噪声不但会对环境造成污染,危害人们的身体健康,影响设备正常运行。
因此,如何采取降噪措施保证制造出低噪声的电抗器显得尤为重要,结合近几年来工厂生产实践,经过多年的研究分析,降低电抗器的噪声有2个途径,即在电抗器的内部或外部采取噪声控制措施。
电抗器噪声的产生原因是铁芯的振动经变压器油和固定点的连接,向外壳传递,由此变为外壳的振动而辐射噪声。
铁心的振动又起源于磁致伸缩和横向振动等因素。
所以并联电抗器降低噪声的着眼点在噪声源及其传播途径上,从设计及生产过程提出可行的降噪措施。
1 设计采取措施降低噪声1.1 选用磁致伸缩性能好的优质硅钢片在并联电抗器铁心材料选取中,通过采用冷轧硅钢片代替热轧硅钢片,同时根据国内与国外的不同产品噪声要求值不同,有针对性地选用高导磁,低噪声的硅钢片,实践证明当磁通密度控制在1.4 T 范围以内,在相同的磁通密度条件下,采用取向高的高导磁硅钢片能够降低噪声约2 dB (A )。
1.2 降低铁心的磁通密度由于铁芯饼的额定磁通密度一般取决于噪声要求值。
通过试验研究发现,当额定磁通密度控制在1.2 T~1.4 T 时,铁芯饼的磁通密度平均降低0.1 T ,其电抗器噪声可降低2 dB~3 dB (A )。
同时选择合适的铁心尺寸,防止谐振产生。
对于并联电抗器心柱磁密的选择:基于对以往生产的电压等级为35 kV~750 kV 电抗器产品的试验结果分析和总结,得出了以下并联电抗器磁密建议值,见表1。
表1 并联电抗器磁密建议值额定容量(MVar)相数电压等级(kV)噪声要求dB(A)铁心饼最大气隙尺寸(mm)铁心饼磁密(T)10 ̄20三相3575221.3545 ̄60三相3576301.310 ̄60单相110 ̄50076381.3560 ̄80单相75075381.3580 ̄140单相75075401.351.3与油箱接触部位放置减振胶垫或减震器通过研究分析,本体噪声主要通过绝缘油与垫脚传递到油箱,器身上部及下部与油箱接触处采用环氧树脂浇注定位,用于固定器身;其层压木、橡胶垫板、环氧树脂都具有减振降噪的功能,从而减少了器身本体向油箱传递的噪声量。
/2023 0910kV电容器组串联电抗器铁心烧毁原因分析李其盛(国网天津市电力公司宁河供电分公司)摘 要:电力事业在各行各业日益高涨的电力能源需求下快速发展,电网规模、数量均呈明显上升趋势,电容器组的应用愈发普遍。
基于此,为使电网处于安全运行状态,本文简单阐述并联电容器这一常用的无功补偿装置,结合实际案例分析10kV电容器组串联电抗器铁心烧毁原因,以此为基础总结防范措施,以期为相关工作或人员提供有效参考。
关键词:串联电抗器;电容器组;铁心烧毁0 引言目前,提高电网功率因数控制是增强电网安全运行和平稳性的有效方法之一,其原理在于应用并联电容补偿装置改善系统电压质量。
但是在其运行期间,铁心烧毁现象经常发生,为控制此类问题的出现,减少损失,应做好烧毁原因分析,落实防止铁心过热的有效措施。
1 无功补偿装置(并联电容器)概述作为电力系统中常用的无功补偿装置,并联电容器主要作用在于保证系统电压的稳定性,然而在其实际运作过程中,难免涉及电容器合闸涌流问题,而这会影响到熔断器等设备的选取。
当系统中没有部署串联电抗器时,合闸涌流公式为:Is=In2槡s/Q(1)式中,分别涉及电容器涌流峰值、电容器组额定电流、电容器容量、电容器组安装处的短路容量,这几项参数依次由Is、In、Q、S表示。
根据公式(1)可知,接入处的短路容量与电容器组容量之间存在密切关联,其所具有的反比例关系使得前者越大,后者越小,在该情况下,为避免电力系统受到合闸涌流的影响,常通过串联电阻器予以限制[1]。
2 基于实例分析10kV电容器组串联电抗器铁心烧毁原因为增强该规格电容器组串联电抗器铁心烧毁原因分析的真实可靠性,故引入具体案例展开原因分析。
2 1 事故实例某变电站的电抗器出现冒烟现象,且传来明显烧焦气味,拉闸断电后,经现场人员观察,主要来自B相铁心,发现绝缘筒和环氧树脂在高温条件下出现变性分解,并形成了流体和残渣。
同时,在高温条件下,防噪声漆出现明显熔化、剥落现象,且经外观观察,电抗器铁心柱表面存在大量木屑灰尘。
磁控铁芯、引线结构设计1.磁控(MCR)产品铁芯结构1.1 铁芯结构:(典型设计)2套独立的三相三柱式交流铁心结构(包括铁心夹件)。
两套铁心之间没有交流磁通的联系,其直流磁通靠铁心上下的连接轭在两套铁心毎相的铁心中流通。
铁心柱含有截面积小于正常铁心截面积的阀(通过阀的饱和程度来改变产品的电抗值进而改变输出容量)。
铁芯结构见下图所示。
1.2 单套三相三术铁芯结构单套铁心结构采用直接缝型式,铁心柱为多级圆形结构(与变压器截面相同),铁轭为二级阶梯的矩形结构;铁轭与心柱厚度相同。
1.3 铁芯柱结构:铁心柱为叠片小气隙结构: 铁心柱由正常铁心截面和带气隙板的阀截面组成。
阀由1片环氧板和2片硅钢片交替叠放而成;阀截面为正常铁心截面的0.5倍左右(2M及以上目前为0.5倍,2M以下为0.63倍);阀部分的磁通密度在电抗器无容量输出时取值1.85~1.9T(刚好处于临界饱和拐点处)。
以2M以下容量为例:阀截面(气隙处硅钢片截面)为正常铁心截面的0.63倍左右,设计时一般取气隙条厚度为硅钢片厚度的2倍,因此,气隙条层的叠片为1张气隙条与2张硅钢片交替放置(实现本层厚度齐平),气隙层叠完后,再叠放整张硅钢片3张。
以此作为一组,交替叠放。
如以27片子叠装,则一组厚度为0.265×2+0.265×3=1.325。
如以30片子叠装,则一组厚度为0.285×2+0.285×3=1.425。
与油道相邻的位置先放置硅钢片再放置气隙片。
每级铁心的由n(整数)组这样循环组成,每级最外侧留1~2mm只用硅钢片进行叠装。
铁芯油道:在一层硅钢片上固定纽扣,纽扣厚度为油道厚度,叠装过程中放于需加油道的某一级中。
硅钢片整套尺寸和本级硅钢片尺寸相同。
撑板:放置于铁芯柱厚度方向的两侧,用于填充铁芯截面。
铁芯叠装时,需提前打底放于所在位置。
截面尺寸以能放于铁芯直径圆内为准,长度确认以上边沿与上夹件上边沿齐平,下边沿与下夹件下边沿齐平。
国家电网公司变电验收通用管理规定第7分册电压互感器验收细则国家电网公司二〇一六年十二月目录前言 (II)1 验收分类 (1)2 可研初设审查 (1)2.1 参加人员 (1)2.2 验收要求 (1)3 厂内验收 (1)3.1 关键点见证 (1)3.1.1 参加人员 (1)3.1.2 验收要求 (1)3.1.3 异常处置 (2)3.2 出厂验收 (2)3.2.1 参加人员 (2)3.2.2 验收要求 (2)3.2.3 异常处置 (2)4 到货验收 (2)4.1 参加人员 (2)4.2 验收要求 (2)4.3 异常处置 (2)5 竣工(预)验收 (3)5.1 参加人员 (3)5.2 验收要求 (3)5.3 异常处置 (3)6 启动验收 (3)6.1 参加人员 (3)6.2 验收要求 (3)6.3 异常处置 (3)附录 A (4)A.1 电压互感器可研初设审查验收标准卡 (4)A.2 电压互感器关键点见证标准卡 (5)A.3 电压互感器出厂验收标准卡 (7)A.4 电压互感器到货验收标准卡 (11)A.5 电压互感器竣工(预)验收标准卡 (12)A.6 电压互感器交接试验验收标准卡 (15)A.7 电压互感器资料及文件验收标准卡 (17)A.8 电压互感器启动验收标准卡 (18)前言为进一步提升公司变电运检管理水平,实现变电管理全公司、全过程、全方位标准化,国网运检部组织26家省公司及中国电科院全面总结公司系统多年来变电设备运维检修管理经验,对现行各项管理规定进行提炼、整合、优化和标准化,以各环节工作和专业分工为对象,编制了国家电网公司变电验收、运维、检测、评价、检修管理通用管理规定和反事故措施(以下简称“五通一措”)。
经反复征求意见,于2017年1月正式发布,用于替代国网总部及省、市公司原有相关变电运检管理规定,适用于公司系统各级单位。
本细则是依据《国家电网公司变电验收通用管理规定》编制的第7分册《电压互感器验收细则》,适用于35kV及以上变电站电压互感器。
电抗器专业供应商http://上海民恩电气有限公司DCL系列直流平波电抗器安装使用说明书上海民恩电气有限公司Shanghai Minen Electric Co.,Ltd.非常感谢您选用民恩牌电抗器,为了您正确使用本电抗器请在使用前仔细阅读本说明书,并妥善保存以供今后使用直流电抗器DC Reactors一.产品概述Product Profile直流平波电抗器用于整流器的直流侧,直流电流流过这些电抗器。
如果整流器连接导致直流电机的直流纹波过高,那么就必须使用这些电抗器来实现无故障的换相并降低电机损耗。
在不超过额定直流电流I dn 的情况下,电抗器的电感L几乎是恒定的。
二.结构特点Construction Features1.铁心采用优质低损耗冷轧硅钢片,铁心柱由多个气隙分成均匀小段,气隙采用环氧层压玻璃布板作间隔,气隙间及铁饼与铁轭间采用耐高温高强度粘接剂粘接,以保证电抗气隙在运行过程中不发生变化,同时有效减少铁芯饼之间的震动,从而降低噪音。
2.线圈采用F/H级绝缘系统,有良好的绝缘性能和耐温性能。
3.电抗器采用整体真空压力浸漆工艺,经高温热烘固化后产品整体机械强度高,防潮性能好;产品在运行中大大降低了噪声和振动,有效提高了产品长期运行的可靠性。
4.温升低,损耗小。
三. 产品作用Product function1.改善电容滤波造成的输入电流波形畦变。
2.减少和防止因冲击电流造成整流桥损坏和电容过热。
3.提高功率因素,降低直流母线交流脉冲。
4.限制电网电压的瞬变。
四. 性能参数Performance Parameters1. 额定工作电压: 400V-1200V/50Hz2. 额定工作电流:3A至1500A@40℃3. 抗电强度:铁芯-绕组 3000VAC/50Hz/5mA/10s无飞弧击穿4. 绝缘电阻: >100MΩ5. 电抗器噪音: <65dB6. 防护等级: IP007. 绝缘等级: F/H级8、产品执行标准: GB10229-88电抗器, JB9644-1999半导体电气传动用电抗器五. 型号含义Model Description六.产品型号及技术参数Model and technical parameters电抗器型号图适配额定电感重量外型尺寸安装尺寸号功率KW 电流AmH KgL W H A B 安装孔DCL-3-28A 0.75 3 28 1.5 80 65 100 63 47 7×12DCL-6-11 2.2 6 11 2.5 80 65 100 63 60 7×12 DCL-12-6.3 4 12 6.3 3.5 100 100 125 80 70 7×12 DCL-23-3.6 7.5 23 3.6 4 110 120 135 87 70 9×15 DCL-30-2.0 15 30 2 4.5 110 120 135 87 70 9×15 DCL-40-1.3 18 40 1.3 4.5 110 120 135 87 70 9×15 DCL-50-1.1 22.5 50 1.1 5.5 120 135 145 95 85 9×15DCL-60-0.8 30 60 0.8 7 135 150 170 1185 9×15DCL-75-0.7 37 75 0.7 7.5 135 150 170 1185 9×15DCL-95-0.54 45 95 0.54 7.8 135 150 170 1185 9×15DCL-110-0.45 55 110 0.45 9.2 155 160 195 12590 9×15DCL-160-0.36B 75 160 0.36 18 165 130 21510895 9×15DCL-180-0.33 90 180 0.33 20 165 130 215 10895 9×15DCL-200-0.30 110 200 0.3 23 220 205 235 1331169×15DCL-250-0.22 120 250 0.22 25 220 205 235 13311611×18DCL-300-0.18 132 300 0.18 25 220 205 235 13311611×18DCL-350-0.17 160 350 0.17 26 220 205 235 13311611×18DCL-450-0.15 200 450 0.15 30 230 210 260 13812111×18DCL-500-0.10 220 500 0.1 33 230 210 260 13812111×18DCL-600-0.09 280 600 0.09 38 245 230 260 15312611×18DCL-700-0.06 2 315 700 0.062 40 245 230 26015312611×18DCL-800-0.05 5 360 800 0.055 43 245 230 26015312611×18DCL-1000-0.0 5 380 1000 0.05 58 260 245 3501651413×23备注:以上为我司标准规格,特殊规格可根据客户要求定制.参数如有变动恕不另行通知。
干式电抗器设计原理及其材料高压电器产品设计包含这多方面的学科的内容,仅就变压器(电抗器)而言,就包含《电路分析》、电磁学、高电压绝缘、电工材料等门内容。
具体到每个产品,我们在设计时还应同时考虑到工艺、材料、成本等问题,它们之间相互依存、相互作用,产品设计时不能只单独来考虑其中一个或两个。
由于水平有限,本次讲座不能具体到产品设计的每个细节,只能就设计过程中必须的一些基本原理和关键工艺和材料给大家做一个简要的介绍。
不需要大家都记住,只要大家知道这些概念,以后在设计或生产服务是能知道他们,并有目的的去寻找有关资料就可以了。
一、基本电磁原理概述电抗器是由于它的电感而被电力系统应用的高压电器。
它属于特种变压器范畴,其区别于一般变压器的方面在于它通常只有一个励磁线圈,在有励磁电流通过时能产生一定电抗。
但是,其在电磁分析原理方面还是同变压器基本一致。
变压器在学科中包含在《电机学》这门课程里,这门课主要分成两部分内容,其一是在静态情况下的能量转换和传递——变压器。
其二是在动态情况下的能量转换——电动机和发电机。
变压器中只有感生电动势,没有动生电动势。
而电动机和发电机中则既有感生电动势又有动生电动势。
场是物质构成的一种基本形态,在自然界中有着各种各样的场,其中与变压器和电抗器有关的场有:1、电场——电气绝缘2、磁场——磁路3、温度场??——损耗和温升4、音场——噪音这些场的存在对各种电器产品的性能和质量产生极大的影响,所以,我们在产品设计时往往是围绕它们在进行的。
只有了解这些场的基本性质才能在电器结构设计中将各种材料合理地组合起来。
一)电场1.1 静电场:通常把不随时间变化的电场称为静电场。
对高压电器产品而言,无论在工频还是在冲击电压时,其各处的电磁场变化均可认为仅比例于外加电压而变化,其电场分布是相似的,完全可以作为静电场来处理。
1.2 电位与电场强度电位是指静电场中在电荷作用下各点所具有的位能,它由库伦定律决定。
电抗器的基本结构一、铁心式电抗器的结构铁心式电抗器的结构与变压器的结构相似,但只有一个线圈——激磁线圈;其铁心由若干个铁心饼叠置而成,铁心饼之间用绝缘板(或纸板、酚醛纸板、环氧玻璃布板)隔开,形成间隙;其铁轭结构与变压器相同,铁心饼与铁轭由压缩装置通过螺杆拉紧,形成一个整体,铁轭和所有的铁心饼均应接地。
铁心结构,铁心饼由硅钢片叠成,叠片方式有以下几种:(a)单相电抗器铁心;(b)三相电抗器铁心(1)平行叠片其叠片方式,与一般变压器相同,每片中间冲孔,用螺杆、压板夹紧成整体,适用于较小容量的电抗器。
(2)渐开线状叠片其叠片方式,与渐开线变压器的叠片方式相同,中间形成一个内孔,外圆与内孔直径之比约为4:1至5:1,适用于中等容量的电抗器。
(3)辐射状叠片其叠片方式,硅钢片由中心孔向外辐射排列,适用于大容量电抗器。
(a)平行叠片;(b)渐开线状叠片;(c)辐射状叠片在平行叠片铁心中,由于气隙附近的边缘效应,使铁心中向外扩散的磁通的一部分在进入相邻的铁心饼叠片时,与硅钢片平面垂直,这样会引起很大的涡流损耗,可能形成严重的局部过热,故只有小容量电抗器才采用这种叠片方式。
在辐射形铁心中,其向外扩散的磁通在进入相邻的铁心饼叠片时,与硅钢片平面平行,因而涡流损耗减少,故大容量电抗器采用这种叠片方式。
铁心式电抗器的铁轭结构与变压器相似,一般都是平行叠片,中小型电抗器经常将两端的铁心柱与铁轭叠片交错地叠在一起,为压紧方便,铁轭截面总是做成矩形或丁形。
二、空心式电抗嚣的结构空心式电抗器就是一个电感线圈,其结构与变压器线圈相同。
空心电抗器的特点是直径大、高度低,而且由于没有铁心柱,对地电容小,线圈内串联电容较大,因此冲击电压的初始电位分布良好,即使采用连续式线圈也是十分安全的。
空心式电抗器的紧固方式一般有两种:一是采用水泥浇铸,故又称为水泥电抗器;另一种是采用环氧树脂板夹固或采用环氧树脂浇铸。
空心电抗器都做成单相。
组成三相电抗器组时,有三种排列方式。
铁芯 - 变压器铁芯的分类
壳式和芯式铁芯
铁芯中套绕组的部分称为“心柱”,不套绕组只起磁路作用的部分称为“铁轭”。
凡铁芯包围了绕组就称为壳式;凡绕组包围心柱的称为芯式。
壳式和芯式各有特色,但是由铁芯就够所决定的变压器制造工艺却大有区别,一旦选用了某种结构就很难转而产生一种结构。
我国大多变压器铁芯采用叠积芯式。
单相和三相铁芯
单相铁芯有单项两柱式叠铁芯。
单相单柱旁轭式四柱铁芯、单相双柱式叠铁芯、单相辐射式叠铁芯共五种;三相提诶新有三相柱式叠铁芯、三相旁轭式五柱铁芯、三相双框式叠铁芯、三相电抗器叠铁芯共四种。
立体式和平面式
立体式的心柱和铁轭不在一个平面内,有辐射式、渐开线式、对称式,因磁通分布比较均匀,可降低损耗;平面式的心柱和铁轭在同一平面内,机械强度高,工艺性好。
叠铁芯和卷铁芯
一般均为叠铁芯,由铁芯叠装而成。
卷铁芯的形式较多。
渐开线铁芯的心柱与铁轭之间气隙较大,影响空载电流,所以容量不能做的太小;但因漏磁通垂直进入铁芯片平面,影响附加损耗,所以片宽不宜过大,即容量不能太大。
铁心主要由铁芯本体、紧固件和绝缘件组成:
①铁芯本体、磁导体、由电工钢片制成。
②紧固件、夹件、螺杆、玻璃绑扎带、刚绑扎带和垫块等。
③绝缘件、夹件绝缘、绝缘管和绝缘垫、接地片和垫脚等。