电路分析-第九章 线性动态电路的复频域分析
- 格式:ppt
- 大小:655.50 KB
- 文档页数:26
第一章电路模型和电路定律,第二章电阻电路的等效变换,第三章电阻电路的一般分析,第四章电路定理。
这四章是电路理论的基础,全部都考,都要认真看,打好电路基础。
第一章1-2电流和电压的参考方向要注意哈,个人认为搞清楚方向是解电路最重要的一步了,老师出题,喜欢把教材上常规的一些方向标号给标反,这样子,很多式子就得自己重推,这也是考验你学习能力的方式,不是死学,比如变压器那章,方向如果标反,式子是怎样,需要自己推导一遍。
第二章都要认真看。
第三章3-1 电路的图。
图论是一门很重要的学科,电路的图要好好理解,因为写电路的矩阵方程是考试重点,也是送分题,而矩阵方程是以电路图论为基础的。
第四章4-7对偶原理。
自己看一下,懂得什么意思就行了。
其他小节都是重点,特别是特勒跟和互易。
这几年真题第一题都考这个知识点。
第五章含有运算放大器的电阻电路。
这个知识点是武大电路考试内容,一定要懂,虚短和虚断在题目中是怎么用的,多做几个这章的题就很清楚了。
5-2 比例电路的分析。
这一节真题其实不怎么常见,跟第三节应该是一个内容,还是好好看一下吧。
第六章储能元件。
亲,这是电路基础知识,老老实实认真看吧。
清楚C和L的能量计算哦。
第七章一阶电路和二阶电路的时域分析。
一阶电路的都是重点,二阶电路的时域分析,其实不怎么重要,建议前期看一下,从来没有出现过真性二阶电路让考生用时域法解的,当然不是不可以解,只是解微分方程有点坑爹,而且基本上大家都是要背下来那么多种情况的解。
所以,这章的课后习题中,二阶的题用时域解的就不用做了,一般后面考试都是用运算法解。
7-1 7-2 7-3 7-4 都是重点,每年都考。
好好看。
7-5,7-6,两节,看一下即可,其实也不难懂,只是很难记。
7-7,7-8很重要,主要就是涉及到阶跃和冲激两个函数的定义和应用,是重点。
7-9,卷积积分,这个方法很有用,也不难懂,不过我没看过也不会用也不会做,每次遇到题目都是死算,建议好好研究下卷积。
本章重点:(1) 拉普拉斯变换的基本原理和性质(2) 掌握用拉普拉斯变换分析线性电路的方法和步骤 (3) 网络函数的概念(4) 网络函数的极点和零点14.1 拉普拉斯变换的定义1. 拉氏变换法拉氏变换法是一种数学积分变换,其核心是把时间函数f (t)与复变函数F (s)联系起来,把时域问题通过数学变换为复频域问题,把时域的高阶微分方程变换为频域的代数方程以便求解。
应用拉氏变换进行电路分析称为电路的复频域分析法,又称运算法。
2. 拉氏变换的定义定义 [ 0 , ∞)区间函数 f (t )的拉普拉斯变换式: ⎪⎩⎪⎨⎧⎰=⎰=∞+∞-+∞--d )(πj 21)( d )()(0反变换正变换se s F tf t e t f s F stj c j c st [][])s (L )( )(L )s ( F t f t f F -1,简写==S: 复频率,ωσj s +=注意:● 积分域:0-:积分下限从0- 开始,称为0- 拉氏变换 。
0+:积分下限从0+ 开始,称为0+ 拉氏变换 。
今后讨论的均为0 - 拉氏变换。
t e t f t e t f t e t f s F st st st d )(d )( d )()(0000⎰+⎰=⎰=∞--+∞-++--([0- ,0+]区间f (t) = δ (t) 时,此项≠0)● 象函数F(s) 存在的条件:∞<⎰∞--t e t f st d )(0如果存在有限常数M 和 c 使函数 f(t) 满足:),0[ )(∞∈≤t Me t f ct ,即:cs Mt Me t e t f tc t -=⎰≤⎰∞---∞--d d )(0)s (s 0 则f(t)的拉氏变换式F(s)总存在,因为总可以找到一个合适的s 值使上式积分为有限值。
象函数F(s) 用大写字母表示,如I(s),U(s);原函数f(t) 用小写字母表示,如 i(t), u(t)。
3.典型函数的拉氏变换变换公式: d )()(0t e t f s F st⎰=+∞--(1)单位阶跃函数)()(t t f ε=的象函数s e s t e t e t t s F st st st 101d d )()]([L )(00=∞-=⎰=⎰==--∞--∞--εε(2)单位冲激函数)()(t t f δ=的象函数1d )(d )()]([L )(0000==⎰=⎰==---∞+--s st st e t e t t e t t s F δδδ(3)指数函数at e t f =)(的象函数[]a s e a s t e e e s F t a s st at at -=∞--=⎰==----∞-101d L )()(0 14.2 拉普拉斯变换的基本性质1.线性性质)(])(L[ , )(])(L[ 2211s F t f s F t f ==若 ,[][][])()()(L )( L )()( L 221122112211s F A s F A t f A t f A t f A t f A +=+=+则证明:[][]t e t f A t f A t f A t f A std )()()()( L 022112211-∞⎰+=+-)()(d )(d )(2211022011s F A s F A t e t f A t e t f A st st +=⎰+⎰=-∞-∞--结论:根据拉氏变换的线性性质,求函数与常数相乘及几个函数相加减的象函数时,可以先求各函数的象函数再进行相乘及加减计算。
哈为啥有这些呢,产生这些概念的前提:正弦量被广泛采用,原因如下1. 电力工程,发电输电用电,正弦量使设备简单,效率高,经济2. 实验室易于产生标准的正弦量3. 有一套成熟的正弦电路的算法4. 正弦量可以利用傅里叶级数分解为不同频率的正弦量对于正弦的使用以及电路分析有这样的解释:对电路的分析其实就是对电路的建模,包括对每个元器件的建模。
纯阻性元件的数学模型很简单,只有一个方程。
而理想电感的方程会复杂一点,电压电流满足一个微分方程,而且还有关于磁链的方程。
对于非线性的二极管等等,就有更复杂的数学模型。
数学模型建立起来之后就要求解。
在求解过程中,人们发现,只有e^x和正弦函数具有一个特殊的性质,那就是不管求导多少次,都满足函数的相似性。
人们就开始研究,能否把输入都用正弦信号或者指数信号的叠加代替,带入电路的数学模型之后,计算非常简便,得到输出之后,再把输出恢复成实际的信号。
这就是傅立叶和拉普拉斯解法。
在用正弦信号求解的时候,指数函数和正弦函数又有一个牛逼的公式将两者联系起来,这就是欧拉公式,这样正弦函数的相位信息就可以放到指数函数中去。
/question/23290060/answer/24128688(转自知乎)所以与其相关的算法如期而至首先,时域算法,最容易理解,首先描述正弦量的是时域的算法(其定义的时候就是用的时间,随时间按正弦规律变化的电压和电流就是正弦量)基本的单位有:频率,周期,角频率,瞬时值,最大值,有效值相位(瞬时值变化进程)初相位相位差(前提,频率相同,反映了两个正弦量变化进程差异,而非产生波形先后,超前滞后同相反相正交)①时域——相量(将时域分析换为频域分析)细节一点,在时域的正弦表示中,根据欧拉公式,转化为了相量的形式,这其中,相量形式保持了原来正弦量的幅值、初相位信息,即两者联系为通过欧拉公式实数范围的正弦时间函数和复数范围的复指数常数一一对应但是需要注意的是,此时,我们取到的仅仅是复指数的实数部分,而且不研究旋转因子e^jwt ,原因是,在线性的电路中,全部的稳态响应也是同频率的正弦函数,没有新的频率,w显然不是研究问题的中心,也就在相量分析中放在了一边。
动态电路的分析与计算动态电路是指根据电压和电流的变化情况,进行分析和计算的电路。
在动态电路中,电压和电流是随时间变化的,因此需要进行动态分析,即考虑电路中的时间响应。
动态电路有许多应用,如信号处理、通信系统、数据传输以及计算机等。
动态电路的分析方法主要有微分方程法和拉普拉斯变换法。
微分方程法以电路中的基本元件为基础,根据基尔霍夫定律和基本电路方程建立微分方程组,通过求解微分方程组来获得电路的时间响应。
拉普拉斯变换法则是将时间域的电路方程转化为复频域的代数方程,通过频域分析来求解电路的输出响应,最后再进行反变换得到时间响应。
对于动态电路的计算,通常需要计算电路的传输函数、单位冲激响应或者零输入响应等。
电路的传输函数是指输出与输入之间的关系,可以用于计算输出的频率响应和稳态响应。
单位冲激响应是指当输入是单位冲激信号时,电路的输出响应。
零输入响应是指当输入为零时,电路的输出响应。
在进行动态电路分析和计算时,需要考虑电路中的各种元器件的动态特性和非线性特性。
例如,电容和电感有时会引起频率依赖的阻抗,这需要在计算中进行考虑。
此外,对于非线性元件,可以使用小信号模型或者通过数值方法进行求解。
动态电路的分析和计算通常使用电路模拟软件或者数值分析软件进行。
这些软件可以提供丰富的模型和工具,使得电路的分析和计算更加方便和准确。
例如,SPICE软件可以模拟电路的动态响应,并给出电路的各种性能参数和波形图。
总的来说,动态电路的分析和计算是电路理论和实验的重要组成部分。
通过合理使用分析方法和计算工具,可以获得电路的时间响应和频率响应等信息,为电路设计和优化提供依据。