Th 1.
V , W •‚5˜m, A ∈ L(V , W ), edimV = n, K dimNA + dimRA = dimV
y²µ ξ1 , ξ2 , . . . , ξr •NA Ä, r§*¿•V Äξ1 , ξ2 , . . . , ξr , ξr +1 , . . . , ξn . ØJy²A(ξr +1 ), A(ξr +2 ), . . . , A(ξn )´RA Ä. dimNA + dimRA = r + (n − r ) = dimV
A(ξj ) = (η1 , η2 , . . . , ηm )αj (j = 1, 2, . . . , n) Ù¥, αj = (a1j , a2j , . . . , amj )T ∈ F m , K¡m × nÝ 5N A3ù Äe Ý . A = (α1 , α2 , . . . , αn ) •‚
Jian-Biao Chen Mathematic and Computer Sciences SMU
Null spaces and ranges
Def 2.
V , W •‚5˜m, A ∈ L(V , W ), NA = {α | A(α) = 0, α ∈ V } RA = {A(α) | α ∈ V }
K¡NA •A "˜m(Null space), RA •A ”˜m(Range). w,, NA ´V
5 A ∈ L(V , W )Œ_⇐⇒ NA = {0}, …RA = W .
f˜m, RA ´W
f˜m.
Jian-Biao Chen
Mathematic and Computer Sciences SMU