构件的承载能力-强
- 格式:pdf
- 大小:8.22 MB
- 文档页数:61
构件承载能力的三个指标及其含义
一、构件承载能力的三个指标及其含义
1、强度
强度是指构件能够承受的最大应力,即所承受的外力大于任何一个预定的强度值,构件就会发生断裂现象。
在建筑结构中,构件最大的作用力多半是抗压力,因此强度的指标也多以抗压强度来表示。
抗压强度一般用其破坏倍数来表示,即所谓的抗压强度倍数(EI),抗压强度倍数一般情况下越高越好。
2、稳定性
稳定性是指构件的结构性能。
它要求构件能够承受体系外影响,不致于出现变形或倾斜现象,以维持构件的位置或形状不变。
常见的稳定性指标有承载能力指数、卸载能力指数等。
3、耐久性
耐久性即构件能经受多长时间的损耗,也就是腐蚀、沉降等外部因素会对构件造成多长时间的损耗,耐久性的指标主要用耐久系数(DI)来表示,耐久系数越大,说明构件具有较高的耐久性。
- 1 -。
第三章 构件截面承载力--强度钢结构承载能力分3个层次截面承载力:材料强度、应力性质及其在截面上分布属强度问题。
构件承载力:构件最大截面未到强度极限之前因丧失稳定而失稳,取决于构件整体刚度,指稳定承载力。
结构承载力:与失稳有关。
3.1 轴心受力构件的强度及截面选择3.1.1 轴心受力构件的应用及截面形式主要用于承重钢结构,如平面、空间桁架和网架等。
轴心受力截面形式:1)热轧型钢截面2)冷弯薄壁型钢截面3)型钢和钢板连接而成的组合截面(实腹式、格构式)(P48页)对截面形式要求:1)提供强度所需截面积2)制作简单3)与相邻构件便于连接4)截面开展而壁厚较薄,满足刚度要求(截面积决定了稳定承载力,面积大整体刚度大,构件稳定性好)。
3.1.2 轴心受拉构件强度由εσ-关系可得:承载极限是截面平均应力达到抗拉强度u f ,但缺少安全储备,且y f 后变形过大,不符合继续承载能力,因此以平均应力y f ≤为准则,以孔洞为例。
规范:轴心受力构件强度计算:规定净截面平均应力不应超过钢材强度设计值f A N n ≤=/σN :轴心拉力设计值; An :构件净截面面积;R y f f γ/=: 钢材抗拉强度设计值 R γ:构件抗力分项系数Q235钢078.1=R γ,Q345,Q390,Q420111.1=R γ49页孔洞理解见书例题P493.1.3 轴心受压构件强度原则上与受拉构件没有区别,但一般情况下,轴心受压构件的承载力由稳定性决定,具体见4章。
3.1.4 索的受力性能和强度计算钢索广泛用于悬索结构,张拉结构,桅杆和预应力结构,一般为高强钢丝组成的平行钢丝束,钢绞线,钢丝绳等。
索是一种柔性构件,内力不仅与荷载有关,而且与变形有关,具有很强几何非线性,但我们通常采用下面的假设:1)理想柔性,不能受压,也不能抗弯。
2)材料符合虎克定理。
在此假设下内力与位移按弹性阶段进行计算。
加载初期(0-1)存在少量松弛变形,主要部分(1-2)线性关系,接近强度极限(2-3)明显曲线性质(图见下)实际工程对钢索预拉张,形成虚线应力—应变关系,很大范围是线性的高强度钢丝组成钢索初次拉伸时应力—应变曲线钢索强度计算采用容许应力法:k f A N k k //maxk N :钢索最大拉力标准值 A :钢索有效截面积k f :材料强度标准值 k :安全系数2.5-3.03.2 梁的类型和强度3.2.1 梁类型按制作方法:型钢梁:热轧型钢梁(工字梁、槽钢、H 型钢)。
构件承载能力概念什么是构件承载能力?构件承载能力是指构件在所受外力作用下所能承受的最大力或变形量。
构件承载能力是结构设计中一个非常重要的指标,直接关系到结构的安全性和可靠性。
一个具有良好构件承载能力的结构可以在外力的作用下保持稳定,不发生破坏或者塌陷。
构件承载能力的影响因素构件承载能力受到多种因素的影响,主要包括下面几个方面:1. 材料的强度和刚度材料的强度决定了构件能够承受的最大应力大小,而刚度决定了构件的变形量。
通常情况下,强度越大的材料所制成的构件承载能力越高,刚度越大的构件承载能力也越高。
2. 构件的几何形状构件的几何形状对其承载能力有着直接的影响。
对于同一材料和相同外力作用下的构件来说,截面积越大,构件的承载能力越大;而长度越长的构件,在相同外力作用下产生的变形量则越大。
3. 外力的作用方式和大小外力的作用方式和大小是构件承载能力的重要因素。
不同的外力作用方式对构件产生的应力和变形量有着不同的影响。
在结构设计中,需要根据实际情况合理选择结构的工作状态和设计负荷,以保证结构的安全性。
4. 复杂荷载和临界状态复杂荷载是指结构在使用过程中所受到的各种不同类型和方向的外力作用。
复杂荷载对构件的承载能力有着更高的要求,需要在设计中考虑到各种不同工况下构件的承载能力情况。
5. 构件之间的连接方式构件之间的连接方式对整个结构的承载能力有着重要的影响。
连接方式的选择应根据具体的工况和结构要求来确定,以保证连接的可靠性和结构的稳定性。
构件承载能力的计算方法计算构件的承载能力可以通过静力学原理和材料力学知识。
常见的计算方法包括强度设计法、极限荷载设计法和工作状态设计法等。
强度设计法强度设计法是根据材料的强度和结构的稳定性要求,计算构件所能承受的最大力或变形量。
该方法主要基于构件的截面形状和材料的力学性能参数,通过进行应力和变形的计算,确定构件的承载能力。
极限荷载设计法极限荷载设计法是根据结构在极限荷载下所要满足的稳定性和安全性要求,计算构件承受的最大荷载情况。
第 3 章构件的截面承载能力——强度3.1轴心受力构件的强度及截面选择3.1.1轴心受力构件的应用和截面形式一、轴心受力构件的应用1.主要承重钢结构,如平面、空间和架和网架等。
2.工业建筑的平台和其他结构的支柱3.各种支撑系统二、轴心受力构件的截面形式1. 轴心受力构件的截面分类第一种:热轧型钢截面:圆钢、圆管、方管、角钢、工字钢、 T 型钢和槽钢等,如图3-1(a)。
第二种:冷弯薄壁型钢截面:带卷边或不带卷边的角形、槽形截面和方管等,如图3-1(b)。
第三种:用型钢和钢板连接而成的组合截面:实腹式如图3-1(c),格构式如图3-1(d)。
2.对轴心受力构件截面形式的共同要求是(1)能提供强度所需要的截面积 ;(2)制作比较简便 ;(3)便于和相邻的构件连接 ;(4)截面开展而壁厚较薄,以满足刚度要求:对于轴心受压构件,截面开展更具有重要意义,因为这类构件的截面积往往取决于稳定承载力,整体刚度大则构件的稳定性好,用料比较经济。
对构件截面的两个主轴都应如此要求。
根据以上情况,轴心压杆除经常采用双角钢和宽翼缘工字钢截面外,有时需采用实腹式或格构式组合截面。
格构式截面容易使压杆实现两主轴方向的等稳定性,同时刚度大,抗扭性能好,用料较省。
轮廓尺寸宽大的四肢或三肢格构式组合截面适用于轴心压力不甚大,但比较长的构件以便满足刚度、稳定要求。
在轻型钢结构中采用冷弯薄壁型钢截面比较有利。
3.1.2轴心受拉构件的强度由钢材的应力应变关系可知,轴心受拉构件的承载极限是截面的平均应力达到钢材的抗拉强度。
但拉杆达到此强度极限时会发生突然的断裂,缺少必要的安全储备。
另外,当构件毛截面的平均应力超过钢材的屈服强度时,由于构件塑性变形的发展,会使结构的变形过大以致不符合继续承载的要求。
因此,拉杆毛截面上的平均应力应以不超过屈服强度为准则。
对于有孔洞的受拉构件,孔洞附近有如图3-2(a)所示的应力集中现象。
孔壁边缘最大应力可能达到弹性阶段的3~4倍。
简述承载能力极限状态的内容
承载能力极限状态是指在结构工程中,特定构件或结构的负荷能力已经达到或接近其极限,即即将发生破坏或失效的状态。
这一概念在工程设计、建筑结构、桥梁设计、土木工程等领域中起着关键作用,因为了解和掌握承载能力的极限状态可以帮助工程师和设计者确保结构的安全性和可靠性。
承载能力极限状态包括以下几个方面的内容:
1. 强度极限状态:这是指结构或构件所能承受的最大荷载,即材料的强度达到其极限值,可能导致破坏。
在设计中,工程师需要确保结构的荷载不会达到或超过这个强度极限状态。
2. 位移极限状态:这是指结构或构件的变形或位移已经达到或超过了允许的极限值,可能影响结构的功能或安全性。
例如,在地震工程中,位移极限状态是一个非常关键的考虑因素。
3. 稳定性极限状态:这是指结构的稳定性条件已经丧失,可能导致结构失稳或倒塌。
在某些情况下,结构的稳定性比强度更重要,特别是在高塔、桥梁等大型结构中。
4. 疲劳极限状态:这是指结构在反复荷载下会逐渐累积疲劳损伤,达到一定程度后可能引发破坏。
这个状态在桥梁、飞机、船舶等需要经常承受循环负荷的结构中特别重要。
了解和评估承载能力的极限状态对于工程设计和结构安全至关重要。
工程师通过使用各种分析方法、模型测试和模拟来确定结构的承载能力,并确保其在正常使用和不同极限状态下都能保持安全和可靠。
这有助于防止潜在的结构故障、破坏或安全事故。