过程设备设计-外压容器的设计
- 格式:pdf
- 大小:4.26 MB
- 文档页数:76
第七章外压容器设计第一节外压容器设计【学习目标】掌握外压容器稳定性概念,了解加强圈设置规定;掌握外压圆筒、封头、加强圈的设计计算;掌握外压容器压力试验规定。
一、外压容器的稳定性容器在正常操作时,凡壳体外部压力高于内部者,均称为外压容器,这类容器有两种:真空容器;两个压力腔的夹套容器。
但是对于薄壁容器,承受外压作用时,往往在强度条件能够满足、应力远低于材料屈服强度的情况下,容器有可能因为不能保持自己原有的形状而出现扁塌,这种现象称为结构丧失了稳定性,即失稳。
失稳是由于外压容器刚度不足而引起的,因此,保证容器有足够的稳定性(刚度)是外压容器能够正常工作的必要条件,也是外压容器设计中首先应该考虑的问题。
按圆筒的破坏情况,外压圆筒可分为长圆筒、短圆筒和刚性圆筒三类。
长圆筒刚性最差,最易失稳,失稳时呈现两个波形。
短圆筒刚性较好,失稳时呈现两个以上的波形。
刚性圆筒具有足够的稳定性,破坏时属于强度失效。
1、临界压力外压容器由原平衡状态失去稳定性而出现扁塌时对应的压力称之为临界压力(pcr)。
影响临界压力的因素有:① 圆筒的几何尺寸δ/D(壁厚与直径的比值)、L/D(长度与直径的比值)是影响外压圆筒刚度的两个重要参数。
δ/D的值越大,圆筒刚度越大,临界压力pcr值也越大;L/D的值越大,圆筒刚度越小,临界压力pcr也越小。
② 材料的性能材料的弹性模量E值和泊松比μ值对临界压力有直接影响,但是这两个值主要由材料的合金成分来决定,对已有材料而言无法改变,因此讨论弹性模量E值和泊松比μ值的影响意义不大。
③ 圆筒的不圆度圆筒的不圆度会影响圆筒抵抗变形的能力,降低临界压力pcr,因此在圆筒制造过程中要控制不圆度。
2、许用外压力与内压容器强度设计要取安全系数类似,外压容器刚度设计也要设定稳定系数,我国标准规定外压容器稳定系数m=3,故许用外压力。
二、外压圆筒的计算长度外压圆筒的计算长度对许用外压值影响很大。
从理论上说,计算长度的选取应是判断在该圆筒长度的两端能否保持足够的约束,使其真正能起支撑线的作用,从而在圆筒失稳时仍能保持圆形,不致被压塌。
计算题无力矩方程 应力试用无力矩理论的基本方程,求解圆柱壳中的应力(壳体承受气体内压p ,壳体中面半径为R ,壳体厚度为t )。
若壳体材料由20R[σ(b)=400Mpa,σ(s)=245MPa]改为16MnR[σ(b)=510MPa,σ(s)=345MPa]时,圆柱壳中的应力如何变化为什么 短圆筒 临界压力1、 三个几何尺寸相同的承受周向外压的短圆筒,其材料分别为(MPa y 220=σ,3.0,1025=⨯=μMPa E )、铝合金(3.0,107.0,1105=⨯==μσMPa E MPa y )和铜(31.0,101.1,1005=⨯==μσMPa E MPa y ),试问哪一个圆筒的临界压力最大,为什么 临界压力 爆破压力有一圆筒,其内径为1000mm ,壁厚为10mm ,长度为20m ,材料为20R(3.0,102,245,4005=⨯===μσσMPa E MPa MPa y b )。
①在承受周向外压时,求其临界压力cr p 。
②在承受内压力时,求其爆破压力b p ,并比较其结果。
临界压力有一圆筒,其内径为1000mm ,壁厚为10mm ,长度为20m ,材料为20R(3.0,102,245,4005=⨯===μσσMPa E MPa MPa y b )。
①在承受周向外压时,求其临界压力cr p 。
②在承受内压力时,求其爆破压力b p ,并比较其结果。
无力矩理论 应力对一标准椭圆形封头(如图所示)进行应力测试。
该封头中面处的长轴D =1000mm,厚度t=10mm,测得E 点(x=0)处的周向应力为50MPa 。
此时,压力表A 指示数为1MPa ,压力表B 的指示数为2MPa ,试问哪一个压力表已失灵,为什么封头,厚度试推导薄壁半球形封头厚度计算公式无力矩理论 应力有一锥形底的圆筒形密闭容器,如图2-54所示,试用无力矩理论求出锥形壳中的 最大薄膜应力θσ与ϕσ的值及相应位置。
过程设备设计题解1.压力容器导言习题1. 试应用无力矩理论的基本方程,求解圆柱壳中的应力(壳体承受气体内压p ,壳体中面半径为R ,壳体厚度为t )。
若壳体材料由20R (MPa MPa s b 245,400==σσ)改为16MnR(MPa MPa s b 345,510==σσ)时,圆柱壳中的应力如何变化?为什么?解:○1求解圆柱壳中的应力 应力分量表示的微体和区域平衡方程式:δσσθφzp R R -=+21φσππφsin 220t r dr rp F k r z k=-=⎰圆筒壳体:R 1=∞,R 2=R ,p z =-p ,r k =R ,φ=π/2tpRpr tpR k 2sin 2===φδσσφθ○2壳体材料由20R 改为16MnR ,圆柱壳中的应力不变化。
因为无力矩理论是力学上的静定问题,其基本方程是平衡方程,而且仅通过求解平衡方程就能得到应力解,不受材料性能常数的影响,所以圆柱壳中的应力分布和大小不受材料变化的影响。
2. 对一标准椭圆形封头(如图所示)进行应力测试。
该封头中面处的长轴D=1000mm ,厚度t=10mm ,测得E 点(x=0)处的周向应力为50MPa 。
此时,压力表A 指示数为1MPa ,压力表B 的指示数为2MPa ,试问哪一个压力表已失灵,为什么?解:○1根据标准椭圆形封头的应力计算式计算E 的内压力: 标准椭圆形封头的长轴与短轴半径之比为2,即a/b=2,a=D/2=500mm 。
在x=0处的应力式为:MPa abt p btpa 15002501022222=⨯⨯⨯===θθσσ ○2从上面计算结果可见,容器内压力与压力表A 的一致,压力表B 已失灵。
3. 有一球罐(如图所示),其内径为20m (可视为中面直径),厚度为20mm 。
内贮有液氨,球罐上部尚有3m 的气态氨。
设气态氨的压力p=0.4MPa ,液氨密度为640kg/m 3,球罐沿平行圆A-A 支承,其对应中心角为120°,试确定该球壳中的薄膜应力。
简述外压容器强度设计过程
外压容器强度设计过程是指在外部压力作用下,设计和确定容器的强度以保证其安全运行的过程。
一般包括以下步骤:
1. 确定工作条件:首先要了解容器的使用环境和工作条件,如设计温度、设计压力、介质特性、外部环境温度等,这些条件将影响容器的材料选择和设计。
2. 材料选择:根据工作条件确定合适的材料。
选材时需要考虑材料的强度、耐腐蚀性、低温性能等因素。
3. 强度计算:根据容器的几何形状、工作条件和选用材料的特性,进行容器的强度计算。
常见的计算方法包括按照ASME规范进行的强度计算或者有限元分析等。
4. 壳体设计:根据强度计算的结果,设计容器的壳体结构。
包括确定壳体的壁厚、半径和长度等参数。
5. 端头设计:根据壳体的几何形状和工作条件,设计容器的端头结构。
常见的端头形式有平面盖、锥盖、球形盖等。
6. 连接件设计:容器的连接件,如支撑、法兰等,需要根据工作条件和强度要求进行设计。
连接件的设计应该保证与容器壳体的强度相匹配。
7. 强度校核:完成设计后,需要进行强度校核,以确保容器在工作条件下的强度安全。
校核可以包括理论计算、仿真分析和实验验证等方法。
8. 验证和监控:容器设计和制造完成后,需要进行验收验证和监控,确保容器满足设计要求,并按照相关标准和规范进行运行和维护。
需要注意的是,外压容器的强度设计过程需要遵循国家相关的法规、标准和规范,确保容器的安全性和可靠性。
在具体设计过程中,还需要根据实际情况考虑其他因素,如蠕变、疲劳、振动等的影响。