外压容器设计
- 格式:ppt
- 大小:4.44 MB
- 文档页数:52
外压容器的设计计算外压容器是一种用于储存或输送气体、液体或粉状物料的设备,设计计算是确保容器在正常工作条件下能够承受外部压力的重要环节。
下面将从容器的负荷计算、材料选择和结构强度校核等方面进行详细介绍。
首先,容器的负荷计算是设计计算的关键步骤之一、负荷可分为静止负荷和动载荷两部分。
静止负荷包括容器本身的重量、储存物的重量以及设备上附件的负荷;动载荷包括地震力、风荷载等。
针对每个负荷的特点,需要采用相应的计算方法进行计算。
静止负荷的计算可以使用强度、稳定性和刚度等方面的计算方法,而动载荷则可以使用动力学和模态分析方法。
接下来,材料选择是外压容器设计中的另一个重要考虑因素。
一般而言,常用的材料包括钢材、不锈钢和复合材料等。
在材料选择中,需要考虑材料的强度、刚度、耐腐蚀性、可焊性、可加工性等因素。
根据容器的具体工作条件和介质特性,可以选择合适的材料。
然后,容器的结构强度校核是设计计算中最关键的一步。
容器的结构强度主要包括轴向强度、环向强度和承压壳体强度三个方面。
轴向强度是指容器在轴向受力状态下的承载能力,一般计算采用拉伸强度和挤压强度的计算方法。
环向强度是指容器在环向受力状态下的承载能力,计算时采用圈接强度和薄壁圆筒强度的计算方法。
承压壳体强度是指容器在由于外压而受到的承载能力,计算时采用塑性分析和有限元分析方法。
此外,容器的设计还需要满足相应的安全要求。
例如,容器需要满足静态不破坏条件和动态不破坏条件,防止容器发生破裂,对人身和财产造成伤害。
同时,容器还需要满足泄漏要求,确保储存物料的安全。
容器的设计还需要满足相关的法律法规和标准要求,如ASME(美国机械工程师学会)标准。
综上所述,外压容器的设计计算是确保容器在正常工作条件下能够承受外部压力的关键环节。
其中包括负荷计算、材料选择和结构强度校核等方面。
通过科学合理的设计计算,可以保证容器的安全性和可靠性,提高容器的使用寿命,为工业制造提供可靠的储存和输送设备。
外压容器设计一、外压容器的稳定性1、外压容器的稳定性概念外压容器的失效形式 强度不足 破裂刚度不足 失稳2、临界压力(1)临界压力( P 临):导致筒体失稳时的外压。
临界压应力(σ临):筒体在P 临作用下筒体内存在 的环向应力。
(2)许用压应力为保证外压容器的使用安全,设计压力应当满足如下条件:∴ P 临≥mP P 临≥3P (3)影响临界压力的因素①P 临与筒体尺寸的关系(i)当L/D 相同时,S/D 抗弯曲 P 临 (ii)当S/D 相同时,L/D 圆筒越短 P 临L/D 圆筒越长 P 临 短圆筒:能得到封头支撑作用的圆筒长圆筒:得不到封头支撑作用的圆筒∴ S/D 相同时,短圆筒的P 临高(iii )当S/D 、 L/D 都相同时,有加强圈者P 临高② P 临与材料性质的关系因圆筒体失稳时,其压应力并没达到材料的屈服极限,说明P 临与材料的屈服极限无直接关系。
而材料的弹性模量E 对E —抗变形能力, P 临各种材料的E 值相差不大,所以采用高强度钢代替一般碳钢制造外压容器并不能提高圆筒的P 临,相反还增加了容器的成本。
材料的组织不均匀性合同体的不圆度将使P 临下降。
][P m P p =≤临二、外压容器的设计1、理论公式计算法(1)壁厚的计算钢制长圆 : 钢制短圆筒: 将P 临≥3P 代入可得1)钢制长圆筒: mm2)钢制短圆筒: mm3)刚性圆筒一般:S L 的圆筒叫刚性圆筒一般不存在失稳,因此只考虑强度即可(2)临界长度 L 临当短圆筒的长度大到某一临界值L 临时,封头对筒体的支撑作用将完全消失,这时短圆筒的P 临将下降到长圆筒的P 临,即:解得: 为区别长短圆筒的临界长度 当 L< L 临时, 为短圆筒L>L 临时,为长圆筒(3)用理论公式设计的步骤①设理论壁厚为S 。
,并选定材料②计算L 临③比较确定圆筒类型L 与L 临,确定圆筒类型④根据圆筒类型计算P 临⑤计算许用应力[P]= P 临/3比较:设计压力P 与P 临若P ≤[P],且接近,假设的S 。
第七章 外压容器设计第一节 外压容器设计【学习目标】 掌握外压容器稳定性概念,了解加强圈设置规定;掌握外压圆筒、封头、加强圈的设计计算;掌握外压容器压力试验规定。
一、外压容器的稳定性容器在正常操作时,凡壳体外部压力高于内部者,均称为外压容器,这类容器有两种:真空容器;两个压力腔的夹套容器。
但是对于薄壁容器,承受外压作用时,往往在强度条件能够满足、应力远低于材料屈服强度的情况下,容器有可能因为不能保持自己原有的形状而出现扁塌,这种现象称为结构丧失了稳定性,即失稳。
失稳是由于外压容器刚度不足而引起的,因此,保证容器有足够的稳定性(刚度)是外压容器能够正常工作的必要条件,也是外压容器设计中首先应该考虑的问题。
按圆筒的破坏情况,外压圆筒可分为长圆筒、短圆筒和刚性圆筒三类。
长圆筒刚性最差,最易失稳,失稳时呈现两个波形。
短圆筒刚性较好,失稳时呈现两个以上的波形。
刚性圆筒具有足够的稳定性,破坏时属于强度失效。
1、临界压力外压容器由原平衡状态失去稳定性而出现扁塌时对应的压力称之为临界压力(p cr )。
影响临界压力的因素有:① 圆筒的几何尺寸δ/D (壁厚与直径的比值)、L /D (长度与直径的比值)是影响外压圆筒刚度的两个重要参数。
δ/D 的值越大,圆筒刚度越大,临界压力p cr 值也越大;L /D 的值越大,圆筒刚度越小,临界压力p cr 也越小。
② 材料的性能材料的弹性模量E 值和泊松比μ值对临界压力有直接影响,但是这两个值主要由材料的合金成分来决定,对已有材料而言无法改变,因此讨论弹性模量E 值和泊松比μ值的影响意义不大。
③ 圆筒的不圆度圆筒的不圆度会影响圆筒抵抗变形的能力,降低临界压力p cr ,因此在圆筒制造过程中要控制不圆度。
2、许用外压力与内压容器强度设计要取安全系数类似,外压容器刚度设计也要设定稳定系数,我国标准规定外压容器稳定系数m=3,故许用外压力[]3cr p p ≤。
二、外压圆筒的计算长度外压圆筒的计算长度对许用外压值影响很大。
外压容器的设计计算外压容器是一种常见的工业设备,广泛应用于石化、化工、制药、食品等领域。
外压容器的设计计算非常重要,涉及到容器的强度、安全性、可靠性等方面。
本文将从容器设计的基本原则、压力壳体的计算、配件的设计等方面进行详细阐述。
1.容器设计的基本原则1.1强度原则:容器必须经受住内外压力和外力的作用,保证容器不发生破裂或塑性变形。
1.2稳定原则:容器的结构必须具有足够的稳定性,能够抵抗倾覆、翻滚和滑动等不稳定力矩的作用。
1.3安全原则:容器在正常操作条件下,不得发生渗漏、爆炸等危险情况,以保证人员和设备的安全。
2.压力壳体的计算压力壳体是外压容器的主要承载结构,其计算涉及到壳体的应力、应变等参数。
2.1壳体厚度计算:压力壳体的厚度应满足材料强度和设计容器的内外压力的要求,一般采用均匀厚度计算,即在整个壳体上采用相同的厚度。
2.2应力计算:根据材料的弹性模量和壳体的几何形状,可以计算出壳体在压力作用下的轴向应力和周向应力。
2.3应变计算:根据壳体的轴向应力和周向应力,可以计算出壳体的轴向应变和周向应变,以评估壳体的变形和塑性变形情况。
3.配件的设计3.1头板设计:头板的设计一般可根据受力分析,选择合适的头板形式和厚度。
常见的头板形式有平头、半球头、扁头等,其选择应根据容器的使用条件和结构要求进行合理设计。
3.2法兰设计:法兰是连接容器和管道的关键部件,其设计应满足安装、密封和维修等要求。
法兰的种类和规格应根据容器的使用要求和管道系统的设计标准进行选择。
3.3补强环设计:补强环用于增强容器的稳定性和强度,可以有效抵抗容器的扭转、屈曲和翻滚等不稳定力矩的作用。
补强环的形式和数量应根据容器的几何形状和受力情况进行优化设计。
4.其他注意事项4.1材料选择:容器的材料选择应根据容器的使用环境和要求进行合理选择,考虑到材料的强度、耐腐蚀性和可焊性等因素。
4.2焊接技术:容器的焊接工艺应满足材料的性能要求和容器的设计要求,确保焊缝的质量和可靠性。
外压容器的设计计算哈尔滨市化工学校 徐 毅 李喜华 在外压容器设计时,筒体的壁厚计算按文献〔1〕和〔3〕应采用图算法。
图算法要先假设筒体的壁厚,通过查图表后计算使P≤〔P〕且较接近,则所设壁厚可用;否则应重新假设,直至满足为止。
为简化设计计算,本文将外压容器的解析法与图算法结合,使外压容器的壁厚的假设一次完成。
1 壁厚的计算按文献〔2〕外压容器壁厚的计算公式S≥D0(m pL2.6ED0)0.4+C(1)式中S———外压容器筒体的壁厚,mm;D0———外压容器的外径,mm;L———外压容器的计算长度, mm;C———壁厚附加量, mm;m———稳定系数, m=3;P———设计压力, MPa;E———材料在设计温度时的弹性模量, MPa;设壁厚为S,计算步骤如下:1.计算壁厚S0=S-C,算出所要设计筒体的L/D0和D0/S0值;2.按文献〔2〕在图6-10(文献〔2〕)的左侧纵坐标上找到L/D0值,由此点引水平线向右与相应D0/S0线相交。
若L/D0>50,则按L/D0=50查图,由交点沿铅垂方向向下求得横坐标系数A(即ε);3.根据筒体材料选用相应的材料温度线。
文献〔2〕中的图6-12、6-13、6-14,在图的下方横坐标找到由2求得的系数A,若A在材料温度线的右方,则由此点沿铅垂上移,与材料温度线相交,再将此点沿水平方向向右求得纵坐标系数B;4.按系数B用式〔P〕=BS0/D0〔2〕求得许用外压〔P〕;5.比较设计外压P与许用外压〔P〕,若P≤〔P〕,则所假设的壁厚可用。
6.根据钢板规格,最后确定所用钢板厚度。
2 计算实例设计氨合成塔的内筒,已知筒体外径D0= 410mm,计算长度L=4m,材料为oCr18Ni19Ti,弹性模量E=1.58×105MPa,壁温为480℃,壁厚附加量C=0.8m m,所受外压P=0.5MPa,试确定其壁厚。
由(1)式得: S≥D0(m pL2.6ED0)0.4+C=410 (3×0.5×4×1032.6×1.58×105×410)0.4+0.8=7.6mm假设壁厚S=7.6mm,计算S0=S-C=7.6-0.8 =6.8mm,L/D0=4/0.41=9.75D0/S0=410/6.8 =60.28按文献〔2〕在图6-10查得A=0.00032按文献〔2〕在图6-14查得B=34MPa 按文献〔2〕式〔P〕=BS0/D0=34×6.8/410 =0.57MPa比较P<〔P〕,即0.5MPa<0.57MPa,即假设壁厚可用。
1.外压容器除了强度外,还应考虑____问题。
请举两个不同类型外压容器的例子:失稳第十一章外压容器设计1________________________________、________________________________。
真空操作的冷凝器、结晶器、蒸馏塔的外壳带有加热或冷却夹套的反应器内壳2.怎样区分长圆筒和短圆筒?它们的的临界长度为_______________。
第十一章外压容器设计23.真空容器的设计压力:当装有安全控制装置时,取__________________,或_______两者中的较小值;无安全装置时,取_______。
带夹套的真空容器,则按1.25倍最大内外压力差0.1MPa 0.1MPa 第十一章外压容器设计3真空容器按外压容器计算,装有安全控制装置时,取1.25倍最大内外压力差或0.1MPa 两者中的较小值;无安全装置时,取0.1MPa 。
带夹套的容器应考虑可能出现最大压差的危险工况,例如当内筒容器突然泄压而夹套内仍有压力时所产生的最大压差。
带夹套的真空容器,按上述真空容器选取的设计外压力加上夹套内的设计内压力一起作为设计外压。
__________________________ 加上________________________________。
上述真空容器选取的设计外压力夹套内的设计内压力一起作为设计外压4.现需设计一个在常温下操作的夹套冷却容器,内筒为真空,无安全控制装置,夹套内为0.8MPa (表压)冷却水,则校核内筒稳定性时的设计压力应取()01MP 08MP 09MP (D)10MP C 第十一章外压容器设计4真空容器按外压容器计算,装有安全控制装置时,取1.25倍最大内外压力差或0.1MPa 两者中的较小值;无安全装置时,取0.1MPa 。
带夹套的容器应考虑可能出现最大压差的危险工况,例如当内筒容器突然泄压而夹套内仍有压力时所产生的最大压差。
带夹套的真空容器,按上述真空容器选取的设计外压力加上夹套内的设计内压力一起作为设计外压。