压力容器设计 外压圆筒的设计计算
- 格式:ppt
- 大小:470.50 KB
- 文档页数:25
压力容器外圆弧长计算公式压力容器是工业生产中常见的一种设备,用于存储或输送气体、液体或其他物质。
在设计和制造压力容器时,需要考虑到其结构的稳定性和安全性。
其中,压力容器的外圆弧长是一个重要的参数,它直接影响着容器的结构强度和耐压能力。
因此,正确计算压力容器外圆弧长是非常重要的。
在计算压力容器外圆弧长时,需要考虑到容器的几何形状和尺寸,以及容器所承受的压力和温度等因素。
一般来说,压力容器的外圆弧长可以通过以下公式进行计算:L = π (D + 0.5 δ)。
其中,L表示外圆弧长,π表示圆周率,D表示容器的直径,δ表示容器壁厚度。
这个公式的推导过程是比较简单的。
首先,我们知道圆的周长等于直径乘以π,即L = π D。
但是在压力容器的设计中,我们需要考虑到容器壁的厚度对外圆弧长的影响。
因此,我们需要在直径的基础上加上一定的壁厚,即D + δ。
但是由于壁厚是双向的,所以需要乘以0.5。
最终得到了上述的计算公式。
在实际的工程中,我们可以通过这个公式来快速、准确地计算压力容器的外圆弧长。
这样可以帮助工程师和设计师更好地评估容器的结构强度,从而确保其安全运行。
除了上述的基本公式外,还有一些特殊情况需要考虑。
例如,当容器的壁厚不均匀或者存在其他特殊结构时,需要根据实际情况进行修正。
此外,对于特定材料和工艺要求,也可能需要进行一些修正计算。
因此,在实际工程中,需要根据具体情况来确定最终的计算公式。
在压力容器的设计和制造过程中,正确计算外圆弧长是非常重要的。
它直接关系到容器的结构强度和耐压能力,直接影响着容器的安全运行。
因此,工程师和设计师需要充分了解相关的计算方法和公式,确保容器的设计符合相关的标准和要求。
总之,压力容器外圆弧长的计算是一个重要的工程问题,需要结合容器的几何形状、尺寸、材料和工艺等因素进行综合考虑。
通过正确的计算和评估,可以确保压力容器的结构强度和安全性,从而保障其在工业生产中的正常运行。
压力容器设计外压圆筒的设计计算压力容器是一种用于贮存和输送液体或气体的设备,它承受着高压环境下的压力。
外压圆筒是其中一种压力容器的设计方式,其承受的是外部环境对容器的压力作用。
在外压圆筒的设计过程中,需要考虑以下几个方面:1.材料的选择:选取适合承受高压的材料,例如碳钢、不锈钢等。
根据压力容器的使用环境和介质特性,选择合适的材料,以保证容器的安全性和可靠性。
2.外压力的计算:根据容器所在环境的压力情况,计算外压力的大小。
外压的计算包括静态外压和动态外压两种情况,其中静态外压是指容器承受的恒定外力,而动态外压则是指容器承受的变化外力。
3.壁厚的计算:根据外压力的大小和材料的强度特性,计算容器的壁厚。
壁厚的计算是为了保证容器在外压力作用下的强度和刚度,以防止容器发生破裂、变形等事故。
4.稳定性的计算:在设计容器的几何形状时,需要考虑外压力对容器的稳定性的影响。
通过计算容器的抗剪稳定系数和抗弯稳定系数,判断容器是否满足稳定的要求。
5.接头设计:容器的接头连接处是容器的弱点,容易发生泄漏和破裂等事故。
在外压圆筒的设计中,需要经过计算和分析,选择合适的接头类型和连接方式,以保证接头的强度和密封性能。
6.强度计算:容器在外压力作用下,需要具备足够的强度承受力。
通过计算容器的主应力和主应变,确定容器的强度和破坏情况。
7.辅助装置的设计:外压圆筒在使用过程中,需要配备相应的辅助装置,如止回阀、减压阀等,以确保容器内压力的稳定和安全。
在设计完成后,需要进行一系列试验和检验,以验证容器的设计是否满足安全和可靠的要求。
总之,外压圆筒的设计计算是一项复杂而重要的工作,需要充分考虑几个方面的因素,以确保容器在高压环境下的安全运行。
附图1 外压或轴向受压圆筒和管子几何参数计算图(适用所有材料)350附图 2 外压圆筒和球壳厚度计算图(屈服点σ>207MPa的碳素钢和OCrl3、1Crl3钢) E一设计温度下螺旋板材料的弹性模量(MPa)附图 3 外压圆筒和球壳厚度计算图(16MnR、15CrMo钢)354一液氨贮罐为圆筒形容器,内直径D i=2200mm,装有安全阀,介质在50℃时的饱和蒸汽压是 2.1MPa(绝压),材质为16MnR,бs=350MPa,[б]=[б]t=173MPa,取焊缝系数ф=0.85,C=1.8mm,试设计其筒体和封头的壁厚并进行水压试验时的强度校核。
(20分)解:按有安全阀,取:P=(1.05—1.1)P工作(1分)P工作=2.1-0.1=2.0MP a (表压)(1分) P=1.1×2.0=2.2MP a1、筒体壁厚(6分)S=PD i/2[σ]t Φ-P=2.2×2200/2×173×0.85-2.2=16.58mmS d=S+C=16.58+1.8=18.38mm 圆整取:S n=19mm2、封头壁厚(6分)取M=2的标准椭圆封头则: K=1S=KPD i/2[σ]tΦ-0.5P=2.2×2200/2×173×0.85-0.5×2.2=16.25mmS d=S+C=16.58+1.8=18.32mm 圆整取:S n=19mm3、水压试验校核(6分)P t=1.25P×[σ]/[σ]t=1.25×2.2×1=2.75MP aσT=P T(D i+S e)/2S eΦ=2.75×(2200+19-1.8)/2×(19-1.8)×0.85=208.53MP a0.9σs=0.9×350=315MP a σT<0.9σs安全确定筒体和封头厚度均为S n=19mm。
外压圆筒设计图算法与公式法本文旨在对比研究外压圆筒设计图算法和公式法,探讨两种方法的优缺点,并提出作者的设计方案。
我们将简要介绍外压圆筒设计图算法和公式法的背景和意义;接着,将详细阐述这两种方法的原理和应用;我们将对外压圆筒设计图算法和公式法进行比较分析,并提出作者的设计方案。
外压圆筒设计图算法是一种基于几何图形计算的设计方法。
它通过将圆筒形容器分解为多个圆柱体和圆锥体,并根据外压条件计算出各部分的直径、高度等参数,最终得到圆筒设计的详细尺寸。
此算法具有较高的精确性和可靠性,适用于各种复杂形状和尺寸的圆筒设计。
然而,它需要较高的计算成本和时间,对于一些大型或复杂项目来说可能不太适用。
公式法是一种基于经验公式的计算方法。
它根据已知的参数和经验公式,直接计算出圆筒设计的各项参数。
此方法具有较快的计算速度和较低的计算成本,适用于一些简单形状和尺寸的圆筒设计。
但是,由于公式法的原理基于经验数据,因此对于一些特殊或复杂形状的圆筒设计可能无法提供精确的计算结果。
外压圆筒设计图算法和公式法各有优缺点。
对于一些需要精确计算和复杂形状的圆筒设计,外压圆筒设计图算法是一种更为可靠的方法。
然而,对于一些简单形状和尺寸的圆筒设计,公式法则具有较快的计算速度和较低的计算成本。
在实际应用中,应根据项目需求和设计要求选择合适的方法。
基于对外压圆筒设计图算法和公式法的比较分析,作者提出以下设计方案:对于一些重要且复杂的圆筒设计项目,建议采用外压圆筒设计图算法,以保证计算结果的精确性和可靠性;对于一些简单且常规的圆筒设计项目,可以尝试使用公式法,以节省计算成本和时间;对于一些介于两者之间的圆筒设计项目,可以根据项目需求和设计要求进行选择。
例如,可以在保证计算结果较为精确的前提下,采用公式法进行快速估算。
本文对比研究了外压圆筒设计图算法和公式法,分析了两种方法的优缺点,并提出了作者的设计方案。
在实际应用中,应根据项目需求和设计要求选择合适的方法。
设计压力计算公式一、压力容器设计压力(以常见的内压容器为例)1. 薄壁圆筒形容器。
- 对于承受内压的薄壁圆筒形容器,其环向应力计算公式为σ=(pD)/(2δ)(其中σ为环向应力,p为设计压力,D为圆筒的中径,δ为圆筒的壁厚)。
- 由此可推导出设计压力p = (2σδ)/(D)。
在实际应用中,需要先确定许用应力[σ],并根据容器的工作条件(如温度等)进行修正,同时考虑一定的安全系数。
2. 球形容器。
- 球形容器承受内压时,其应力计算公式为σ=(pD)/(4δ)(σ为球壳的应力,p 为设计压力,D为球壳的中径,δ为球壳的壁厚)。
- 那么设计压力p=(4σδ)/(D)。
同样,许用应力的确定需要考虑多种因素,如材料的性能、容器的使用环境等。
二、管道设计压力。
1. 静压头产生的压力。
- 当考虑管道中液体的静压头时,p = ρ gh(p为静压头产生的压力,ρ为液体的密度,g为重力加速度,h为液柱高度)。
这在计算管道系统在不同高度处的压力时非常有用。
2. 考虑流动阻力的情况。
- 在管道中有流体流动时,根据伯努利方程p_1+(1)/(2)ρ v_1^2+ρ gh_1 =p_2+(1)/(2)ρ v_2^2+ρ gh_2+∑ h_f(p_1、p_2为管道中两个截面处的压力,v_1、v_2为相应截面处的流速,h_1、h_2为相应截面的高度,∑ h_f为两截面间的沿程阻力和局部阻力损失之和)。
- 如果要计算某一截面处的设计压力,需要根据已知条件和上述方程进行求解。
例如,当已知进口压力p_1、流速v_1、v_2,高度h_1、h_2以及阻力损失∑ h_f 时,可求出p_2,即p_2=p_1+(1)/(2)ρ(v_1^2 - v_2^2)+ρ g(h_1 - h_2)-∑ h_f。
三、其他情况。
1. 考虑外部载荷的组合。
2. 温度对压力的影响。
- 对于气体介质,根据理想气体状态方程pV = nRT(p为压力,V为体积,n 为物质的量,R为理想气体常数,T为温度)。