8 外压容器设计
- 格式:ppt
- 大小:7.65 MB
- 文档页数:87
外压容器设计一、外压容器的稳定性1、外压容器的稳定性概念外压容器的失效形式 强度不足 破裂刚度不足 失稳2、临界压力(1)临界压力( P 临):导致筒体失稳时的外压。
临界压应力(σ临):筒体在P 临作用下筒体内存在 的环向应力。
(2)许用压应力为保证外压容器的使用安全,设计压力应当满足如下条件:∴ P 临≥mP P 临≥3P (3)影响临界压力的因素①P 临与筒体尺寸的关系(i)当L/D 相同时,S/D 抗弯曲 P 临 (ii)当S/D 相同时,L/D 圆筒越短 P 临L/D 圆筒越长 P 临 短圆筒:能得到封头支撑作用的圆筒长圆筒:得不到封头支撑作用的圆筒∴ S/D 相同时,短圆筒的P 临高(iii )当S/D 、 L/D 都相同时,有加强圈者P 临高② P 临与材料性质的关系因圆筒体失稳时,其压应力并没达到材料的屈服极限,说明P 临与材料的屈服极限无直接关系。
而材料的弹性模量E 对E —抗变形能力, P 临各种材料的E 值相差不大,所以采用高强度钢代替一般碳钢制造外压容器并不能提高圆筒的P 临,相反还增加了容器的成本。
材料的组织不均匀性合同体的不圆度将使P 临下降。
][P m P p =≤临二、外压容器的设计1、理论公式计算法(1)壁厚的计算钢制长圆 : 钢制短圆筒: 将P 临≥3P 代入可得1)钢制长圆筒: mm2)钢制短圆筒: mm3)刚性圆筒一般:S L 的圆筒叫刚性圆筒一般不存在失稳,因此只考虑强度即可(2)临界长度 L 临当短圆筒的长度大到某一临界值L 临时,封头对筒体的支撑作用将完全消失,这时短圆筒的P 临将下降到长圆筒的P 临,即:解得: 为区别长短圆筒的临界长度 当 L< L 临时, 为短圆筒L>L 临时,为长圆筒(3)用理论公式设计的步骤①设理论壁厚为S 。
,并选定材料②计算L 临③比较确定圆筒类型L 与L 临,确定圆筒类型④根据圆筒类型计算P 临⑤计算许用应力[P]= P 临/3比较:设计压力P 与P 临若P ≤[P],且接近,假设的S 。
第七章 外压容器设计第一节 外压容器设计【学习目标】 掌握外压容器稳定性概念,了解加强圈设置规定;掌握外压圆筒、封头、加强圈的设计计算;掌握外压容器压力试验规定。
一、外压容器的稳定性容器在正常操作时,凡壳体外部压力高于内部者,均称为外压容器,这类容器有两种:真空容器;两个压力腔的夹套容器。
但是对于薄壁容器,承受外压作用时,往往在强度条件能够满足、应力远低于材料屈服强度的情况下,容器有可能因为不能保持自己原有的形状而出现扁塌,这种现象称为结构丧失了稳定性,即失稳。
失稳是由于外压容器刚度不足而引起的,因此,保证容器有足够的稳定性(刚度)是外压容器能够正常工作的必要条件,也是外压容器设计中首先应该考虑的问题。
按圆筒的破坏情况,外压圆筒可分为长圆筒、短圆筒和刚性圆筒三类。
长圆筒刚性最差,最易失稳,失稳时呈现两个波形。
短圆筒刚性较好,失稳时呈现两个以上的波形。
刚性圆筒具有足够的稳定性,破坏时属于强度失效。
1、临界压力外压容器由原平衡状态失去稳定性而出现扁塌时对应的压力称之为临界压力(p cr )。
影响临界压力的因素有:① 圆筒的几何尺寸δ/D (壁厚与直径的比值)、L /D (长度与直径的比值)是影响外压圆筒刚度的两个重要参数。
δ/D 的值越大,圆筒刚度越大,临界压力p cr 值也越大;L /D 的值越大,圆筒刚度越小,临界压力p cr 也越小。
② 材料的性能材料的弹性模量E 值和泊松比μ值对临界压力有直接影响,但是这两个值主要由材料的合金成分来决定,对已有材料而言无法改变,因此讨论弹性模量E 值和泊松比μ值的影响意义不大。
③ 圆筒的不圆度圆筒的不圆度会影响圆筒抵抗变形的能力,降低临界压力p cr ,因此在圆筒制造过程中要控制不圆度。
2、许用外压力与内压容器强度设计要取安全系数类似,外压容器刚度设计也要设定稳定系数,我国标准规定外压容器稳定系数m=3,故许用外压力[]3cr p p ≤。
二、外压圆筒的计算长度外压圆筒的计算长度对许用外压值影响很大。
外压容器的设计计算外压容器是一种常见的工业设备,广泛应用于石化、化工、制药、食品等领域。
外压容器的设计计算非常重要,涉及到容器的强度、安全性、可靠性等方面。
本文将从容器设计的基本原则、压力壳体的计算、配件的设计等方面进行详细阐述。
1.容器设计的基本原则1.1强度原则:容器必须经受住内外压力和外力的作用,保证容器不发生破裂或塑性变形。
1.2稳定原则:容器的结构必须具有足够的稳定性,能够抵抗倾覆、翻滚和滑动等不稳定力矩的作用。
1.3安全原则:容器在正常操作条件下,不得发生渗漏、爆炸等危险情况,以保证人员和设备的安全。
2.压力壳体的计算压力壳体是外压容器的主要承载结构,其计算涉及到壳体的应力、应变等参数。
2.1壳体厚度计算:压力壳体的厚度应满足材料强度和设计容器的内外压力的要求,一般采用均匀厚度计算,即在整个壳体上采用相同的厚度。
2.2应力计算:根据材料的弹性模量和壳体的几何形状,可以计算出壳体在压力作用下的轴向应力和周向应力。
2.3应变计算:根据壳体的轴向应力和周向应力,可以计算出壳体的轴向应变和周向应变,以评估壳体的变形和塑性变形情况。
3.配件的设计3.1头板设计:头板的设计一般可根据受力分析,选择合适的头板形式和厚度。
常见的头板形式有平头、半球头、扁头等,其选择应根据容器的使用条件和结构要求进行合理设计。
3.2法兰设计:法兰是连接容器和管道的关键部件,其设计应满足安装、密封和维修等要求。
法兰的种类和规格应根据容器的使用要求和管道系统的设计标准进行选择。
3.3补强环设计:补强环用于增强容器的稳定性和强度,可以有效抵抗容器的扭转、屈曲和翻滚等不稳定力矩的作用。
补强环的形式和数量应根据容器的几何形状和受力情况进行优化设计。
4.其他注意事项4.1材料选择:容器的材料选择应根据容器的使用环境和要求进行合理选择,考虑到材料的强度、耐腐蚀性和可焊性等因素。
4.2焊接技术:容器的焊接工艺应满足材料的性能要求和容器的设计要求,确保焊缝的质量和可靠性。