过程设备设计-外压容器设计1概论
- 格式:ppt
- 大小:8.64 MB
- 文档页数:76
第七章外压容器设计第一节外压容器设计【学习目标】掌握外压容器稳定性概念,了解加强圈设置规定;掌握外压圆筒、封头、加强圈的设计计算;掌握外压容器压力试验规定。
一、外压容器的稳定性容器在正常操作时,凡壳体外部压力高于内部者,均称为外压容器,这类容器有两种:真空容器;两个压力腔的夹套容器。
但是对于薄壁容器,承受外压作用时,往往在强度条件能够满足、应力远低于材料屈服强度的情况下,容器有可能因为不能保持自己原有的形状而出现扁塌,这种现象称为结构丧失了稳定性,即失稳。
失稳是由于外压容器刚度不足而引起的,因此,保证容器有足够的稳定性(刚度)是外压容器能够正常工作的必要条件,也是外压容器设计中首先应该考虑的问题。
按圆筒的破坏情况,外压圆筒可分为长圆筒、短圆筒和刚性圆筒三类。
长圆筒刚性最差,最易失稳,失稳时呈现两个波形。
短圆筒刚性较好,失稳时呈现两个以上的波形。
刚性圆筒具有足够的稳定性,破坏时属于强度失效。
1、临界压力外压容器由原平衡状态失去稳定性而出现扁塌时对应的压力称之为临界压力(pcr)。
影响临界压力的因素有:① 圆筒的几何尺寸δ/D(壁厚与直径的比值)、L/D(长度与直径的比值)是影响外压圆筒刚度的两个重要参数。
δ/D的值越大,圆筒刚度越大,临界压力pcr值也越大;L/D的值越大,圆筒刚度越小,临界压力pcr也越小。
② 材料的性能材料的弹性模量E值和泊松比μ值对临界压力有直接影响,但是这两个值主要由材料的合金成分来决定,对已有材料而言无法改变,因此讨论弹性模量E值和泊松比μ值的影响意义不大。
③ 圆筒的不圆度圆筒的不圆度会影响圆筒抵抗变形的能力,降低临界压力pcr,因此在圆筒制造过程中要控制不圆度。
2、许用外压力与内压容器强度设计要取安全系数类似,外压容器刚度设计也要设定稳定系数,我国标准规定外压容器稳定系数m=3,故许用外压力。
二、外压圆筒的计算长度外压圆筒的计算长度对许用外压值影响很大。
从理论上说,计算长度的选取应是判断在该圆筒长度的两端能否保持足够的约束,使其真正能起支撑线的作用,从而在圆筒失稳时仍能保持圆形,不致被压塌。
思考题参考答案第1章压力容器导言思考题1.1我国《压力容器安全技术监察规程》根据整体危害水平对压力容器进行分类。
压力容器破裂爆炸时产生的危害愈大,对压力容器的设计、制造、检验、使用和管理的要求也愈高。
设计压力容器时,依据化学介质的最高容许浓度,我国将化学介质分为极度危害(Ⅰ级)、高度危害(Ⅱ级)、中度危害(Ⅲ级)、轻度危害(Ⅳ级)等四个级别。
介质毒性程度愈高,压力容器爆炸或泄漏所造成的危害愈严重。
压力容器盛装的易燃介质主要指易燃气体或液化气体,盛装易燃介质的压力容器发生泄漏或爆炸时,往往会引起火灾或二次爆炸,造成更为严重的财产损失和人员伤亡。
因此,品种相同、压力与乘积大小相等的压力容器,其盛装介质的易燃特性和毒性程度愈高,则其潜在的危害也愈大,相应地,对其设计、制造、使用和管理也提出了更加严格的要求。
例如,Q235-B钢板不得用于制造毒性程度为极度或高度危害介质的压力容器;盛装毒性程度为极度或高度危害介质的压力容器制造时,碳素钢和低合金板应逐张进行超声检测,整体必须进行焊后热处理,容器上的A、B类焊接接头还应进行100%射线或超声检测,且液压试验合格后还应进行气密性试验。
而制造毒性程度为中度或轻度的容器,其要求要低得多。
又如,易燃介质压力容器的所有焊缝均应采用全熔透结构思考题1.2筒体:压力容器用以储存物料或完成化学反应所需要的主要压力空间,是压力容器的最主要的受压元件之一;封头:有效保证密封,节省材料和减少加工制造的工作量;密封装置:密封装置的可靠性很大程度上决定了压力容器能否正常、安全地运行;开孔与接管:在压力容器的筒体或者封头上开设各种大小的孔或者安装接管,以及安装压力表、液面计、安全阀、测温仪等接管开孔,是为了工艺要求和检修的需要。
支座:压力容器靠支座支承并固定在基础上。
安全附件:保证压力容器的安全使用和工艺过程的正常进行。
思考题1.3《压力容器安全技术监察规程》依据整体危害水平对压力容器进行分类,若压力容器发生事故时的危害性越高,则需要进行安全技术监督和管理的力度越大,对容器的设计、制造、检验、使用和管理的要求也越高。
过程设备设计题解1.压力容器导言习题1. 试应用无力矩理论的基本方程,求解圆柱壳中的应力(壳体承受气体内压p ,壳体中面半径为R ,壳体厚度为t )。
若壳体材料由20R (MPa MPa s b 245,400==σσ)改为16MnR(MPa MPa s b 345,510==σσ)时,圆柱壳中的应力如何变化为什么解:○求解圆柱壳中的应力应力分量表示的微体和区域平衡方程式:δσσθφzp R R -=+21φσππφsin 220t r dr rp F k r z k=-=⎰圆筒壳体:R 1=∞,R 2=R ,p z =-p ,r k =R ,φ=π/2tpRpr tpR k 2sin 2===φδσσφθ○壳体材料由20R 改为16MnR ,圆柱壳中的应力不变化。
因为无力矩理论是力学上的静定问题,其基本方程是平衡方程,而且仅通过求解平衡方程就能得到应力解,不受材料性能常数的影响,所以圆柱壳中的应力分布和大小不受材料变化的影响。
2. 对一标准椭圆形封头(如图所示)进行应力测试。
该封头中面处的长轴D=1000mm ,厚度t=10mm ,测得E 点(x=0)处的周向应力为50MPa 。
此时,压力表A 指示数为1MPa ,压力表B 的指示数为2MPa ,试问哪一个压力表已失灵,为什么解:○根据标准椭圆形封头的应力计算式计算E 的内压力:标准椭圆形封头的长轴与短轴半径之比为2,即a/b=2,a=D/2=500mm 。
在x=0处的应力式为:MPa abt p btpa 15002501022222=⨯⨯⨯===θθσσ ○从上面计算结果可见,容器内压力与压力表A 的一致,压力表B 已失灵。
3. 有一球罐(如图所示),其内径为20m (可视为中面直径),厚度为20mm 。
内贮有液氨,球罐上部尚有3m 的气态氨。
设气态氨的压力p=,液氨密度为640kg/m 3,球罐沿平行圆A-A 支承,其对应中心角为120°,试确定该球壳中的薄膜应力。
第三章外压容器设计第一节外压容器的稳定性一、外压容器的失效形式容器失去了正常的工作能力称为失效。
外压容器的失效一是强度不够,二是稳定性不足。
对于承受外压力的薄壁容器,往往是强度还远能满足要求时,由于稳定性不足突然失去原有的形状而被压成波形,这种现象称为容器的失稳。
圆筒形容器失稳后可出现两个以上的波数,如图3-1所示。
外压薄壁容器失稳是主要的失效形式。
图3-1 外压容器失稳后的形状二、外压容器的失稳过程及临界压力的概念直径为D的容器在外压力p1作用下,其半径减小为D1,外压力依次增加、容器直径依次减小,即p1<p2<p3…p n、D1>D2>D3…D n。
这时容器的直径虽然减小了,但其原有的圆筒形的形状没有改变,容器处于稳定平衡阶段;然而当外压力增加到p cr时,容器突然失去了原有的圆筒形形状,被压成了波形、即失稳了,p cr就称为容器的临界压力。
容器之所以失稳,是由于其实际承受的外压力超过了它本身所具有的临界压力。
所以说:临界压力是导致容器失稳的最小外压力,或保证容器不失稳的最大外压力。
失稳后容器所发生的变形是永久性的。
三、临界压力的计算临界压力是容器本身抵抗外压力的一种能力,它与容器的几何尺寸、所用的材质及制造质量等因素有关。
临界压力越大、容器抗外压力的能力越强,越不容易失稳。
受外压力的圆筒形容器,按其破坏形式可分为长圆筒、短圆筒和刚性圆筒,其临界压力各不相同。
1.长圆筒长圆筒有足够的长度,两端封头对筒体的支持作用很小,可忽略不计。
长圆筒最容易失稳,失稳后为两个波,其临界压力计算公式为:3)(2.2oecr D E p δ=(3-1)2.短圆筒短圆筒长度较小,两端封头对筒体的支持作用很明显。
短圆筒后大于两个波,其临界压力计算公式为为:oo e cr D L D Ep /)/(59.25.2δ=(3-2)应用式(3-1)、式(3-2)应满足两个条件:(1)临界应力 tSeo cr cr D p σδσ≤=2;(2)圆筒的圆度应符合GB150的规定。