重心1重心一相关知识补充1重心距离的推导课本
- 格式:doc
- 大小:1.32 MB
- 文档页数:22
三角形重心的推论三角形是平面几何中重要的基本图形,它有许多有趣的性质和定理,其中之一就是重心定理。
在三角形中,三条中线的交点称为三角形的重心,也是三角形的一个重要重心。
在本文中,我们将讨论一些关于三角形重心的推论。
三角形重心定理回顾首先,我们回顾一下三角形重心定理:三角形的三条中线交于一点,即重心,重心距离三角形三个顶点的距离相等,即重心是距离三个顶点的平均值的那个点。
通过重心定理,我们可以得到三角形重心的黄线段公式。
设三角形ABC 的重心为G,D、E、F分别为BC、AC、AB的中点。
则有:AG:GD = BG:GE = CG:CF = 2:1这个公式通常被称为三角形重心黄线段公式。
使用这个公式,我们可以计算出三角形重心到三个顶点的距离,从而确定重心的位置。
接下来,我们将讨论一些关于三角形重心的性质:1. 在等边三角形中,重心、垂心和外心三点重合。
等边三角形的三个中线和三个高线重合,所以三角形的重心和垂心重合。
另外,等边三角形的外心也恰好位于重心/垂心的位置,因此三点重合。
2. 重心到顶点线段的长度与与三条中线的长度成反比例关系。
3. 若以三角形的重心为一组相应顶点的中点,分别划分成三个小三角形,则相似于原三角形且比例系数为1:2。
结论综上所述,我们讨论了三角形重心的一些推论,包括三角形重心黄线段公式、重心到顶点线段长度与三条中线长度的反比例关系、在等边三角形中重心与垂心和外心三点重合,以及三角形重心将原三角形分为三个相似的小三角形。
这些推论不仅能够加深我们对三角形的理解,还可以拓展我们的数学思维。
跟数学重心有关的知识点数学中的重心是指一个物体或者一个平面图形的质心。
它在数学、物理学和工程学等领域有着广泛的应用。
在本文中,我们将介绍跟数学重心有关的几个知识点,包括质心的定义、计算方法以及一些具体应用。
一、质心的定义与计算方法质心是一个物体或者平面图形的重心,它是物体各个部分的质量分布的平均位置。
在二维空间中,平面图形的质心可以通过以下公式计算:x = (x1m1 + x2m2 + … + xn*mn) / (m1 + m2 + … + mn)y = (y1m1 + y2m2 + … + yn*mn) / (m1 + m2 + … + mn)其中,(x,y)表示质心的坐标,(x1,y1)、(x2,y2)、…、(xn,yn)是各个部分的坐标,m1、m2、…、mn是各个部分的质量。
二、质心在几何中的应用1.平面图形的重心: 在几何中,正多边形的重心位于其对角线的交点处。
例如,正三角形的重心位于三条中线的交点处。
2.空间物体的质心: 对于一个由不规则形状组成的物体,可以通过将它划分为小部分,然后计算每个小部分的质量及其质心的坐标,最后再求得整个物体的质心坐标。
三、质心在物理学中的应用1.刚体的平衡: 在物理学中,质心是刚体平衡的重要概念。
当一个刚体受到外力作用时,只有当外力对刚体的合力通过质心时,刚体才处于平衡状态。
2.力矩计算: 力矩是物理学中的一个重要概念,它表示力对物体的转动效果。
质心经常被用来计算力矩,因为当力矩绕质心旋转时,计算会更加简单。
四、质心在工程学中的应用1.结构稳定性分析: 在工程学中,质心被广泛应用于结构稳定性分析。
通过计算结构的质心位置,可以判断结构是否平衡,并为结构设计和优化提供指导。
2.车辆动力学: 在汽车工程中,质心的位置对车辆的稳定性和操控性有着重要影响。
通常情况下,车辆的质心应该尽可能地低,以提高车辆的稳定性。
五、总结质心是一个物体或者一个平面图形的重心,它在数学、物理学和工程学等领域有着广泛的应用。
物理重心的知识点总结一、重心的概念。
1. 定义。
- 一个物体的各部分都受到重力的作用,从效果上看,我们可以认为各部分受到的重力作用集中于一点,这一点叫做物体的重心。
重心是物体所受重力的等效作用点。
2. 与质心的关系(对于质量分布均匀、形状规则的物体)- 在地球表面附近,当物体的线度远小于地球半径时,物体可视为质点系,质心与重心的位置重合。
质心是从质量分布角度定义的一个点,而重心是从重力作用角度定义的点。
二、重心的位置确定。
1. 质量分布均匀、形状规则物体的重心。
- 形状规则且质量分布均匀的物体,它的重心就在其几何中心上。
- 例如:- 均匀直棒的重心在棒的中点;- 均匀球体的重心在球心;- 均匀圆柱体的重心在轴线的中点。
2. 薄板状物体重心的实验测定 - 悬挂法。
- 原理:薄板静止时,受重力和绳子的拉力,根据二力平衡,重心一定在绳子的延长线上。
- 操作步骤:- 用细线将薄板状物体悬挂起来,画出细线的延长线;- 再换一个位置将薄板悬挂起来,画出另一条细线的延长线;- 两条细线延长线的交点就是薄板的重心。
3. 不规则物体重心的计算(高中阶段较少涉及复杂计算,简单了解)- 对于由多个质点组成的物体系统,可以根据重心坐标公式x_c=frac{∑_i =1^nm_ix_i}{∑_i = 1^nm_i},y_c=frac{∑_i = 1^nm_iy_i}{∑_i = 1^nm_i},z_c=frac{∑_i = 1^nm_iz_i}{∑_i = 1^nm_i}(m_i是第i个质点的质量,x_i,y_i,z_i是第i个质点的坐标)来计算重心位置,但在高中阶段主要以理解概念和简单确定特殊物体重心为主。
三、重心与物体平衡的关系。
1. 重心与稳度。
- 稳度是指物体的稳定程度。
- 物体的重心越低,底面积越大,物体的稳度就越高。
- 例如:- 不倒翁的底部较重,重心很低,所以它不容易倾倒;- 而一些高大的建筑物,底部面积大,也是为了增加稳度,防止倾倒。
.O A BDC2016届高三数学讲义————三角形的“五心”————(Ⅰ)“五心”的概念及性质一、外心(1)定义:三角形三边垂直平分线的交点(三角形外接圆的圆心). (2)外心的位置锐角三角形的外心在三角形内;锐角三角形的外心在三角形内; 直角三角形的外心在斜边中点;直角三角形的外心在斜边中点; 钝角三角形的外心在三角形外. (3)性质垂直平分线的性质:到线段两端点距离相等.垂直平分线的性质:到线段两端点距离相等.外心的性质:到三角形三个顶点距离相等.外心的性质:到三角形三个顶点距离相等. 内心到三顶点距离R(三角形外接圆半径)R= 2sin c C(某边除以它对角正弦的2倍) 证明过程如下:连接AO 并延长交圆O 于D,则AD 为圆直径,AD=2R .又90ABD Ð=°(直径所对的圆周角是90°),AB=c, ADB CÐ=Ð(同弧AB 所对的圆周角相等),∴AD= sin AB ADB Ð,即2R sin c C =, R=2sin cC . 延伸①:正弦定理由于R=2sin cC ,同理易证2sin 2sin 2sin cbaR C B A===,变形得到变形得到正弦定理: 2sin sin sin a b c R A B C===(每边除以它所对角的正弦为2R) 延伸②:余弦定理2222cos a b c bc A =+- (222cos 2b c a A bc+-=)ABC OA BCD证明过程如下:作CD ^AB 交其于D ,∴cos cos AD AC A b A ==,BD= cos c b A -,sin CD b A =,又222BC BD CD =+,即222(cos )(sin )a c b A b A =-+=22222222cos cos sin 2cos c bc A b A b A b c bc A -++=+-,其他边角也同求.二、内心(1)定义:三角形三条内角平分线的交点,也是三角形内切圆的圆心.也是三角形内切圆的圆心. (2)性质角平分线的性质:到角两边距离相等.角平分线的性质:到角两边距离相等.内心的性质:到三角形三边距离相等.内心的性质:到三角形三边距离相等.延伸①:内角平分线定理如图,AD 为△ABC 中BAC Ð的平分线,则有的平分线,则有(=)A B B D A C D C =上左下左上右下右证明过程如下:作BE//AC 交其延长线于E,则E DAC Ð=Ð. ∵BAD DAC Ð=Ð,∴E BAD Ð=Ð,AB BE ==c . 又∵BE//AC,易证△ADC ∽ △EDB, ∴BD=DCAB EB AC AC =,得证. 延伸②:外角平分线定理如图,AD 为△ABC 的外角平分线,交BC 延长线于D ,则有()AB BDAC DC=同上IK H EF D ABCMABDCEcb cAB CDEFcb cA FBDCE证明过程如下:作CE//AB 交AD 于E,则AEC EAF Ð=Ð.∵EAF EAC Ð=Ð,∴AEC EAC Ð=Ð,AC AE =. 又∵CE//AB,易证△ADB ∽ △EDC, ∴BD =DCAB AB ACCE=,得证.得证.延伸③:三角形内角平分线长公式如图,AD 为△ABC 中BAC Ð的平分线,则有的平分线,则有2bccos 2cos2211b+c +b c A AAD =(或)证明过程如下:作BE//AC 交其延长线于E,BF ^AE 交其于F .由前文的内角平分线定理可知,△ADC ∽ △EDB,∴bcAD AC DE BE ==. 又+DE=AE AD ,即bb+cAD AE =.而△ABE 为等腰三角形, BF ^AE, ∴22sin =2csin 2AAE AF AB BAF ==Ð,∴2bccos 2cos 2211b+c +b cA AAD =(或).延伸④:内心到三边距离r(三角形内切圆半径)设三角形面积为S ,则有,则有2r=a+b+cS(即面积的(即面积的22倍除以周长) 证明过程如下:连接OA,OB,OC . ∵相切,∴OF AB ^,即S △AOB = 11cr 22AB OF ·=,同理,同理S △AOC = 1br 2,S △BOC = 1ar 2.又∵S=S △AOB + S △AOC + S △BOC ,即S= 1(a+b+c)r 2,∴2r=a+b+cS..O A F BDCE(1)定义:三角形三条中线的交点.三角形三条中线的交点. (2)性质中线性质:将三角形面积等分成两部分.将三角形面积等分成两部分. 重心性质:分三角形的中线两段长比例为2:1(长:短) 如图:AD,BE,CF 为△ABC 三条中线,G 为其重心,则有:::2:1A G G CB G G EC G G F === 证明过程如下:作BH//FC 交AD 延长线于H,易证△GDC ≌ △HDB ,∴,2GD DH GH GD == 又∵BH//FG ,F 为AB 中点,∴G 也为AH 中点,即2AG GH GD ==, ∴:2:1AG GC =,其他同证.,其他同证. 延伸:三角形中线长公式如图,AD 为△ABC 的中线,则有则有221b +c +2bccos 2AD A =证明过程如下:作BE//AC 交AD 延长线于E,易证△ADC ≌ △EDB , ∴1,=2AD DE AD AE=即,∵BE//AC ,∴ABF A Ð=Ð.作AF ^EB 交其交其 延长线于F .又AB=c ,∴BF=AB cos ABF Ð=cos c A ,AF=sin c A , 故EF=cos c A b +.∴12AD AE ==222211(cos )(sin )b +c +2bccos 22c A b c A A ++=四、垂心(1)定义:三角形三条高的交点.:三角形三条高的交点. (2)性质斜三角形的三个顶点与垂心这四个点中,任何三个为顶点的三角形的垂任何三个为顶点的三角形的垂 心就是第四个点.所以把这样的四个点称为一个“垂心组”.AFBEDCBCD EFGAG FE CBD H(1)定义:三角形的一条内角平分线与另两个外角平分线的交点(旁切圆的圆心).(2)性质每个三角形都有三个旁切圆.每个三角形都有三个旁切圆.三角形的四心(内心、重心、垂心、外心)只有 一个,但旁心有三个,旁心到三角形三边所在直线距离相等. (Ⅱ)三角形“四心”与向量的典型问题分析向量是数形结合的载体,有方向,大小,双重性,不能比较大小.在高中数学“平面向量”(必修4第二章)的学习中,一方面通过数形结合来研究向量的概念和运算;另一方面,我们又以向量为工具,运用数形结合的思想解决数学问题和物理的相关问题.我们又以向量为工具,运用数形结合的思想解决数学问题和物理的相关问题.在平面向量的应用中,用平面向量解决平面几何问题时,首先将几何问题中的几何元素和几何关系用向量表示,然后选择适当的基底向量,将相关向量表示为基向量的线性组合,把问题转化为基向量的运算问题,最后将运算的结果再还原为几何关系.把问题转化为基向量的运算问题,最后将运算的结果再还原为几何关系.下面就以三角形的四心为出发点,应用向量相关知识,巧妙的解决了三角形四心所具备的一些特定的性质.既学习了三角形四心的一些特定性质,又体会了向量带来的巧妙独特的数学美感.的数学美感.一、“重心”的向量风采【命题1】 已知G 是ABC △所在平面上的一点,若0GA GB GC ++=,则G 是ABC△的重心.如图⑴.的重心.如图⑴.A'GCAB【命题2】 已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满足()OP OA AB AC l =++,(0)l Î+¥,,则P 的轨迹一定通过ABC △的重心.的重心. 【解析】【解析】 由题意()AP AB AC l =+ ,当(0)l Î+¥,时,由于()AB AC l +表示BC 边ABCDEFI a图⑴图⑴图⑵图⑵MPCBAO二、“垂心”的向量风采【命题3】 P 是ABC △所在平面上一点,若PA PC PC PB PB PA ×=×=×,则P 是ABC △的垂心.的垂心.【解析】【解析】由PA PB PB PC ×=× ,得()0PB PA PC ×-= ,即0PB CA ×=,所以PB CA ⊥.同理可证PC AB ⊥,PA BC⊥.∴P 是ABC △的垂心.如图⑶.的垂心.如图⑶.PABC【命题4】 已知O 是平面上一定点,AB C ,,是平面上不共线的三个点,动点P 满足cos cos AB AC OP OA AB B AC C l æöç÷=++ç÷èø ,(0)l Î+¥,,则动点P 的轨迹一定通过ABC △的垂心.的垂心.【解析】【解析】 由题意cos cos AB AC AP AB B AC C l æöç÷=+ç÷èø,由于0cos cos AB AC BC AB B AC C æöç÷+×=ç÷èø, 即0cos cos AB BC AC BC BC CB AB B AC C××+=-=,所以AP 表示垂直于BC 的向量,即P 点在过点A 且垂直于BC 的直线上,所以动点P 的轨迹一定通过ABC △的垂心,如图⑷.的垂心,如图⑷.图⑶图⑶ 图⑷图⑷ H FEM ABCO P三、“内心”的向量风采 【命题5】 已知I 为ABC △所在平面上的一点,且AB c =,AC b =,BC a = .若0aIA bIB cIC++=,则I 是ABC △的内心.的内心.【解析】 ∵IB IA AB =+ ,IC IA AC =+ ,则由题意得()0a b c IA bAB cAC++++=,∵AB AC bAB cAC AC AB AB AC AC AB AB ACæöç÷+=×+×=××+ç÷èø, ∴bc AB AC AI a b c AB ACæöç÷=+ç÷++èø.∵AB AB与ACAC分别为AB 和AC 方向上的单位向量,量,∴AI与BAC ∠平分线共线,即AI 平分BAC Ð. 同理可证:BI 平分ABC Ð,CI 平分ACB Ð.从而I 是ABC △的内心,如图⑸.的内心,如图⑸.【命题6】 已知O 是平面上一定点,AB C ,,是平面上不共线的三个点,动点P 满足AB ACOP OA AB ACl æö=++ç÷èø,(0)l Î+¥,,则动点P 的轨迹一定通过ABC △的内心.的内心. 【解析】【解析】 由题意得AB AC AP AB AC l æöç÷=+ç÷èø,∴当(0)l Î+¥,时,AP 表示BAC Ð的平分线所在直线方向的向量,故动点P 的轨迹一定通过ABC △的内心,如图⑹.的内心,如图⑹.图⑸图⑸图⑹图⑹ABCOPbacIA CBOCAB四、“外心”的向量风采【命题7】 已知O 是ABC △所在平面上一点,若222OA OB OC == ,则O 是ABC △的外心.外心.【解析】 若222OA OB OC == ,则222O A O B O C == ,∴OA OB OC == ,则O是ABC △的外心,如图⑺.的外心,如图⑺.【命题7】 已知O 是平面上的一定点,A B C ,,是平面上不共线的三个点,动点P 满足2cos cos OB OC AB AC OP AB B AC Cl æö+ç÷=++ç÷èø,(0)l Î+¥,,则动点P 的轨迹一定通过ABC △的外心.的外心.【解析】 由于2OB OC + 过BC 的中点,当(0)l Î+¥,时,cos cos AB AC AB B AC Cl æöç÷+ç÷èø表示垂直于BC的向量(注意:理由见二、命题4解释.),所以P 在BC 垂直平分线上,动点P 的轨迹一定通过ABC △的外心,如图⑻.的外心,如图⑻.图⑺图⑺M OB CAP图⑻图⑻。
数学重心知识点总结`本文将围绕数学中的重心概念展开,讨论其在不同领域的应用以及相关的重要知识点。
`1. 重心的概念重心是物体均匀分布质量时的中心点,也是物体受到重力作用时所受合力的作用点。
在数学中,重心也被用来描述几何图形和空间图形的平衡点或中心位置。
重心的位置可以通过重心定理、积分法、向量法等进行计算。
2. 几何图形的重心在平面几何中,不同形状的图形具有不同的重心计算方法。
常见的几何图形包括三角形、四边形、圆等。
三角形的重心位于三条中线的交点处,可以通过中线长的平方和的三倍的和来确定。
四边形的重心位于对角线的交点处,可以通过对角线的中点来确定。
圆的重心位于圆心的位置,其坐标可以通过圆心坐标来确定。
3. 空间图形的重心在空间几何中,立体图形的重心计算较为复杂。
常见的空间图形包括球体、长方体、圆柱体、圆锥体等。
球体的重心位于球心的位置,可以通过球心坐标来确定。
长方体的重心位于中心位置,可以通过长方体的对称性来确定。
其他复杂的空间图形的重心计算通常需要利用积分法或向量法来进行。
4. 重心在力学中的应用重心在力学中具有重要的应用价值。
对于刚体平衡问题,重心是刚体平衡的关键要素。
当刚体受到外力作用时,重心位置的改变会影响刚体的平衡状态。
在飞行器、汽车、船舶等工程领域,重心的位置设计对于整个系统的稳定性至关重要。
5. 重心在航空航天工程中的应用在航空航天工程中,对于飞行器的设计和控制来说,重心的位置是至关重要的。
飞行器的重心位置直接影响其飞行动力学性能和操纵稳定性。
一般来说,飞行器的重心位置应该在飞行器整体几何形状的中心位置,以确保其飞行稳定性和操纵性能。
6. 重心在建筑工程中的应用在建筑工程中,重心的位置也是一个重要考虑因素。
建筑物的重心位置对其整体结构的稳定性和安全性有着直接影响。
在建筑设计中,需要考虑建筑物整体结构的重心位置,以确保建筑物能够承受外部引力和自重的作用,并保持稳定。
7. 重心在船舶工程中的应用在船舶工程中,船舶的重心位置直接影响其稳定性和操纵性能。
重心坐标公式推算过程嘿,咱今儿就来唠唠这重心坐标公式的推算过程哈!你说这重心,就好像是一个物体的平衡点,就跟咱人走路得找稳当点一样重要呢!咱先从最简单的情况说起。
想象一下,有两个质量不同的小球,一个重一点,一个轻一点,它们放在一条直线上。
那这重心肯定就在靠近重球的那一边嘛。
那具体在啥位置呢?这就得好好琢磨琢磨啦。
咱设这两个球的质量分别是 m1 和 m2,它们到一个固定点的距离分别是 x1 和 x2。
那这重心的位置 X 该咋算呢?嘿,其实就是它们的质量乘以距离的和除以总质量呀!就是 X = (m1*x1 + m2*x2) / (m1 + m2)。
这是不是有点像把两个东西按重要程度加起来再平均一下呀?那要是再多几个球呢?那也不难呀!就一个一个加呗。
比如有三个球,那就是把三个的质量和距离都算进去,还是那个道理嘛。
你说这像不像我们过日子,各种事情都有不同的分量,最后得综合起来找个平衡的地方呀?再往复杂了说,要是这些球不在一条直线上,而是在一个平面上呢?那也不怕呀!咱就把平面分成小格子,每个格子里都当成是一个小的直线情况来算。
然后把这些小的重心再综合起来算大的重心。
你想想,这多有意思呀!就好像拼图一样,一块一块地拼出整个重心来。
要是再难一点,到三维空间里呢?其实道理还是一样的呀!就是多了一个方向要考虑而已嘛。
你看,这重心坐标公式的推算过程,不就是一步一步找平衡的过程嘛!咱生活中不也得这样,到处找平衡,工作和生活平衡,快乐和烦恼平衡。
总之呢,这重心坐标公式虽然看起来有点复杂,但只要咱慢慢琢磨,就会发现其实也不难理解。
就像咱过日子,一点一点来,总能找到那个最合适的平衡点。
这就是我对重心坐标公式推算过程的理解啦,你觉得咋样呢?是不是挺有意思的呀!哈哈!。
高中物体的重心知识点总结重心的定义重心是指物体所受的地球引力作用线的交点,也就是物体的重心位置。
它是物体平衡时的位置,也是物体受到地面支撑力的作用线所经过的点。
通俗地讲,重心就是物体整体所受重力的集中作用点。
重心的性质重心具有以下性质:1. 重心是关于物体整体的性质,而不是某一部分的性质。
2. 重心的位置与物体形状、大小无关,只与物体的质量分布有关。
3. 重心所在的位置是物体平衡时的位置,也是支撑力作用线的交点。
4. 对于均匀的密度分布物体来说,重心的位置与几何中心(质心)重合。
重心的计算对于不规则形状的物体,重心的位置可以通过计算来确定。
一般而言,可以使用以下几种方法来计算重心的位置:1. 数学方法:通过对不规则形状物体的质量分布进行数学积分,可以计算出物体的重心位置。
2. 实验方法:通过实验测量物体平衡时的支撑点位置,可以确定物体的重心位置。
3. 近似计算方法:对于一些简单的形状如长方形、圆形等,可以通过简单的几何方法估算出重心位置。
重心在物理学中的应用重心在物理学中有着广泛的应用,主要包括以下几个方面:1. 稳定性分析:重心的位置直接决定了物体的稳定性。
如果物体的重心位置处于支撑点上方,物体会处于稳定状态;如果重心位置处于支撑点下方,物体会处于不稳定状态。
2. 运动分析:在物体运动的分析中,重心位置的变化会直接影响到物体的运动状态。
例如,刚体的平移运动时,重心的运动轨迹与整体物体的运动轨迹一致。
3. 结构设计:在建筑工程、机械设计等领域,重心的位置对于设计稳定、安全的结构具有重要意义。
合理地确定重心位置可以提高结构的稳定性和安全性。
总结重心是物理学中一个非常重要的概念,它对于理解物体的平衡、稳定性和运动起着至关重要的作用。
了解重心的定义、性质、计算方法和应用对于学习物理具有重要意义。
通过对重心的深入研究,可以更好地理解物体的运动规律和结构设计原理,为进一步深入物理学的学习打下坚实的基础。
对“重心”概念的深入理解物体“重心”的位置为什么可以用悬挂法确定?用物体的“重心”能做些什么运算?高中物理课本除 了简单的说明了质量分布均匀、形状规则的物体重心在几何中心外,对其他情况基本上语焉不详,然而高 考题和平时训练题中,又大量存在可以变形的重绳、链条、液柱等模型,这些模型里重力做功的计算到底 如何简化?只处理质点模型的高中课本基本上没有提供任何思路。
鉴于此,笔者认为有必要为同学们深入 的挖掘“重心”的概念定义、确定方法和运用途径。
一、人教版《高中物理必修 1》对“重心”的表述1、定义:“一个物体的各部分都受到重力的作用,从效果上看,我们可以认为各部分所受的重力作用 集中于一点,这一点叫做物体的重心。
”2、说明:“质量分布均匀的物体……重心的位置只跟物体的形状有关。
…… 质量分布不均匀的物体,重心的位置除了跟物体的形状有关外,还跟物体内质量 的分布有关。
”C在此基础上,课本以举例的方式说明了,形状规则的匀质物体的重心在几何 中心,质量分布不均匀的物体重心会向质量较大的一边偏移;然后,直接说薄板 重心可以通过两次悬挂来确定。
G 所有这些,都没有做任何解释:为什么就是这样的?二、深入理解课本对“重心”的定义“重心”的定义里,有这么一个关键的要求:从某些角度看,把重力看做集中作用于“重心”,应该 与重力分散的作用在物体各个部分产生的“效果”相同。
那么,“重心”概念是从重力产生的什么效果角 度看问题的呢?课本在这里没做任何解释。
按高中力学里通常的思路,力的效果往往是从产生加速度角度进行分析的,不过,当物体不能视为质 点时,各部分的加速度就未必相等,物体就可能存在旋转,这时,还仅仅从加速度角度分析问题,可能就 不够了。
我们知道,当不可视为质点的物体有固定转轴时,力的作用线不通过转轴,就会产生使物体绕轴 转动的效应,此时力的效果,就应该用力和力臂的乘积来描述。
①如右图所示的一维系统的情形,用悬挂法确定“轻杆、质点” 系统的重心位置时,只有确保系统在绳子拉力和通过重心的重力共同作用下不绕悬挂点转动时,悬点的位置才是系统重心的位置, 此时绳子拉力和通过重心的重力才满足二力平衡的条件:等大反 向共线。
三角形的重心知识点一、重心的定义。
1. 在三角形中,重心是三角形三条中线的交点。
- 中线是连接三角形一个顶点和它对边中点的线段。
例如,对于△ABC,设D为BC边的中点,连接AD,则AD是BC边上的中线。
三角形有三条中线,分别是三条边对应的中线,这三条中线交于一点,这个点就是重心,通常用字母G表示。
二、重心的性质。
1. 重心到顶点的距离与重心到对边中点的距离之比为2:1。
- 以△ABC为例,G为重心,AD是BC边上的中线,则AG = 2GD,同理,若BE是AC边上的中线,BG = 2GE;若CF是AB边上的中线,CG = 2GF。
2. 重心和三角形3个顶点组成的3个三角形面积相等。
- 即S△ABG = S△BCG = S△ACG。
因为每个三角形的面积等于三角形ABC面积的三分之一。
这是由于重心将每条中线分成2:1的两段,根据等底同高三角形面积比等于底边比等原理可以得出。
3. 若在平面直角坐标系中,已知三角形三个顶点的坐标分别为A(x_1,y_1),B(x_2,y_2),C(x_3,y_3),则重心G的坐标为((x_1 + x_2+x_3)/(3),(y_1 + y_2 +y_3)/(3))。
- 例如,若A(1,2),B(3,4),C(5,6),则重心G的坐标为((1 + 3+5)/(3),(2 +4+6)/(3))=(3,4)。
三、重心的应用实例。
1. 在求解三角形相关线段长度问题中的应用。
- 例如,已知三角形的一条中线长为6,求重心到这条中线所对顶点的距离。
根据重心到顶点的距离与重心到对边中点的距离之比为2:1,设重心到对边中点的距离为x,则重心到顶点的距离为2x,中线长为3x = 6,解得x = 2,所以重心到顶点的距离为2x=4。
2. 在求解三角形面积相关问题中的应用。
- 若已知三角形的面积为S,求由重心和三角形三个顶点组成的每个小三角形的面积。
根据重心和三角形3个顶点组成的3个三角形面积相等,可知每个小三角形的面积为(S)/(3)。