2019-2020学年广东省广州市番禺区高一下学期期末考试物理试题
- 格式:doc
- 大小:309.00 KB
- 文档页数:8
2019-2020学年广东省珠海市香洲区九年级(上)期末物理试卷一、单项选择题(本大题7小题,每小题3分,共21分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)如图所示,将两个铅柱的底面削平,然后紧紧地压在一起,两个铅柱就会结合起来,甚至下面吊一个重物都不能把它们拉开,该实验说明()A.分子间存在斥力B.分子间存在引力C.分子间存在间隙D.分子在不停的做无规则运动2.(3分)用绝缘细线悬挂两个轻质小球,当小球静止时,其状态如图所示,下列判断正确的是()A.两球均不带电荷B.两球带同种电荷C.两球带异种电荷D.两球一个带电,一个不带电3.(3分)如图所示电路中,定值电阻R1、R2的阻值关系是R1<R2.闭合开关,下列说法正确的是()A.电压表V的示数等于V1的示数B.电压表的V1示数大于V2的示数C.电流表A的示数等于A2的示数D.电流表的A1示数大于A2的示数4.(3分)小珠梳理归纳了磁的知识,其中正确的是()①磁场看不见摸不着,但是可以借助小磁针感知它的存在②条形磁体两端的磁性最强,中间磁性最弱③地球周围存在地磁场,地磁场两极与地理两极完全重合④磁体间只有相互接触时才有力的作用A.①②B.②③C.③④D.①④5.(3分)关于家庭电路和安全用电,下列说法正确的是()A.使用有金属外壳的用电器时,应将其外壳接在零线上B.家庭电路中,保险丝熔断后可用铜丝代替C.使用试电笔判断火线、零线时,手要按住笔尾金属体D.若空气开关“跳闸”,一定是因为用电器的总功率过大6.(3分)如图所示是公交车自动爆玻器,危急时刻,司机闭合控制台开关或乘客闭合装置的尾部开关,爆玻器即可完成破窗。
该爆玻器相当于一个电控安全锤,它是利用电磁线圈在通电时产生一个冲击力,带动钨钢头击打车窗玻璃边角部位,实现击碎玻璃的目的。
下列说法正确的是()A.自动爆玻器工作过程中,机械能转化为电能B.自动爆玻器与扬声器工作原理相同C.控制台开关和自动爆玻器尾部开关是串联的D.自动爆玻器的工作原理是电磁感应现象7.(3分)如图甲所示,电阻R=10Ω,闭合开关,滑动变阻器的滑片从a端移动到b端的过程中,电流表示数变化范围为0.6A~0.1A.在图甲电路的基础上,增加一根导线改装成如图乙所示的电路。
北京人大附中二分校2019-2020学年高一年级第二学期期末练习物理学科试卷卷I (共52分)一、单项选择题(本题共13小题,在每小题给出的选项中,只有一个选项是符合题意的,每小题4分,共52分)1.A点为已知电场中的一个固定点,在A点放一个电荷量为+g的点电荷,其所受电场力为F, A点的场强为E,则()A.若将A点的点电荷移去,A点的场强变为零B.若在A点换上电荷量为+2q的点电荷,A点的场强大小将发生变化C.若在A点换上电荷量为-q的点电荷,A点的场强方向将发生变化D.A点场强的大小、方向与放在该处的点电荷的大小、正负、有无均无关2.在真空中有两个点电荷,它们之间的静电力为F。
如果保持它们各自所带的电荷量不变,将它们之间的距离减小到原来的一半,那么它们之间静电力的大小等于()p PA.—B. —C. 2FD. 4F2 43.某电场电线颁布如图所示,电场中有A、B两点,则以下判断正确的是()A.A点的场强大于B点的场强,B点的电势高于A点的电势B.若将一个电荷由A点移到3点,电荷克服电场力做功,则该电荷一定为负电荷C.一个负电荷处于A点的电势能小于它处于B点的电势能D.若将一个正电荷由A点释放,该电荷将在电场中做加速度减小的加速运动4.关于静电场的电场强度和电势,下列说法正确的是()A.电场强度的方向处处与等电势面垂直B.电场强度为零的地方,电势也为零C.随着电场强度的大小逐渐减小,电势也逐渐降低D.任一点的电场强度方向总是与该点电荷的受力方向相同5, 电场线分布如图所示,以下说法正确的是( )A. a 点电势低于力点电势B. c 点场强大于b 点场强C. 若将一检验电荷+g 由们点移至a 点,它的电势能增大D. 若在d 点再固定一点电荷-Q,将一检验电荷+g 由a 移至人的过程中,电势能增大6, 如图,在点电荷。
产生的电场中,将两个带正电的试探电荷gi 、贝分别置于A 、B 两点,虚线为等势 线,取无穷远处为零电势点。
2019-2020学年广东省广州市番禺区八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题2分,满分20分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2分)(2020春•桦南县期末)二次根式有意义的条件是( )A.x>2B.x≥2C.x<2D.x≤22.(2分)(2020春•番禺区期末)下列各组数中不能作为直角三角形的三边长的是( )A.3,4,5B.13,14,15C.5,12,13D.15,8,173.(2分)(2020春•番禺区期末)下面是某八年级(2)班第1组女生的体重(单位:kg):35,36,42,42,68,40,38,这7个数据的中位数是( )A.68B.43C.42D.404.(2分)(2020春•凤凰县期末)矩形、菱形、正方形都具有的性质是( )A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分对角5.(2分)(2020春•番禺区期末)一次函数y=﹣3x+1的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)(2020春•番禺区期末)如图,在菱形ABCD中,E,F分别是AB,AC的中点,若EF=2,则菱形ABCD的周长为( )A.16B.8C.D.47.(2分)(2020春•番禺区期末)下列各式计算正确的是( )A.B.C.D.3﹣2=18.(2分)(2020•海淀区校级一模)把直线y=﹣2x向上平移后得到直线AB,若直线AB 经过点(m,n),且2m+n=8,则直线AB的表达式为( )A.y=﹣2x+4B.y=﹣2x+8C.y=﹣2x﹣4D.y=﹣2x﹣89.(2分)(2010•柳州)如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,则∠AEB的度数为( )A.10°B.15°C.20°D.12.5°10.(2分)(2020春•番禺区期末)如图,在菱形ABCD中,AB=AC=1,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AC于点O,则下列结论:①△ABF≌△CAE;②∠FHC=∠B;③△ADO≌△ACH;④S菱形ABCD;其中正确的结论个数是( )A.1个B.2个C.3个D.4个二、填空题11.(2分)(柳州)计算: .12.(2分)(2020春•番禺区期末)在平行四边形ABCD中,若∠A=38°,则∠C= .13.(2分)(2020春•昆明期末)直线y=2x﹣3与y轴的交点坐标 .14.(2分)(2020春•番禺区期末)两人从同一地点同时出发,一人以30m/min的速度向北直行,一人以30m/min的速度向东直行,10min后他们相距 m.15.(2分)(武汉模拟)甲、乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则当乙车到达B城时,甲车离B城的距离为 km.16.(2分)(2020春•番禺区期末)如图,在矩形ABCD中,AB=6,BC=4,将矩形沿AC折叠,点D落在D′处,则重叠部分△AFC的面积为 .三、解答题17.(8分)(2020春•番禺区期末)计算:(1)(2)(3)18.(8分)(2020春•番禺区期末)甲、乙两名射击运动员各进行10次射击,甲的成绩是7,7,8,9,8,9,10,9,9,9.乙的成绩如图所示(单位:环)(1)分别计算甲、乙两人射击成绩的平均数;(2)若要选拔一人参加比赛,应派哪一位?请说明理由.19.(8分)(2020春•番禺区期末)如图,一架2.5m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2.4m,如果梯子的顶端A沿墙下滑0.4m,则梯子底端B也外移0.4m吗?为什么?20.(8分)(2020春•番禺区期末)已知直线y=kx+b的图象经过点(2,4)和点(﹣2,﹣2).(1)求b的值;(2)求关于x的方程kx+b=0的解;(3)若(x1,y1)、(x2,y2)为直线上两点,且x1<x2,试比较y1、y2的大小.21.(8分)(2020春•番禺区期末)如图,在▱ABCD中,BE∥DF,且分别交对角线AC于点E,F,连接ED,BF.(1)求证:AE=CF;(2)若AB=9,AC=16,AE=4,BF=3,求四边形ABCD的面积.22.(6分)(2020春•番禺区期末)已知点A(8,0)及第一象限的动点P(x,y),且x+y=10,设△OPA的面积为S.(1)求S关于x的函数解析式,并写出x的取值范围;(2)画出函数S的图象,并求其与正比例函数S=2x的图象的交点坐标;(3)当S=12时,求P点坐标.23.(6分)(2020春•番禺区期末)如图,在平行四边形ABCD中,E,F分别是AB,CD 的中点,DE,BF与对角线AC分别交于点M,N,连接MF,NE.(1)求证:DE∥BF;(2)判断四边形MENF是何特殊的四边形?并对结论给予证明.24.(8分)(2020春•番禺区期末)甲、乙两家商场平时以同样价格出售相同的商品,春节期间两家商场都让利酬宾,其中甲商场所有商品按8折出售,乙商场对一次购物中超过300元后的价格部分打7折.(1)以x(单位:元)表示商品原价,y(单位:元)表示购物金额,分别就两家商场的让利方式写出y与x的函数解析式;(2)在同一直角坐标系中画出(1)中函数的图象;(3)春节期间如何选择这两家商场去购物更省钱?25.(8分)(2020春•番禺区期末)如图,在边长为a的正方形ABCD中,作∠ACD的平分线交AD于F,过F作直线AC的垂线交AC于P,交CD的延长线于Q,又过P作AD的平行线与直线CF交于点E,连接DE,AE,PD,PB.(1)求AC,DQ的长;(2)四边形DFPE是菱形吗?为什么?(3)探究线段DQ,DP,EF之间的数量关系,并证明探究结论;(4)探究线段PB与AE之间的数量关系与位置关系,并证明探究结论.2019-2020学年广东省广州市番禺区八年级(下)期末数学试卷答案与试题解析一、选择题(本大题共10小题,每小题2分,满分20分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2分)(2020春•桦南县期末)二次根式有意义的条件是( )A.x>2B.x≥2C.x<2D.x≤2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.解:由题意得,x﹣2≥0,解得x≥2.故选:B.【点评】本题考查的知识点为:二次根式的被开方数是非负数.2.(2分)(2020春•番禺区期末)下列各组数中不能作为直角三角形的三边长的是( )A.3,4,5B.13,14,15C.5,12,13D.15,8,17【考点】勾股定理的逆定理.【分析】先分别求出两小边的平方和和最长边的平方,再看看是否相等即可.解:A、∵32+42=52,∴以3,4,5为边能组成直角三角形,故本选项不符合题意;B、∵132+142≠152,∴以13,14,15为边不能组成直角三角形,故本选项符合题意;C、∵52+122=132,∴以5,12,13为边能组成直角三角形,故本选项不符合题意;D、∵82+152=172,∴以8,15,17为边能组成直角三角形,故本选项不符合题意;故选:B.【点评】本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键.3.(2分)(2020春•番禺区期末)下面是某八年级(2)班第1组女生的体重(单位:kg):35,36,42,42,68,40,38,这7个数据的中位数是( )A.68B.43C.42D.40【考点】中位数.【分析】根据中位数的概念求解.解:这组数据按照从小到大的顺序排列为:35,36,38,40,42,42,68,则中位数为40.故选:D.【点评】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.(2分)(2020春•凤凰县期末)矩形、菱形、正方形都具有的性质是( )A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分对角【考点】多边形.【分析】根据正方形的性质,菱形的性质及矩形的性质分别分析各个选项,从而得到答案.解:A、对角线相等,菱形不具有此性质,故本选项错误;B、对角线互相垂直,矩形不具有此性质,故本选项错误;C、对角线互相平分,正方形、菱形、矩形都具有此性质,故本选项正确;D、对角线平分对角,矩形不具有此性质,故本选项错误;故选:C.【点评】此题考查了矩形、菱形、正方形的对角线的性质,注意掌握正方形的对角线垂直平分且相等、矩形的对角线互相平分且相等、菱形的对角线互相垂直平分,正方形、矩形、菱形都具有的特征是对角线互相平分.5.(2分)(2020春•番禺区期末)一次函数y=﹣3x+1的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数的性质.【分析】根据题目中的函数解析式和一次函数的性质,可以判断该函数的图象经过哪几个象限,不经过哪个象限,本题得以解决.解:∵一次函数y=﹣3x+1,k=﹣3,b=1,∴该函数图象经过第一、二、四象限,不经过第三象限,故选:C.【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.6.(2分)(2020春•番禺区期末)如图,在菱形ABCD中,E,F分别是AB,AC的中点,若EF=2,则菱形ABCD的周长为( )A.16B.8C.D.4【考点】三角形中位线定理;菱形的性质.【分析】根据三角形的中位线定理求出BC,再根据菱形的四条边解答即可.解:∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴BC=2EF=2×2=4,∵四边形ABCD是菱形,∴AB=BC=CD=AD=4,∴菱形ABCD的周长=4×4=16.故选:A.【点评】本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半的性质,熟记各性质是解题的关键.7.(2分)(2020春•番禺区期末)下列各式计算正确的是( )A.B.C.D.3﹣2=1【考点】分母有理化;二次根式的混合运算.【分析】利用二次根式的加减法对A、B进行判断;根据二次根式的性质对C进行判断;根据二次根式的乘法法则对D进行判断.解:A、与不能合并,所以A选项错误;B、原式=3,所以B选项错误;C、原式=2,所以C选项错误;D、原式3﹣2=1,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.8.(2分)(2020•海淀区校级一模)把直线y=﹣2x向上平移后得到直线AB,若直线AB 经过点(m,n),且2m+n=8,则直线AB的表达式为( )A.y=﹣2x+4B.y=﹣2x+8C.y=﹣2x﹣4D.y=﹣2x﹣8【考点】一次函数图象与几何变换.【分析】由题意知,直线AB的k是﹣2,又已知直线AB上的一点(m,n),所以用直线的解析式方程y﹣y0=k(x﹣x0)求得解析式即可.解:∵直线AB是直线y=﹣2x平移后得到的,∴直线AB的k是﹣2(直线平移后,其K不变)∴设直线AB的方程为y﹣y0=﹣2(x﹣x0)①把点(m,n)代入①并整理,得y=﹣2x+(2m+n)②∵2m+n=8 ③把③代入②,解得y=﹣2x+8,即直线AB的解析式为y=﹣2x+8.故选:B.【点评】本题是关于一次函数的图象与它平移后图象的转变的题目,在解题时,紧紧抓住直线平移后,K不变这一性质,再根据题意中的已知条件,来确定用哪种方程来解答.9.(2分)(2010•柳州)如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,则∠AEB的度数为( )A.10°B.15°C.20°D.12.5°【考点】等边三角形的性质;正方形的性质.【分析】根据等边三角形的性质及正方形的性质可得到AB=AE,从而可求得∠BAE的度数,则∠AEB的度数就不难求了.解:根据等边三角形和正方形的性质可知AB=AE,∴∠BAE=90°+60°=150°,∴∠AEB=(180°﹣150°)÷2=15°.故选:B.【点评】主要考查了正方形和等边三角形的特殊性质.10.(2分)(2020春•番禺区期末)如图,在菱形ABCD中,AB=AC=1,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AC于点O,则下列结论:①△ABF≌△CAE;②∠FHC=∠B;③△ADO≌△ACH;④S菱形ABCD;其中正确的结论个数是( )A.1个B.2个C.3个D.4个【考点】全等三角形的判定;等边三角形的判定与性质;菱形的性质.【分析】证得△ABC是等边三角形,则可得∠B=∠EAC=60°,由SAS即可证得△ABF≌△CAE,可得∠BAF=∠ACE,EC=AF,由外角性质可得∠FHC=∠B,①②正确;由∠OAD=60°=∠EAC≠∠HAC,③△ADO≌△ACH不正确;求出△ABC的面积AB2,得菱形ABCD的面积,④不正确;即可得出结论.解:∵四边形ABCD是菱形,∴AB=BC,∵AB=AC,∴AB=BC=AC,即△ABC是等边三角形,∴AB=CA,∠EAC=∠B=60°,同理:△ADC是等边三角形∴∠OAD=60°,在△ABF和△CAE中,,∴△ABF≌△CAE(SAS);∴∠BAF=∠ACE,EC=AF,∵∠FHC=∠ACE+∠FAC=∠BAF+∠FAC=∠BAC=60°,∴∠FHC=∠B,故①正确,②正确;∵∠OAD=60°=∠EAC≠∠HAC,故③△ADO≌△ACH不正确;∵△ABC是等边三角形,AB=AC=1,∴△ABC的面积AB2,∴菱形ABCD的面积=2△ABC的面积,故④不正确;故选:B.【点评】本题考查了全等三角形的判定与性质,菱形的性质,等边三角形的判定与性质等知识.熟练掌握菱形和等边三角形的判定与性质,证明三角形全等是解题的关键.二、填空题11.(2分)(柳州)计算: .【考点】二次根式的乘除法.【分析】原式利用二次根式乘法法则计算即可得到结果.解:原式,故【点评】此题考查了二次根式的乘除法,熟练掌握二次根式的乘法法则是解本题的关键.12.(2分)(2020春•番禺区期末)在平行四边形ABCD中,若∠A=38°,则∠C= 38° .【考点】平行四边形的性质.【分析】由平行四边形四边形的性质可得∠A=∠C=38°.解:∵四边形ABCD是平行四边形,∴∠A=∠C,∵∠A=38°,∴∠C=38°,故38°.【点评】本题考查了平行四边形的性质,掌握平行四边形的性质是本题的关键.13.(2分)(2020春•昆明期末)直线y=2x﹣3与y轴的交点坐标 (0,﹣3) .【考点】一次函数图象上点的坐标特征.【分析】求出当x=0时,y的值,由此即可得出直线与y轴的交点坐标.解:由题意得:当x=0时,y=2×0﹣3=﹣3,即直线与y轴交点坐标为(0,﹣3),故答案为(0,﹣3).【点评】本题主要考查一次函数与坐标轴的交点,比较简单,令x=0即可.14.(2分)(2020春•番禺区期末)两人从同一地点同时出发,一人以30m/min的速度向北直行,一人以30m/min的速度向东直行,10min后他们相距 300 m.【考点】勾股定理的应用.【分析】根据方位角可知两人所走的方向正好构成了直角.然后根据路程=速度×时间,再根据勾股定理,即可求得两人之间的距离.解:设10min后,OA=OB=30×10=300(m),甲乙两人相距AB300(m).答:10min后,甲乙两人相距300m,故300.【点评】本题考查的是勾股定理的应用,根据题意判断直角三角形是解答此题的关键.15.(2分)(武汉模拟)甲、乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则当乙车到达B城时,甲车离B城的距离为 60 km.【考点】一次函数的应用.【分析】由图示知:A,B两城相距300km,甲车从5:00出发,乙车从6:00出发;甲车10:00到达B城,乙车9:00到达B城;计算出乙车的平均速度为:300÷(9﹣6)=100(km/h),当乙车7:30时,乙车离A的距离为:100×1.5=150(km),得到点A(7.5,150)点B(5,0),设甲的函数解析式为:y=kt+b,把点A(7.5,150),B(5,0)代入解析式,求出甲的解析式,当t=9时,y=60×9﹣300=240,所以9点时,甲距离开A的距离为240km,则当乙车到达B城时,甲车离B城的距离为:300﹣240=60km.解:如图,由图示知:A,B两城相距300km,甲车从5:00出发,乙车从6:00出发;甲车10:00到达B城,乙车9:00到达B城;乙车的平均速度为:300÷(9﹣6)=100(km/h),当乙车7:30时,乙车离A的距离为:100×1.5=150(km),∴点A(7.5,150)由图可知点B(5,0)设甲的函数解析式为:y=kt+b,把点A(7.5,150),B(5,0)代入y=kt+b得:,解得:,∴甲的函数解析式为:y=60t﹣300,当t=9时,y=60×9﹣300=240,∴9点时,甲距离开A的距离为240km,∴则当乙车到达B城时,甲车离B城的距离为:300﹣240=60km.故60.【点评】本题考查了一次函数的应用,解决本题的关键是求甲的函数解析式,即可解答.16.(2分)(2020春•番禺区期末)如图,在矩形ABCD中,AB=6,BC=4,将矩形沿AC折叠,点D落在D′处,则重叠部分△AFC的面积为 .【考点】三角形的面积;矩形的性质;翻折变换(折叠问题).【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,所以AF=AB﹣BF.解:由于折叠可得:AD′=BC,∠D′=∠B,又∠AFD′=∠CFB,∴△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=6﹣x,在Rt△AFD′中,(6﹣x)2=x2+42,解之得:x,∴AF=AB﹣FB=6,∴S△AFC•AF•BC,故.【点评】本题考查了勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.三、解答题17.(8分)(2020春•番禺区期末)计算:(1)(2)(3)【考点】平方差公式;二次根式的混合运算.【分析】(1)直接合并同类二次根式即可;(2)利用平方差公式计算;(3)先把二次根式化为最简二次根式,然后合并即可.解:(1)原式=3;(2)原式=(2)2﹣()2=12﹣6=6;(3)原式=23=5.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(8分)(2020春•番禺区期末)甲、乙两名射击运动员各进行10次射击,甲的成绩是7,7,8,9,8,9,10,9,9,9.乙的成绩如图所示(单位:环)(1)分别计算甲、乙两人射击成绩的平均数;(2)若要选拔一人参加比赛,应派哪一位?请说明理由.【考点】算术平均数;方差.【分析】(1)利用加权平均数的计算方法进行计算即可;(2)计算甲、乙两人的方差、中位数,通过比较得出答案.解:(1)甲8.5(环)8.5(环),乙答:甲、乙两人射击成绩的平均数都是8.5环;(2)[(7﹣8.5)2×2+(8﹣8.5)2×2+(9﹣8.5)2×5+(10﹣8.5)2]=0.85,═[(7﹣8.5)2×3+(8﹣8.5)2×2+(9﹣8.5)2×2+(10﹣8.5)2×3]=1.45,甲的中位数是9环,乙的中位数是8.5环,由于两人的平均数相同,甲的方差小于乙的方差,甲的中位数大于乙的中位数,所以应派甲去参加比赛.【点评】本题考查平均数、中位数、方差、的意义和计算方法,理解平均数、中位数、方差的意义是正确计算的前提,掌握计算方法是关键.19.(8分)(2020春•番禺区期末)如图,一架2.5m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2.4m,如果梯子的顶端A沿墙下滑0.4m,则梯子底端B也外移0.4m吗?为什么?【考点】勾股定理的应用.【分析】先根据勾股定理求出OB的长,再根据梯子的长度不变求出OD的长,根据BD=OD﹣OB即可得出结论.解:∵Rt△OAB中,AB=2.5m,AO=2.4m,∴OB0.7m;同理,Rt△OCD中,∵CD=2.5m,OC=2.4﹣0.4=2m,∴OD1.5m,∴BD=OD﹣OB=1.5﹣0.7=0.8(m).答:梯子底端B向外移了0.8米.【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.20.(8分)(2020春•番禺区期末)已知直线y=kx+b的图象经过点(2,4)和点(﹣2,﹣2).(1)求b的值;(2)求关于x的方程kx+b=0的解;(3)若(x1,y1)、(x2,y2)为直线上两点,且x1<x2,试比较y1、y2的大小.【考点】一次函数与一元一次方程.【分析】(1)利用待定系数法求一次函数解析式,从而得到b的值;(2)利用k、b的值得到次函数解析式为yx+1,然后解方程x+1=0即可;(3)利用一次函数的性质解决问题.解:(1)根据题意得,解得,即b的值为1;(2)一次函数解析式为yx+1,当y=0时,x+1=0,解得x;(3)∵k0,∴y随x的增大而增大,∵x1<x2,∴y1<y2.【点评】本题考查了一次函数与一元一次方程:任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.也考查了一次函数的性质.21.(8分)(2020春•番禺区期末)如图,在▱ABCD中,BE∥DF,且分别交对角线AC于点E,F,连接ED,BF.(1)求证:AE=CF;(2)若AB=9,AC=16,AE=4,BF=3,求四边形ABCD的面积.【考点】三角形的面积;全等三角形的判定;平行四边形的性质.【分析】(1)首先由平行四边形的性质可得AB=CD,AB∥CD,再根据平行线的性质可得∠BAE=∠DCF,∠BEC=∠DFA,然后根据AAS定理判定△ABE≌△CDF,即可证明得到AE=CF;(2)通过作辅助线求出△ABC的面积,即可得到四边形ABCD的面积.解:(1)证明:∵在平行四边形ABCD中,AB=CD,AB∥CD,∴∠BAC=∠DCA,又∵BE∥DF,∴∠BEF=∠DFE,∴∠BEA=∠DFC,∴在△ABE和△CDF中,,∴△ABE≌△CDF,∴AE=CF;(2)连接BD交AC于点O,作BH⊥AC交AC于点H,∵在平行四边形ABCD中,AC、BD是对角线,∴AO=CO=8,AF=12,∵AB2+BF2=92144,AF2=144,∴AB2+BF2=AF2,∴∠ABF=90°,∴BH,∴S平行四边形ABCD=2S△ABC.【点评】此题主要考查了平行四边形的性质,全等三角形的判定,以及利用面积法求三角形的高等知识,难度一般.22.(6分)(2020春•番禺区期末)已知点A(8,0)及第一象限的动点P(x,y),且x+y=10,设△OPA的面积为S.(1)求S关于x的函数解析式,并写出x的取值范围;(2)画出函数S的图象,并求其与正比例函数S=2x的图象的交点坐标;(3)当S=12时,求P点坐标.【考点】动点问题的函数图象.【分析】(1)根据△OAP的面积=OA×y÷2列出函数解析式,及点P(x,y)在第一象限内求出自变量的取值范围.(2)根据S=﹣4x+40画出函数图象,并与正比例函数S=2x联立方程组,即可求出交点坐标.(3)将S=12代入(1)求出的解析式中即可.解:(1)依题意有S8×(10﹣x)=﹣4x+40,∵点P(x,y)在第一象限内,∴x>0,y=10﹣x>0,解得:0<x<10,故关于x的函数解析式为:S=﹣4x+40 (0<x<10);(2)∵解析式为S=﹣4x+40(0<x<10);∴函数图象经过点(10,0)(0,40)(但不包括这两点的线段).所画图象如下:令,解得:,所以交点坐标为,(3)将S=12代入S=﹣4x+40,得:12=﹣4x+40,解得:x=7,故点P(7,3).【点评】本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系是解答此题的关键.23.(6分)(2020春•番禺区期末)如图,在平行四边形ABCD中,E,F分别是AB,CD 的中点,DE,BF与对角线AC分别交于点M,N,连接MF,NE.(1)求证:DE∥BF;(2)判断四边形MENF是何特殊的四边形?并对结论给予证明.【考点】全等三角形的判定与性质;平行四边形的性质.【分析】(1)由平行四边形的性质可得AB∥CD,AB=CD;由中点性质可得BE=AEABCD=DF=CF,由一组对边平行且相等的四边形是平行四边形,可证四边形EBFD为平行四边形,可得DE∥BF;(2)由“ASA”可证△AME≌△CNF,可得ME=FN,由一组对边平行且相等的四边形是平行四边形,可证四边形MENF为平行四边形,证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵E、F分别是AB、CD的中点,∴BE=AEABCD=DF=CF,∵BE∥DF,∴四边形EBFD为平行四边形,∴DE∥BF;(2)四边形MENF是平行四边形,理由如下:∵DE∥BF,∴∠CDM=∠CFN.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠BAC=∠DCA,∠CDM=∠AEM,∴∠AEM=∠CFN,在△AME和△CNF中,,∴△AME≌△CNF(ASA),∴ME=FN,又∵DE∥BF,∴四边形MENF是平行四边形.【点评】本题考查了平行四边形的判定与性质,利用了平行四边形的判定与性质,全等三角形的判定,根据条件选择适当的判定方法是解题关键.24.(8分)(2020春•番禺区期末)甲、乙两家商场平时以同样价格出售相同的商品,春节期间两家商场都让利酬宾,其中甲商场所有商品按8折出售,乙商场对一次购物中超过300元后的价格部分打7折.(1)以x(单位:元)表示商品原价,y(单位:元)表示购物金额,分别就两家商场的让利方式写出y与x的函数解析式;(2)在同一直角坐标系中画出(1)中函数的图象;(3)春节期间如何选择这两家商场去购物更省钱?【考点】一元一次不等式的应用;一次函数的应用.【分析】(1)根据两家商场的让利方式分别列式整理即可;(2)利用两点法作出函数图象即可;(3)求出两家商场购物付款相同的x的值,然后根据函数图象作出判断即可.解:(1)甲商场:y=0.8x,乙商场:y=x(0≤x≤300),y=0.7(x﹣300)+300=0.7x+90,即y=0.7x+90(x>300);(2)如图所示;(3)当0.8x=0.7x+90时,x=900,所以,x<900时,甲商场购物更省钱,x=900时,甲、乙两商场购物更花钱相同,x>900时,乙商场购物更省钱.【点评】本题考查了一次函数的应用,一次函数图象,读懂题目信息,理解两家商场的让利方法是解题的关键,要注意乙商场根据商品原价的取值范围分情况讨论.25.(8分)(2020春•番禺区期末)如图,在边长为a的正方形ABCD中,作∠ACD的平分线交AD于F,过F作直线AC的垂线交AC于P,交CD的延长线于Q,又过P作AD的平行线与直线CF交于点E,连接DE,AE,PD,PB.(1)求AC,DQ的长;(2)四边形DFPE是菱形吗?为什么?(3)探究线段DQ,DP,EF之间的数量关系,并证明探究结论;(4)探究线段PB与AE之间的数量关系与位置关系,并证明探究结论.【考点】四边形综合题.【分析】(1)利用勾股定理求出AC,再证明△FDQ≌△FPA得到QD=AP,结合CD=CP求出结果;(2)先证明DE∥PF,结合EP∥DF得到四边形DFPE是平行四边形,再由EF⊥DP 得到菱形;(3)根据菱形的性质得到2DG=DP,2GF=EF,再证明QD=DF,最后利用勾股定理证明线段关系;(4)证明△ADE≌BAP,得到AE=BP,∠EAD=∠ABP,延长BP,与AE交于点H,利用∠EAD=∠ABP,得到∠PHA=90°,即可判定关系.解:(1)AC,∵CF平分∠BCD,FD⊥CD,FP⊥AC,∴FD=FP,又∠FDQ=∠FPA,∠DFQ=∠PFA,∴△FDQ≌△FPA(ASA),∴QD=AP,∵点P在正方形ABCD对角线AC上,∴CD=CP=a,∴QD=AP=AC﹣PC=()a;(2)∵FD=FP,CD=CP,∴CF垂直平分DP,即DP⊥CF,∴ED=EP,则∠EDP=∠EPD,∵FD=FP,∴∠FDP=∠FPD,而EP∥DF,∴∠EPD=∠FDP,∴∠FPD=∠EPD,∴∠EDP=∠FPD,∴DE∥PF,而EP∥DF,∴四边形DFPE是平行四边形,∵EF⊥DP,∴四边形DFPE是菱形;(3)DP2+EF2=4QD2,理由是:∵四边形DFPE是菱形,设DP与EF交于点G,∴2DG=DP,2GF=EF,∵∠ACD=45°,FP⊥AC,∴△PCQ为等腰直角三角形,∴∠Q=45°,可得△QDF为等腰直角三角形,∴QD=DF,在△DGF中,DG2+FG2=DF2,∴有(DP)2+(EF)2=QD2,整理得:DP2+EF2=4QD2;(4)∵∠DFQ=45°,DE∥FP,∴∠EDF=45°,又∵DE=DF=DQ=AP=()a,AD=AB,∴△ADE≌BAP(SAS),∴AE=BP,∠EAD=∠ABP,延长BP,与AE交于点H,∵∠HPA=∠PAB+∠PBA=∠PAB+∠DAE,∠PAB+∠DAE+∠HAP=90°,∴∠HPA+∠HAP=90°,∴∠PHA=90°,即BP⊥AE,综上:BP与AE的关系是:垂直且相等.【点评】本题考查了正方形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,菱形的判定,勾股定理,知识点较多,解题时应当注意各个小问之间的关系,找到能够利用的结论和条件.。
2019-2020学年广东省广州市越秀区八年级(上)期末数学试卷一、选择题:本题共有10小题,每小题3分,共30分.每小题给出的四个选项,只有一项是符合题目要求的. 1.(3分)已知一个三角形两边的长分别是2和5,那么第三边的边长可能是下列各数中的()A.1B.2C.3D.52.(3分)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.BC=AD C.∠C=∠D D.∠CAB=∠DBA3.(3分)下列运算正确的是()A.a2+a2=a4B.a3÷a=a3C.a2•a3=a5D.(a2)4=a64.(3分)要使分式有意义,则x的取值范围是()A.x≠﹣3B.x≠3C.x≠0D.x≠±35.(3分)下列变形从左到右一定正确的是()A.B.C.D.=6.(3分)如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上()根木条.A.1B.2C.3D.47.(3分)如图,用尺规作出∠AOB的角平分线OE,在作角平分线过程中,用到的三角形全等的判定方法是()A.ASA B.SSS C.SAS D.AAS8.(3分)若等腰三角形中的一个外角等于130°,则它的顶角的度数是()A.50°B.80°C.65°D.50°或80°9.(3分)如图,AD∥BC,BG,AG分别平分∠ABC与∠BAD,GH⊥AB,GH=5,则AD与BC之间的距离是()A.5B.8C.10D.1510.(3分)若a,b,c是△ABC的三边长,且a2+b2+c2﹣ab﹣ac﹣bc=0,则△ABC的形状是()A.等腰三角形B.等腰直角三角形C.等边三角形D.不能确定二、填空题:本题共6小题,每小题3分,共18分.11.(3分)如果一个多边形的内角和是1800度,它是边形.12.(3分)若关于x的多项式x2+10x+k(k为常数是完全平方式,则k=.13.(3分)分式与的最简公分母是.14.(3分)若3m=5,3n=8,则32m+n=.15.(3分)点(﹣3,4)与点(a2,b2)关于y轴对称,则(a+b)(a﹣b)=.16.(3分)如图,△ABC是等边三角形,AD=AB,点E、F分别为边AC、BC上的动点,当△DEF的周长最小时,∠FDE的度数是.三、解答题:本题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤.17.(6分)解方程:.18.(8分)计算:(1)(﹣2x)3﹣3x(x﹣2x2)(2)[(x+2y)2﹣(x﹣2y)(x+2y)]÷4y19.(8分)分解因式:(1)a﹣6ab+9ab2(2)x2(x﹣y)+y2(y﹣x)20.(6分)如图所示,在△ABC中,D是BC边上一点∠1=∠2,∠3=∠4,∠BAC=69°,求∠DAC的度数.21.(10分)(1)先化简再求值:,其中x=﹣3;(2)如果a2+2a﹣1=0,求代数式的值.22.(8分)如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E.F、G分别是OA、OB上的点,且PF=PG,DF =EG.(1)求证:OC是∠AOB的平分线.(2)若PF∥OB,且PF=8,∠AOB=30°,求PE的长.23.(8分)如图,在△ABC中,AB=AC,∠BAC=90°,点P是直线AC上的动点(不和A、C重合),CD⊥BP 于点D,交直线AB于点Q.(1)当点P在边AC上时,求证:AP=AQ(2)若点P在AC的延长线上时,(1)的结论是否成立?若成立,请画出图形(不写画法,画出示意图);若不成立,请直接写出正确结论.24.(8分)春节前夕,某超市用6000元购进了一批箱装饮料,上市后很快售完,接着又用8800元购进第二批这种箱装饮料.已知第二批所购箱装饮料的进价比第一批每箱多20元,且数量是第一批箱数的倍.(1)求第一批箱装饮料每箱的进价是多少元;(2)若两批箱装饮料按相同的标价出售,为加快销售,商家决定最后的10箱饮料按八折出售,如果两批箱装饮料全部售完利润率不低于36%(不考虑其他因素),那么每箱饮料的标价至少多少元?25.(10分)如图所示,点O是线段AC的中点,OB⊥AC,OA=9.(1)如图1,若∠ABO=30°,求证△ABC是等边三角形;(2)如图1,在(1)的条件下,若点D在射线AC上,点D在点C右侧,且△BDQ是等边三角形,QC的延长线交直线OB于点P,求PC的长度;(3)如图2,在(1)的条件下,若点M在线段BC上,△OMN是等边三角形,且点M沿着线段BC从点B运动到点C,点N随之运动,求点N的运动路径的长度.2019-2020学年广东省广州市越秀区八年级(上)期末数学试卷参考答案与试题解析一、选择题:本题共有10小题,每小题3分,共30分.每小题给出的四个选项,只有一项是符合题目要求的. 1.【解答】解:设第三边的长度为x,由题意得:5﹣2<x<5+2,即:3<x<7,只有D选项在范围内.故选:D.2.【解答】解:A、当添加AC=BD时,且∠ABC=∠BAD,AB=BA,由“SSA”不能证得△ABC≌△BAD,故本选项符合题意;B、当添加BC=AD时,且∠ABC=∠BAD,AB=BA,由“SAS”能证得△ABC≌△BAD,故本选项不符合题意;C、当添加∠C=∠D时,且∠ABC=∠BAD,AB=BA,由“AAS”能证得△ABC≌△BAD,故本选项不符合题意;D、当添加∠CAB=∠DBA时,且∠ABC=∠BAD,AB=BA,由“ASA”能证得△ABC≌△BAD,故本选项不符合题意;故选:A.3.【解答】解:A、a2+a2=2a2,故A错误;B、a3÷a=a2,故B错误;C、a2•a3=a5,故C正确;D、(a2)3=a8,故D错误.故选:C.4.【解答】解:由题意得:x+3≠0,解得:x≠﹣3,故选:A.5.【解答】解:A、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故A错误;B、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,错误;C、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故C错误;D、分子分母都除以x,分式的值不变,故D正确;故选:D.6.【解答】解:根据三角形的稳定性,要使六边形木架不变形,至少再钉上3根木条;故选:C.7.【解答】解:在△OCE和△ODE中,,∴△OCE≌△ODE(SSS).故选:B.8.【解答】解:①当130°外角是底角的外角时,底角为:180°﹣130°=50°,∴顶角度数是180°﹣50°﹣50°=80°,②当130°外角是顶角的外角时,顶角为:180°﹣130°=50°,∴顶角为50°或80°.故选:D.9.【解答】解:作GE⊥AD于E,EG的延长线交BC于F,如图,∵AD∥BC,GE⊥AD,∴EF⊥BC,∵BG,AG分别平分∠ABC与∠BAD,∴GE=GH=5,GF=GH=5,∴EF=5+5=10,即AD与BC之间的距离为10.故选:C.10.【解答】解:已知等式整理得:2a2+2b2+2c2﹣2ab﹣2ac﹣2bc=0,即(a2﹣2ab+b2)+(a2﹣2ac+c2)+(b2﹣2bc+c2)=0,变形得:(a﹣b)2+(a﹣c)2+(b﹣c)2=0,∴a=b=c,则△ABC为等边三角形,故选:C.二、填空题:本题共6小题,每小题3分,共18分.11.【解答】解:这个正多边形的边数是n,则(n﹣2)•180°=1800°,解得:n=12,则这个正多边形是12.故答案为:12.12.【解答】解:∵关于x的多项式x2+10x+k是完全平方式,∴x2+10x+k=x2+2•x•5+52,∴k=52=25,故答案为:25.13.【解答】解:分式与的最简公分母是6a3b4c,故答案为:6a3b4c.14.【解答】解:∵3m=5,3n=8,∴32m+n=(3m)2×3n=52×8=200.故答案为:200.15.【解答】解:∵点(﹣3,4)与点(a2,b2)关于y轴对称,∴a2=3,b2=4,解得a=±,b=±2.∴(a+b)(a﹣b)=(+2)(﹣2)=3﹣4=﹣1;或(a+b)(a﹣b)=(﹣2)(+2)=3﹣4=﹣1;或(a+b)(a﹣b)=(﹣+2)(﹣﹣2)=3﹣4=﹣1;或(a+b)(a﹣b)=(﹣﹣2)(﹣+2)=3﹣4=﹣1.故答案为:﹣1.16.【解答】解:作D关于AC的对称点G,D关于BC的对称点H,连接GH交AC于E交BC于F,则此时,△DEF的周长最小,∵∠A=∠B=60°,DG⊥AC,DH⊥BC,∴∠ADG=∠BDH=30°,∴∠GDH=120°,∴∠H+∠G=60°,∵EG=ED,DF=HF,∴∠G=∠GDE,∠H=∠HDF,∴∠HDF+∠GDE=60°,∴∠FDE=60°,故答案为:60°.三、解答题:本题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤. 17.【解答】解:去分母得:3(x﹣1)=x(x+1)﹣(x+1)(x﹣1),解得:x=2,检验:当x=2时,(x+1)(x﹣1)≠0,∴原分式方程的解是x=2.18.【解答】解:(1)(﹣2x)3﹣3x(x﹣2x2)=﹣8x3﹣3x2+6x3=﹣2x3﹣3x2;(2)[(x+2y)2﹣(x﹣2y)(x+2y)]÷4y=(x2+4y2+4xy﹣x2+4y2)÷4y=(8y2+4xy)÷4y=x+2y.19.【解答】解:(1)原式=a(1﹣6b+9b2)=a(1﹣3b)2;(2)原式=x2(x﹣y)﹣y2(x﹣y)=(x﹣y)2(x+y).20.【解答】解:∵∠1=∠2,∠3=∠4,而∠3=∠1+∠2,∴∠3=∠4=∠1+∠2=2∠1,在△ADC中,∠DAC+∠3+∠4=180°,∴∠DAC+4∠1=180°,∵∠BAC=∠1+∠DAC=69°,∴∠1+180°﹣4∠1=69°,解得∠1=37°,∴∠DAC=69°﹣37°=32°.21.【解答】解:(1)原式=•=•=,当x=﹣3时,原式=﹣2;(2)∵a2+2a﹣1=0,∴a2+2a=1,则原式=•=•=a2+2a=1.22.【解答】解:(1)证明:在Rt△PFD和Rt△PGE中,,∴Rt△PFD≌Rt△PGE(HL),∴PD=PE,∵P是OC上一点,PD⊥OA,PE⊥OB,∴OC是∠AOB的平分线.(2)∵PF∥OB,∠AOB=30°,∴∠PFD=∠AOB=30°,在Rt△PDF中,.23.【解答】解:(1)∵CD⊥BP∴∠BAC=∠BDQ=90°∴∠Q+∠QBD=90°,∠Q+∠ACQ=90°,∴∠QBD=∠ACQ,且AB=AC,∠BAC=∠QAC=90°,∴△ABP≌△ACQ(ASA)∴AP=AQ;(2)成立理由如下:如图,∵CD⊥BP∴∠BAC=∠BDQ=90°∴∠Q+∠QBD=90°,∠Q+∠ACQ=90°,∴∠QBD=∠ACQ,且AB=AC,∠BAC=∠QAC=90°,∴△ABP≌△ACQ(ASA)∴AP=AQ;24.【解答】解:(1)该第一批箱装饮料每箱的进价是x元,则第二批购进(x+20)元,根据题意,得解得:x=200(2)设每箱饮料的标价为y元,根据题意,得(30+40﹣10)y+0.8×10y≥(1+36%)(6000+8800)解得:y≥296答:至少标价296元.25.【解答】解:(1)∵∠ABO=30°,OB⊥AC,∴∠BAO=60°,∵O是线段AC中点,OB⊥AC,∴BA=BC,又∠BAO=60°,∴△ABC是等边三角形;(2)∵△ABC和△BDQ为等边三角形,∴BA=BC,BD=BQ,∠BAC=60°,∠DBQ=60°,∴∠ABD=∠CBQ,在△BAD和△BCQ中,,∴△BAD≌△BCQ(SAS)∴∠BCQ=∠BAD=60°,∵∠BCA=60°,∴∠OCP=60°,∵∠POC=90°,∴∠OPC=30°,∴PC=2OC=18;(3)取BC的中点H,连接OH,连接CN,则OH=BC=BH=CH,∴△HOC为等边三角形,∴∠HOC=∠OHC=60°,OH=OC,当M在BH上时,∠MON=60°,∠HOC=60°,∴∠MOH=∠NOC,在△OMH和△ONC中,,∴△OMH≌△ONC(SAS),∴∠OCN=∠OHM=120°,当点M与点B重合时,在△OBC和△N′BC中,,∴△OBC≌△N′BC(SAS)∴∠BCN′=∠BCO=60°,∴∠OCN′=120°,即C、N、N′在同一条直线上,∴CN′=OC=9,∴点N从起点到C作直线运动路径为9,当M在HC上时,△OCN为等边三角形,∴CN=OC=9,∴点N从C到终点作直线运动路径长为9综上所述,N的路径长度为:9+9=18.。
2018—2019学年度第二学期期末检测题(卷)高一物理2019 . 6温馨提示:1.本试题分为第Ⅰ卷、第Ⅱ卷和答题卡。
全卷满分100分,附加题10分,合计110分。
2.考生答题时,必须将第Ⅰ卷上所有题的正确答案用2B铅笔涂在答题卡上所对应的信息点处,答案写在Ⅰ卷上无效,第Ⅱ卷所有题的正确答案按要求用黑色签字笔填写在答题卡上试题对应题号上,写在其他位置无效。
3.考试结束时,将答题卡交给监考老师。
第Ⅰ卷(选择题,共48分)一、单选题:(本题共8小题,每小题4分,共32分。
在每小题给出的四个选项中,只有一个选项符合题目要求。
)1、下列说法正确的是:()A.经典物理学的基础是牛顿运动定律B.经典物理学适用于一切领域C.相对论的建立,说明经典物理学是错误的D.经典物理学的成就可以被近代物理学所代替。
2、如图1是一个货车自动卸货示意图,若自动卸货车始终静止在水平地面上,车厢在液压机的作用下,θ角逐渐增大且货物相对车厢静止的过程中,下列说法正确的是( )A.货物受到的支持力不变B.货物受到的摩擦力减小C.货物受到的支持力对货物做正功D.货物受到的摩擦力对货物做负功3、我国复兴号列车运行时速可达350km/h.提高列车运行速度的一个关键技术问题是提高机车发动机的功率.动车组机车的额定功率是普通机车的27倍,已知匀速运动时,列车所受阻力与速度的平方成正比,即Ff=kv2,则动车组运行的最大速度是普通列车的()A.1倍 B.3倍 C.5倍 D.7倍4、2014年2月伦敦奥运会男子撑杆跳高冠军、法国人拉维涅在乌克兰顿涅茨克举行的国际室内田径大奖赛中,一举越过6.16米的高度,将“撑杆跳之王”布勃卡在1993年创造的6.15米的世界纪录提高了一厘米。
尘封了21年的纪录就此被打破。
如图2所示为她在比赛中的几个画面.下列说法中正确的是()A.运动员过最高点时的速度为零B.撑杆恢复形变时,弹性势能完全转化为动能C.运动员在上升过程中对杆先做正功后做负功D.运动员要成功跃过横杆,其重心必须高于横杆5、如图3所示,一轻弹簧固定于O点,另一端系一重物,将重物从与悬点O在同一水平面且弹簧保持原长的A点无初速度地释放,让它自由摆下,不计空气阻力.在重物由A点摆向最低点B的过程中,下列说法正确的是( )A.重物的机械能守恒B.重物的机械能增加C.重物的重力势能与弹簧的弹性势能之和不变D.重物与弹簧组成的系统机械能守恒6、质量为60kg的建筑工人,不慎从高空跌下,由于弹性安全带的保护,使他悬挂起来,已知弹性安全带的缓冲时间是1.2s,安全带长5m,g取10m/s2,则安全带所受的平均冲力的大小为()A. 1100NB. 600NC. 500ND. 100N7、北京时间1月18日,2019年斯诺克大师赛1/4决赛丁俊晖对阵布雷切尔,最终丁俊晖获胜晋级。
2020-2021学年必修第二册高一物理下册第八章机械能守恒定理单元基础巩固试题一、单选题1.汽车在启动阶段的匀加速运动过程中,下列说法中正确的是( )A .牵引力增大,功率增大B .牵引力不变,功率增大C .牵引力增大,功率不变D .速度增大,功率不变2.如图所示,质量为m 的足球在水平地面的位置1被踢出后落到水平地面的位置3,在空中达到的最高点位置2的高度为h ,已知重力加速度为g 。
下列说法正确的是( )A .足球由1运动到2的过程中,重力做的功为mghB .足球由2运动到3的过程中,重力势能减少了mghC .足球由1运动到3的过程中,重力做的功为2mghD .因为没有选定参考平面,所以无法确定重力势能变化了多少3.一个质量为m 的小球,用长为l 的轻绳悬挂于O 点,小球在水平恒力F 作用下,从最低点P 运动到Q 点,此时轻绳与竖直方向夹角为θ,小球的速度为v ,如图所示,则拉力F 所做的功为( )A .21cos 2mgl mv θ+B .()1cos mgl θ-C .sin Fl θD .cos Fl θ4.升降机底板上放一质量为50kg 的物体,物体随升降机由静止开始竖直向上移动5m 时速度达到4m/s ,则此过程中(g 取102m/s ,不计空气阻力)( )A .物体的重力势能增加250JB .合外力对物体做功2900JC .升降机对物体做功2900JD .物体的机械能增加400J5.把质量是0.2kg 小球放在竖立的弹簧上,并把球往下按至A 的位置,如图甲所示.迅速松手后,弹簧把球弹起,球升至最高位置C (图丙).途中经过位置B 时弹簧正好处于自由状态(图乙)。
已知B 、A 的高度差为0.1m ,C 、B 的高度差为0.2m ,弹簧的质量和空气阻力都可忽略,重力加速度g =10m/s 2,下列说法正确的是( )A .小球从A 上升至B 的过程中,小球的动能一直增加B .小球从A 上升到C 的过程中,小球的机械能先增大再减小C .小球在位置B 时,小球的动能为0.2JD .小球在位置A 时,弹簧的弹性势能为0.6J6.用水平力F 拉一物体,使物体在水平地面上由静止开始做匀加速直线运动,t 1时刻撤去拉力F ,物体做匀减速直线运动,到t 2时刻停止,其速度—时间图像如图所示,且α>β,若拉力F 做的功为W 1,平均功率为P 1;物体克服摩擦阻力f F 做的功为W 2,平均功率为P 2,则( )A .12W W =,2f F F >B .12W W <,2f F F =C .12P P <,2f F F > D .12P P =,2f F F =7.测定运动员体能的一种装置如图所示,运动员质量为m 1,绳拴在腰间沿水平方向跨过滑轮(不计滑轮质量及摩擦),下面悬挂一质量为m 2的重物,人用力蹬传送带而人相对地面静止,使传送带以速度v 匀速向右运动,则( )A .传送带对人做负功B .人对传送带做负功C .人对传送带做功的功率为m 2gvD .传送带对人做功的功率为(m 1+m 2)gv8.长为L 的轻质细绳悬挂一个质量为m 的小球,其下方有一个倾角为θ的光滑斜面体,放在水平面上,开始时小球与斜面刚刚接触且细绳恰好竖直,如图所示,现在用水平推力F 缓慢向左推动斜面体,直至细绳与斜面体平行,则下列说法中正确的是( )A .由于小球受到斜面的弹力始终与斜面垂直,故对小球不做功B .细绳对小球的拉力始终与小球的运动方向垂直,故对小球不做功C .小球受到的合外力对小球做功为零,故小球在该过程中机械能守恒D .若水平面光滑,则推力做功为()1cos mgL θ-9.如图所示,运动员把质量为m 的足球从水平地面踢出,足球在空中达到的最高点高度为h ,在最高点时的速度为v ,不计空气阻力,重力加速度为g 。
广州市番禺区实验中学2019-2020学年度第一学期期中考试高二物理★祝考试顺利★注意事项:1、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
3、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
5、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
6、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一单选题1.宇航员在探测某星球时,发现该星球均匀带电,其带电量为Q,表面无大气,在有一次实验中宇航员将一带电(其电荷量q远远小于Q)粉尘放到离星球表面的一定高度处。
设此带电星球对粉尘的静电力为F1,粉尘对星球的静电力为F2,则A. F1=F2B. F1<F2C. F1>F2D. 无法确定【答案】A【解析】【详解】带电星球对粉尘的静电力和粉尘对星球的静电力是作用力与反作用力,大小相等。
A. F1=F2。
与结论相符,故A正确;B. F1<F2。
与结论不符,故B错误;C. F1>F2。
与结论不符,故C错误;D. 无法确定。
与结论不符,故D错误。
2.真空中的两个点电荷原来带的电荷量分别为q1和q2,且相隔一定的距离.若现将q2增加为原来的3倍,再将两点电荷间的距离缩小为原来的一半,则前后两种情况下两点电荷之间的库仑力之比为()A. 1:6B. 1:12C. 12:1D. 6:1【答案】B【解析】【详解】由库仑定律的可得原来它们之间的库仑力为:F=122kq qFr=,变化之后它们之间的库仑力为:1223()2kq qFr'==12F,故:F:F′=1:12,故B正确、ACD错误。
2019-2020学年广东省广州市番禺区高一下学期期末考试物理试题本试卷分必做题共15小题,满分100分;选做题1小题不计入总分。
考试时间75分钟。
一、选择题:本题共10小题,共48分。
在每小题给出的四个选项中,第1~6题只有一项符合题目要求,每小题4分;第7~10题有多项符合题目要求,全部选对的得6分,选对但不全的得3分,有选错的得0分。
1.如图所示,“嫦娥号”探月卫星在由地球飞向月球时,沿曲线从M 点向N 点飞行的过程中,速度逐渐增大,在此过程中探月卫星所受合力方向可能是下列图中的2.如图所示,在同一竖直平面内,小球a 、b 从高度不同的两点分别以初速度v a 和v b 沿水平方向抛出,经过时间t a 和t b 后落到与两抛出点水平距离相等的P 点。
若不计空气阻力,下列关系正确的是A .t a >t b ,v a <v bB .t a >t b ,v a >v bC .t a <t b ,v a <v bD .t a <t b ,v a >v b3.A 、B 两物体都做匀速圆周运动,12=A B m m ,12=A B r r ,经过1秒钟,A 转过3π圆心角,B 转过了4π圆心角,则A 物体的向心力与B 的向心力之比为 A .1:4B .2:3C .4:9D .9:16 4.如图所示,A 、B 、C 三颗人造地球卫星绕地球做匀速圆周运动,已知三颗卫星的质量关系为A B C m m m =<,轨道半径的关系为A B C r r r <=,则三颗卫星A .线速度大小关系为ABC v v v <=B .加速度大小关系为A BC a a a >=C .向心力大小关系为A B C F F F =<D .周期关系为A B C T T T >=5.第24届冬季奥林匹克运动会将于2022年在北京举行。
高山滑雪是冬奥会的一个比赛项目,因速度快、惊险刺激而深受观众喜爱。
在一段时间内,运动员始终以如图所示的姿态加速下滑。
若运动员受到的阻力不可忽略,则这段时间内他的A .重力势能增加,动能减少,机械能守恒B .重力势能增加,动能增加,机械能守恒C .重力势能减少,动能减少,机械能减少D .重力势能减少,动能增加,机械能减少6.如图所示,AB 为14圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R 。
一质量为m 的物体,与两个轨道的动摩擦因数都为μ,当它由轨道顶端A 从静止下滑时,恰好运动到C 处停止,那么物体在AB 段克服摩擦力.....做的功为 A .μmgR B .12mgR C .mgR D .(1-μ)mgR7.一艘小船在静水中的速度为5 m/s ,渡过一条宽200 m ,水流速度为4 m/s 的河流,则该小船A .渡河的最短时间为50sB .以最短位移渡河时,船头应偏向上游方向C .船头方向垂直河岸渡河时,如水速增加,渡河时间变短D .以最短时间渡河时,沿水流方向的位移大小为160 m8.如图所示,一小球在细绳作用下在水平面内做匀速圆周运动,小球质量为m ,细绳的长度为L ,细绳与竖直方向的夹角为,不计空气阻力作用,则下列说法正确的是A .小球共受到重力、拉力两个力作用B .小球的向心加速度大小为tan θgC .小球受到的拉力大小为cos mg θD .小球受到的拉力大小为tan θmg9.把质量相同的两小球A 、B 从同一高度以相同的速度大小0v 分别沿水平与竖直方向抛出。
不计空气阻力,下列说法正确的是A .两球落地时的动能相同B .从抛出开始到落地,B 球重力做的功大于A 球重力做的功C .从抛出开始到落地,两球的重力平均功率 <A B p pD .落地时,两球的重力瞬时功率 <A B p p10.如图所示,竖直平面内固定有半径为R 的光滑半圆形槽,一小球(可看作质点)自半圆形槽左边缘的A 点无初速地释放,在最低点B 处安装一个压力传感器以测量小球通过B 点时对轨道的压力大小,下列说法正确的是A .压力传感器的示数与半圆形槽半径R 无关B .压力传感器的示数与小球的质量无关C .小球在B 点的加速度与半圆形槽半径R 无关D .小球在B 点的速度与半圆形槽半径R 无关二、实验题(11题4分,12题8分,共12分)11.如图所示,为一小球做平抛运动的闪光照片的一部分,图中背景方格的边长均为1.25cm, 如果取g =10m/s 2,那么:(1)小球从A 运动到B 的时间是________ s 。
(2)小球运动的初速度大小是______ m/s 。
12.在用落体法验证机械能守恒定律时,某小组按照正确的操作选得纸带如图。
其中O 是第一个打印点,其速度为0。
A 、B 、C 是距O 较远连续的三个打印点。
用毫米刻度尺测量O 到A 、B 、C 各点的距离分别为x 1,x 2,x 3,并记录在图中。
(已知当地的重力加速度g , 重锤质量为m , 打点计时器打点周期为T )现用重锤在OB 段的运动来验证机械能守恒,则B 点对应的瞬时速度B v = ,该过程中重锤的动能增加量k E ∆= ________,重力势能的减少量p E ∆= ________;从实验数据中发现总有k E ∆________p E ∆(选填“大于”、“小于”或“等于”)。
三、计算论述题(13题13分,14题14分,15题13分,共40分)13.如图所示,宇航员登陆某星球后,在离星球表面高为h 处沿水平方向以初速度V 0抛出一个小球,经时间t 落地。
已知该星球半径为R ,万有引力常量为G ,星球质量分布均匀。
求:(1)该星球表面的重力加速度g 。
(2)该星球的第一宇宙速度V 1及星球的质量M 。
14.如图所示,光滑水平面AB与竖直面内的半圆形轨道在B点相切,半圆形轨道的半径为R。
一个质量为m的物体以某一速度自A点向右运动,当它经过B点进入轨道的瞬间对轨道的压力为其重力的10倍,之后向上运动恰能到达最高点C(不计空气阻力)。
求:(1)物体经过B、C时的速度大小V B与V c。
(2)物体从B点运动至C点的过程中产生的内能。
15.一质量m=2000 kg的汽车在公路上行驶,所受到的摩擦力始终为车对路面压力的0.1倍。
若汽车从静止开始以a=1m/s2的加速度在水平路面上匀加速启动,当t1=20s时,达到额定功率P。
此后汽车以额定功率运动,在t2=100 s时速度达到最大值,汽车的v-t图象如图kw80所示,取g=10 m/s2,求:(1)汽车行驶的最大速度V m。
(2)汽车在t1至t2期间发动机牵引力做的功W F及汽车发生的位移s。
四、选做题(该题不计入总分,供学有余力的同学选做,满分20分)16. 如图所示,质量为M=2kg的木板A静止在光滑水平面上,其左端与固定台阶相距x,右端与一固定在地面上的半径R=0.4m的光滑四分之一圆弧紧靠在一起,圆弧的底端与木板上表面水平相切。
质量为m=1kg的滑块B(可视为质点)以初速度08/v m s=从圆弧的顶端沿圆弧下滑,B从A右端的上表面水平滑入时撤走圆弧。
A与台阶碰撞无机械能损失,不计空气阻力,A、B之间动摩擦因数0.1μ=,A足够长,B不会从A表面滑出,取g=10m/s2。
(1)求滑块B到圆弧底端时的速度大小v1。
(2)若A与台阶碰前,已和B达到共速,求A向左运动的过程中与B摩擦产生的热量Q(结果保留两位有效数字)。
(3)若A与台阶只发生一次碰撞,求x满足的条件。
高一物理 答 案1~6 B A C B D D 7~10 BD ABC AD AC11. 0.05; 0.75;12. 312B x x v T -= 223131()1()228k x x m x x E m T T --∆==2p E mgx ∆= 小于 (评分:每空2分)13.(13分)解:(1)小球竖直方向做自由落体运动212h gt =……3分 解得 22h g t = ……2分 (2)设星球表面第一宇宙速度为1v ,由牛顿第二定律可得 21v mg m R= ……2分 2Mm mg G R = ……2分 联立解得 星球表面第一宇宙速度1=v ……2分 星球质量 222=hR M Gt ……2分 14.(14分)解: (1)当物体经过B 、C 两处时,依题意由牛顿第二定律可得:在B 处:210-=-=B B v N mg mg mg m R …………2分在C 处:2=C v mg m R………2分解得:=B v ………2分=C v ………2分(2)物体由B 到C 运动过程中,根据能量守恒 可得: =++KB KC PC E E E Q ………3分解得产生的内能 2Q mgR = ………3分15.(13分)(1)由图像可知汽车匀速时 k F f mg == ……2分汽车的额定功率m P Fv =……2分联立代入数据得 m 40m/s v = ……2分(2)汽车在t 1至t 2期间,发机机做功为21()F W P t t =- ……2分代入数据得:66.410J F W =⨯ ……2分根据动能定理有 2221m 111()22P t t fs mv mv --=- ……2分 代入数据得:s =2600m ……1分16.(20分)解(1)滑块B 从释放到最低点,由动能定理得:22101122mgR mv mv =- ……2分 解得:14m/s v = ……2分(2)向左运动过程中,由动量守恒定律得:12()mv m M v =+ ……2分 解得:24m/s 3v =……2分 由能量守恒定律得:221211()22Q mv m M v =-+ ……2分 解得: 5.3J Q ≈ ……2分(3)从B 刚滑到A 上到A 左端与台阶碰撞前瞬间, A 、B 的速度分别为v 3和v 4, 由动量守恒定律得:mv 1=mv 4+Mv 3 ……2分若A 与台阶只碰撞一次,碰撞后必须满足:Mv 3≥|mv 4 ……2分 对A 板,应用动能定理:23102mgx Mv μ=- ……2分 联立解得:1m x ≥ ……2分。