初中物理功和能总复习
- 格式:doc
- 大小:360.84 KB
- 文档页数:40
功和能一、机械能和功:(一)机械能:1.一个物体能够做功,我们就说它具有能量。
2.机械能:动能和势能统称为机械能。
3.动能:物体由于运动而具有的能叫动能。
一切运动的物体都具有动能。
影响动能的因素:①质量:物体速度一定时,质量越大的,动能就越大;②速度:物体质量一定时,速度越大的,动能就越大。
4.重力势能:物体由于被举高而具有的能量叫重力势能。
影响重力势能的因素:①高度:当物体质量相同时,位置越高的,重力势能越大;②质量:当物体高度相同时,质量越大的,重力势能越大。
5.弹性势能:物体由于弹性形变而具有的能量叫弹性势能。
影响弹性势能的因素:物体的弹性形变大小,物体发生弹性形变的难易程度。
(二)功(W)1.功的两个必要因素:一是作用在物体上的力;二是物体在这个力的方向上移动的距离。
2.公式:功 = 力×距离即:W = F·s3.单位:在国际单位中,力的单位是牛(N),距离的单位是米(m),功的单位是焦耳(J)。
4.功的原理:使用任何机械都不省功。
5.有用功(W有):必须要做的功叫有用功。
额外功(W额):并非我们需要但又不得不做的功叫额外功。
总功(W总):有用功加上额外功是总共做的功,叫总功。
W总 = W有+ W额6.机械效率(η):有用功跟总功的比值叫机械效率。
η = W有/ W总(有用功总小于总功,机械效率总小于1)(三)功率(P):1.物体在单位时间内所做的功叫做功率。
功率是表示物体做功快慢的物理量。
2.公式: P=W /t =FVW:表示功(焦耳J); t:表示时间(秒s)计算时单位要统一:如果W用焦、t用秒,则P的单位是瓦3.单位:瓦特,简称瓦,符号是“W”。
常用千瓦(KW),兆瓦(MW); 1 MW = 103 KW =106W;(KW.h 是功的单位。
1 KW.h = 3.6×106 J)二、内能1.分子运动论的基本内容:①一切物质都是由分子组成;②一切物质的分子都在不停地做无规则运动;③分子间同时存在相互的作用力(引力和斥力)。
初中物理功和能的知识点总结一、功的概念:1.功是物体受到力作用而产生的效果,是力对物体做的有效作用。
2. 功的计算公式为W = F * s * cosθ,其中W为功,F为力,s为位移,θ为力和位移之间的夹角。
3.功的单位是焦耳(J)或牛·米(N·m)。
4.功的正负性:当力和位移的方向一致时,功为正;当力和位移的方向相反时,功为负。
5.功和能的关系:力对物体进行的功等于物体所具有的能量的变化,即功可以转化为能量。
二、能的概念:1.能是物体进行物理活动所具有的能力。
能是物体由于自身的一些特性而拥有的性质。
2.能的单位是焦耳(J)。
3.能的形式:能分为势能和动能两种形式。
-动能是物体运动时所具有的能量,与物体的质量和速度有关。
-势能是物体由于自身的位置或状态而具有的能量,与物体的位置和形状有关。
4.功和能的转化:当力对物体做功时,能可以转化为功;当物体消耗能量时,能可以转化为功。
三、能的转化与守恒:1.能的转化:能可以从一个物体转移到另一个物体,或者转化为其他形式的能。
2.能的守恒:能在宏观尺度上是守恒的,即能在不同形式之间转化时总量保持不变。
-机械能守恒:在不考虑摩擦阻力的情况下,机械系统中的势能和动能之和保持不变。
-动量守恒:在封闭系统中,系统的总动量在相互作用发生前后保持不变。
四、各种形式的能:1.动能:动能是物体由于运动所具有的能量,动能的大小与物体的质量和速度的平方成正比,动能公式为Ek=1/2*m*v^22.势能:势能是物体由于位置或状态而具有的能量,可分为重力势能、弹性势能等。
-重力势能:物体在重力作用下由高处移动到低处时,具有的能量,重力势能公式为Ep=m*g*h。
-弹性势能:物体在受力变形后恢复原状时所具有的能量,弹性势能公式为Ep=1/2*k*x^23.热能:热能是物体分子间热运动所具有的能量,与物体的温度有关。
4.电能:电能是由电荷所具有的能量,与电荷的大小和电势差有关。
中考物理复习资料(模块四)《功和能》有用功: ; 公式: ; 机械效率 有用功总是小于总功,所以机械效率总 1;额外功: ; 定义: ; 总功: ;机械效率做功的两个必要因素:(1) ;(2) ;公式: ;功 单位: ,简称: ,符号: ; 功的原理: ; 定义: ; 公式: ;功率 国际单位: ,简称: ,符号: ; 物理意义: ; 常用单位: ,1kw= w ; 机械能: ;动能: ;与 和 有关 能重力势能: ;与 和 有关 举例说明动能和势能之间的转化: 。
弹性势能: ;与 有关初三物理复习(简单机械、功和能)检测一、单选题:(每题2分,共24分) 1.图1中属于费力杠杆的是:2.下列物理量中,功的单位是:A .欧姆B .帕斯卡C .焦耳D .瓦特3.下列各图中利用了动滑轮的是:4.如下图所示,人对绳子自由端的拉力是F ,且物体处于静止状态,不计滑轮自身重力和摩擦,比较四个物体重力最大的是:5.在图19所示的四种情境中,人对物体做功的是:6.机械效率越高,即表示: A.做的功越多 B.做功的本领越大C.越省力D.有用功与总功的比值越大7. 某同学提着一桶水匀速从一楼提到三楼的过程中,下列说法正确的是 A 、水的动能不变 B 、水的势能不变 C 、水的动能和势能不变 D 、水的机械能不变 8.汶川地震中,滚滚的山石挡住了道路。
增援人员要用撬棒撬开山石,分别沿如图所示的四个方向用力,其中最省力的是:A .沿F 1方向B .沿F 2方向C .沿F 3方向D .沿F 4方向举着杠铃原地不动 沿水平地面推动小车 抱着书不动推石头没有推动 图19A B CD图69.如图1所示,在粗糙程度相同的接触面上,用大小相等的拉力F ,沿不同的方向拉物体运动通过相同的路程s ,拉力F 做的功分别为W甲、W乙、W丙,则A .W丙>W甲>W乙B .W丙>W乙>W甲C .W丙=W乙>W甲D .W丙=W乙=W甲 10.如图为跳水运动员跳板跳水时的情景,运动员腾空跳起脱离跳板向上运动,然后再向下运动落入水中,若不计空气阻力,则: A .运动员向上运动过程中,动能保持不变B .运动员向上运动过程中,重力势能转化为动能C .运动员向上运动过程中,动能转化为重力势能D .运动员向下运动至入水前的过程中,动能转化为重力势能 11. 同一物体沿相同水平地面被匀速移动,如下图所示,拉力分别为F 甲、F 乙、F 丙,不计滑轮与轻绳间的摩擦,比较它们的大小,则A .F 甲<F 乙<F 丙B .F 甲>F 乙>F 丙C .F 甲>F 乙=F 丙D .F 甲=F 乙>F 丙 12.有一人用一滑轮组分别将1000 N 和2000 N 的物体匀速提高相同的高度,动滑轮重200 N ,绳重及摩擦都不计,则在上述两种情况中:A .人做的额外功相等B .滑轮组的机械效率相等C .人做的总功相等D .人做功的功率相等 二、多选题(共12分)13. “神舟七号”载人飞船的返回舱下落到地面附近时,由于受到空气阻力而做减速运动。
九年级功和能知识点在九年级的物理学习中,功和能是重要的知识点之一。
本文将详细介绍功和能的概念、公式和一些常见的应用。
一、功的概念和公式1. 功的概念在物理学中,功是描述力对物体做功的大小和方向的物理量。
当力作用于物体,使其沿着力的方向移动一定距离时,力所做的功可以用以下公式表示:功 = 力 ×距离× cosθ其中,力的大小用“N”表示,距离用“m”表示,cosθ表示力与移动方向之间的夹角余弦值。
2. 功的单位功的单位是焦耳(J),即当力为1牛顿(N),距离为1米(m)时,所做的功为1焦耳。
二、能的概念和公式1. 能的概念能是物体由于位置、状态或运动而具有的物理量。
常见的能包括动能、势能和机械能。
- 动能(K):物体由于运动而具有的能量,可以用以下公式计算:动能 = 1/2 ×质量 ×速度²其中,质量用“kg”表示,速度用“m/s”表示。
- 势能(P):物体由于位置或状态而具有的能量。
根据不同的情况,势能可分为重力势能、弹性势能等。
- 机械能(E):机械能是动能和势能的总和,可以用以下公式计算:机械能 = 动能 + 势能2. 能的单位动能和势能的单位均为焦耳(J)。
三、功和能的应用1. 基本功和能的转化在物理学中,功和能之间存在着转化关系。
当力对物体做功时,物体的能量将发生变化。
- 功转化为能:当力对物体做正功时,物体的能量增加;当力对物体做负功时,物体的能量减小。
- 能转化为功:物体的能量转化为功通常发生在物体由高处下落时,势能逐渐转化为动能,最终转化为功。
2. 能量守恒定律在物理学中,能量守恒定律是一个重要的基本原理。
该定律表明,在一个封闭的系统中,能量的总量保持不变。
在能量的转化过程中,能量可以从一种形式转化为另一种形式,但总能量保持恒定。
能量守恒定律在许多物理问题的分析中都具有重要的应用。
例如,在弹簧振子中,机械能的转化过程需要满足能量守恒定律。
初中物理第十一章功和机械能知识点复习一、功的概念1.功的定义:当物体受力沿着其运动方向移动时,力对物体做功。
功是力和位移的乘积。
2.两个重要公式:- 功的计算公式:$W = F \cdot s \cdot \cos \theta$,其中W代表功,F代表力的大小,s代表位移的长度,$\theta$代表力和位移之间的夹角。
-功的单位:焦耳(J),1焦耳等于1牛顿乘以1米。
3.正负功:-正功:当力和物体的位移同向时,所做的功为正功。
例如:将书推进桌面或人行驶等。
-负功:当力和物体的位移反向时,所做的功为负功。
例如:将书拉离桌面或摩擦力做负功等。
二、功率的概念1.功率的定义:物体单位时间内做功的多少。
功率等于单位时间内的功除以时间。
2.两个重要公式:- 功率的计算公式:$P = \frac{W}{t}$,其中P代表功率,W代表做的功,t代表时间。
-功率的单位:瓦特(W),1瓦特等于每秒做1焦耳的功。
3.功率的物理意义:功率越大,表示单位时间内所做的功越多,工作效率越高。
三、机械能和能量守恒定律1.机械能的概念:物体的机械能等于其动能和势能之和。
物体的机械能是它在运动(动能)和位置(势能)中所具有的能量。
2.动能和势能:-动能:物体由于运动而具有的能量。
动能与物体的质量和速度有关,动能越大,速度越大,质量越大,动能越大。
-势能:物体由于位置而具有的能量。
根据物体所在的位置,势能可以分为重力势能、弹性势能和化学势能等。
3.能量守恒定律:封闭系统内的机械能总量在运动过程中保持不变。
-机械能守恒公式:$E_1=E_2$,即物体在一个过程中的初机械能等于它的末机械能。
-可以通过利用机械能守恒公式解决一些与机械能相关的问题,如小球自由落体、摆锤的运动等。
四、简单机械1.机械优势:通过利用机械的作用,使工作上的力和负载的关系发生改变,提高工作效率。
2.六种常见的简单机械:-杠杆:杠杆有三类,根据杠杆的支点位置不同,分为一类杠杆、二类杠杆和三类杠杆。
功和能做功的过程就是能量转化的过程一个物体能够对外做功就有能量,如果一个物体的能量减少了,就说这个物体对外界做了功,即作用的力有了成效。
1功如果一个物体受到力,并且同时在力的方向上移动了距离;就显示了力的成效(即使物体的能量发生了转化),我们就说力对物体做了功。
力对物体做功的两个必要因素:作用在物体上的力物体在力的方向上移动距离2 功的计算:W=FS※其中F可以是重力G、拉力F拉、推力F推、摩擦力F f、浮力F浮…※其中S是物体在对应力的方向上移动的距离例一重100N的物体被水平抛出在水平方向前进了3m,在竖直方向下降了4m,则此过程中重力做功多少J?推力做功多少?(400J 无法确定)3有用功、额外功及总功(一)相关概念:有用功实际生活中,使用杠杆、滑轮、斜面、起重机、水泵等机械做功时,有一部分功是人们为了达到目的所必须做的功,我们称其为有用功常见的有用功有:1、提升重物时,克服物体重力所做的功;W有=Gh2、使物体前移时,克服物体与地面的摩擦所做的功W有=F f L额外功有一部分是人们不需要的但不得不做的功,我们称其为额外功。
常见的额外功有:1、克服机械自重所做的功;W额=G动h2、克服机械自身摩擦所做的功。
斜面上W额=fs总功有用功和额外功的和叫做总功常见的总功有:使用杠杆时动力所做的功。
使用滑轮、斜面时拉力所做的功。
W总=Fs使用起重机、水泵时电动机所做的功。
W总=Pt人直接作用时,人的拉力及克服人重力所做的功。
2机械效率有用功与总功的比叫做机械效率η=W有用/W总说明:1、η为没有单位的物理量2、η为小于1的数3、η是描述机械性能的重要标志之一。
使用机械时效率越高越好。
不使用任何机械时做功的效率为100o/o理想机械的效率也为1,有用功等于总功,总功等于有用功。
竖直方向η=Gh/Fs水平方向η= F f l/Fs5影响机械效率的因素:滑轮:η=G物/nF动滑轮重、机械自身摩擦、物重η=G物/(G物+G动)(不考虑机械自身摩擦)斜面:斜面的粗糙程度、倾斜程度η=Gh/Fs杠杆:杠杆自重、摩擦、物重6提高机械效率的方法:方法一减小额外功:改善结构,更合理、更轻巧;(即减轻自重)经常保养,加润滑油。
中考物理功与能量复习知识点整合在物理学中,功与能量是重要的概念,也是中考物理考试中经常涉及的知识点之一。
理解并掌握功与能量的相关内容不仅对于正确解题有着重要的意义,也有利于学生对物理世界的深入理解。
本文将对中考物理功与能量的相关知识点进行整合和总结。
一、功的概念与计算功是指力对物体做的功,是衡量力对物体能够做多少实际贡献的物理量。
计算功的公式为:功 = 力 * 距离* cosθ。
其中,功的单位是焦耳(J),力的单位是牛顿(N),距离的单位是米(m),θ为力与物体运动方向的夹角。
以摩擦力为例,假设一个物体在光滑水平面上受到一个垂直向下的力 F,摩擦系数为μ,物体沿着力的方向移动了一定的距离 s,则所做的功可以表示为:功= μmgcosθ * s,其中 m 表示物体的质量,g 表示重力加速度。
二、能量的概念与分类能量是物体或系统由于位置、状态或运动而具有的能够做功的能力。
在物理学中,能量分为机械能、动能和势能。
1. 机械能:机械能是指物体的动能和势能之和,用 E 表示。
机械能在运动中保持不变,即机械能守恒。
物体的机械能可以表示为:E = K + U,其中 K 表示动能,U 表示势能。
2. 动能:动能是指物体由于运动而具有的能量。
动能的计算公式为:K = 1/2mv^2,其中 m 是物体的质量,v 是物体的速度。
3. 势能:势能是指物体由于所处位置而具有的能量。
常见的势能有重力势能和弹性势能。
重力势能的计算公式为:U = mgh,其中 m 是物体的质量,g 是重力加速度,h 是物体的高度。
弹性势能的计算公式为:U = 1/2kx^2,其中 k 是弹簧的弹性系数,x 是弹簧伸长或压缩的长度。
三、功与能量的转化根据功和能量的定义,我们可以看到功和能量之间存在着紧密的联系。
具体地说,功可以改变物体的能量状态,而能量的转化也可以通过做功来实现。
1. 动能与功的转化:当物体受到外力做功时,将会改变物体的动能。
根据功的计算公式,我们可以得出物体动能的变化量等于所受外力作用点的功:ΔK = W,其中ΔK 为动能的变化量,W 为作用力所做的功。
复习单元八功与能总第教案教学目的:1.理解做功的两个必要因素。
2.理解功的计算公式。
3.知道功的原理。
4.理解有用功和总功。
5.理解机械效率。
6.理解功率的概念。
7.理解动能、重力势能的概念。
8.知道弹性势能。
9.理解动能、势能的相互转化。
教学重难点:重点:1.功的初步概念、功的原理、机械效率和功率。
2.动能、势能、机械能的初步概念,动能和势能的相互转化。
难点:1.功的两个必要因素、机械效率的测量。
2.能量概念和动能、势能的决定因素教学类型:复习课课时:总4课时教学过程:(第1课时)1.知识点复习:2.要点点拨:1).力和在力的方向上移动的距离是作功的两大要素,缺一不可。
没有力也无所谓作功;虽有力的作用,但在力的作用方向上没有移动距离,这个力也没有作功。
作用在物体上的力,使物体沿着力的方向移动了一段距离,那么这个力就对物体作了功。
2).功的原理是机械的基本原理。
它告诉我们,使用机械并不能省功。
虽然不能省功,使用机械还是有很多好处的:有的可以省力,有的可以少移动距离,有的可以改变力的方向使做功方便。
3).摩擦是普遍存在的,所以使用简单机械时,不可避免地要克服摩擦阻力做功;简单机械本身有重量,在提起重物时又不可避免地要同时提起机械的一部分部件,克服这部分无用阻力要做功。
所以,动力对机械所做的功(总功),除了包含有用功之外,还包括上述的额外功。
有用功只占总功的一部分。
有用功在总功里所占的百分比,叫做机械效率。
由于有用功总小于总功,所以,机械效率总小于1。
提高效率的方法:减小无用功便可提高机械效率。
减少摩擦,减轻机械的重量这些都是减小无用功的办法。
4).功和功率是意义不同的两个物理量,因为做功的多少和做功的快慢是不同的,物体做功多,其功率不一定大。
同样,功率大的物体也不一定做功多,因为做功多少不仅跟功率的大小有关,还跟做功的时间长短有关,功和功率的关系可表示为:W =Pt5).动能和势能统称机械能,它们是可以相互转换的。
《功和机械能》复习一、功:1、力学里所说的功包括两个必要因素:一是作用在物体上的力;二是物体在力的方向上通过的距离。
2、不做功的三种情况:有力无距离、有距离无力、力和距离垂直。
巩固:☆某同学踢足球,球离脚后飞出10m远,足球飞出10m的过程中人不做功。
(原因是足球靠惯性飞出)。
3、力学里规定:功等于力跟物体在力的方向上通过的距离的乘积。
公式:W=FS4、功的单位:焦耳,1J= 1N·m 。
把一个鸡蛋举高1m ,做的功大约是0.5 J 。
5、应用功的公式注意:①分清哪个力对物体做功,或者说哪个施力物体对哪个受力物体做了功,计算时F就是这个力;②公式中S 一定是在力的方向上通过的距离,强调对应。
③功的单位“焦”(1牛·米 =1焦)。
二、功的原理:1、容:使用机械时,人们所做的功,都不会少于直接用手所做的功;即:使用任何机械都不省功。
2、说明:①功的原理是一个普遍的结论,对于任何机械都适用。
②功的原理告诉我们:使用机械要省力必须费距离,要省距离必须费力,既省力又省距离的机械是没有的。
③使用机械虽然不能省功,但人类仍然使用,是因为使用机械或者可以省力、或者可以省距离、也可以改变力的方向,给人类工作带来很多方便。
④功的原理包括两层含义(一)、对于理想机械(忽略摩擦和机械本身的重力):使用机械时,人们所做的功(FS)= 直接用手对重物所做的功;(二)、对于非理想机械而言,人们利用机械所做的功要大于不用机械而直接用手做的功,多做的那部分功就是克服机械自重和摩擦所做的功。
3、应用:斜面①理想斜面:斜面光滑②理想斜面遵从功的原理;③理想斜面公式:FL=Gh 其中:F:沿斜面方向的推力;L:斜面长;G:物重;h:斜面高度。
如果斜面与物体间的摩擦为f ,则:FL=fL+Gh;这样F做功就大于直接对物体做功Gh 。
三、机械效率:1、有用功:定义:对人们有用的功。
公式:W有用=Gh(提升重物)=W总-W额=ηW总斜面:W有用= Gh2、额外功:定义:并非我们需要但又不得不做的功公式:W额= W总-W有用=G动h(忽略轮轴摩擦的动滑轮、滑轮组)斜面:W额=f L3、总功:定义:有用功加额外功或动力所做的功公式:W总=W有用+W额=FS= W有用/η斜面:W 总= fL+Gh=FL4、机械效率:① 定义:有用功跟总功的比值。
② 公式: η=W 有用W 总斜 面: η=WW WW定滑轮: η=WW WW =WW WW =W W动滑轮: η=WW WW =WW W2W =W 2W滑轮组: η=WW WW =WW WWW =W WW (竖直方向提升重物)③ 有用功总小于总功,所以机械效率总小于1 。
通常用 百分数 表示。
某滑轮机械效率为60%表示有用功占总功的60% 。
④提高机械效率的方法: 尽可能满载来增大有用功;减小机械自重、减小机械部件间的摩擦来减小额外功。
5、机械效率的测量:① 原 理: η=W 有用W 总=WW WW ②应测物理量:钩码重力G 、钩码提升的高度h 、拉力F 、绳的自由端移动的距离S③器 材:除钩码、铁架台、滑轮、细线外还需 刻度尺、弹簧测力计。
④步骤:必须匀速拉动弹簧测力计使钩码升高,目的:保证测力计示数大小不变。
⑤结论:影响滑轮组机械效率高低的主要因素有:A 动滑轮越重,个数越多则额外功相对就多。
B 提升重物越重,做的有用功相对就多。
C 摩擦,若各种摩擦越大做的额外功就多。
绕线方法和重物提升高度不影响滑轮机械效率。
6、斜面机械效率的测量:①原理:②应测物理量:③器材:④步骤:匀速拉动弹簧测力计,⑤结论:影响斜面机械效率高低的主要因素有:斜面的倾斜程度摩擦力的大小四、功率:1、定义:单位时间所做的功2、物理意义:表示做功快慢的物理量。
3、公式: = Fv P W t=4、单位:主单位 W 常用单位 kW 、MW 、 马力换算:1kW=103W 1MW=106 W 1马力=735W某小轿车功率66kW ,它表示:小轿车1s 做功66000J5、机械效率和功率的区别:功率和机械效率是两个不同的概念。
功率表示做功的快慢,即单位时间完成的功;机械效率表示机械做功的效率,即所做的总功中有多大比例的有用功。
五、机械能(一)、动能和势能1、能量:一个物体能够做功,我们就说这个物体具有能理解:①能量表示物体做功本领大小的物理量;能量可以用能够做功的多少来衡量。
②一个物体“能够做功”并不是一定“要做功”也不是“正在做功”或“已经做功”如:山上静止的石头具有能量,但它没有做功。
也不一定要做功。
2、知识结构:3、探究决定动能大小的因素:① 猜想:动能大小与物体质量和速度有关;② 实验研究:研究对象:小钢球 方法:控制变量;?如何判断动能大小:看小钢球能推动木快做功的多少?如何控制速度不变:使钢球从同一高度滚下,则到达斜面底端时速度大小相同;?如何改变钢球速度:使钢球从不同同高度滚下;③分析归纳:保持钢球质量不变时结论:运动物体质量相同时;速度越大动能越大;保持钢球速度不变时结论:运动物体速度相同时;质量越大动能越大;④练习:☆ 速度你判断的依据:人的质量约为牛的1/12,而速度约为牛的12倍此时动能为牛的12倍说明速度对动能影响大4、机械能:动能和势能统称为机械能。
理解:①有动能的物体具有机械能;②有势能的物体具有机械能;③同时具有动能和势能的物体具有机械能。
(二)、动能和势能的转化 1、知识结构: 机 械 能 势能重力 势能 定义:物体由于被举高而具有的能量。
决定其大小的因素: 物体质量越大、举得越高,势能就越大 弹性 势能 定义:发生形变的物体具有的能量。
决定其大小的因素: 物体弹性形变越大、弹性势能就越大动能 定义:物体由于运动而具有的能量 决定其大小的因素: 物体速度越大、质量越大,动能就越大 动能 转化 转化 势能 弹性势能 重力势能2、动能和重力势能间的转化规律:①质量一定的物体,如果加速下降,则动能增大,重力势能减小,重力势能转化为动能;②质量一定的物体,如果减速上升,则动能减小,重力势能增大,动能转化为重力势能;3、动能与弹性势能间的转化规律:①如果一个物体的动能减小,而另一个物体的弹性势能增大,则动能转化为弹性势能;②如果一个物体的动能增大,而另一个物体的弹性势能减小,则弹性势能转化为动能。
4、动能与势能转化问题的分析:⑴首先分析决定动能大小的因素,决定重力势能(或弹性势能)大小的因素——看动能和重力势能(或弹性势能)如何变化。
⑵还要注意动能和势能相互转化过程中的能量损失和增大——如果除重力和弹力外没有其他外力做功(即:没有其他形式能量补充或没有能量损失),则动能势能转化过程中机械能不变。
⑶题中如果有“在光滑斜面上滑动”则“光滑”表示没有能量损失——机械能守恒;“斜面上匀速下滑”表示有能量损失——机械能不守恒。
(三)、功和能的关系物体做功过程就是能的转化过程,物体做功越多,说明某种能转化为别的形式的能就越多,如重物从高处下落的过程就是重力做机械功的过程,从而实现重力势能转化为动能的过程;弯弓射箭的过程就是通过弹力做功从而将弓的弹性势能转化为箭的动能的过程;用电器工作时的过程就是通过电流做功将电能转化其它能的过程。
一、掌握恒力做功的计算,判断某个力F是否做功,是正功还是负功(或克服力F做功).提高对物理量确切含义的理解能力【例1】用水平恒为F作用于质量为M的物体,使之在光滑的水平面上沿力的方向移动位移s,该恒力做功为W1;再用该恒力F作用于质量m(m<M)的物体上,使之在粗糙的水平面上移动同样位移s,该恒力F做功为W2.两次恒力F做功的关系正确的是[ ]A.W1>W2 B.W1<W2C.W1=W2 D.无法判断正确答案:C说明根据做功的定义,恒力F所做的功,只与F的大小及在力F的方向上相对不动参照物发生的位移的大小乘积有关,不需考虑其他力的影响;因此两次该力F不变,在力的方向上相对不动参照物发生的位移s相同.所以,力F所做的功相等.正确答案选C项.【例2】如图5-4所示,三角劈质量为M,放在光滑水平面上,三角劈的斜面光滑,将质量为m的物块放在三角劈斜面顶端由静止滑下,则在下滑过程中,M对m的弹力对m所做的功为W1,m对M的弹力对M所做的功为W2,下列关系正确的是[ ]A.W1=0,W2=0B.W1≠0,W2=0C.W1=0,W2≠0D.W1≠0,W2≠0正确答案:D.说明当m沿三角劈的斜面下滑时,因水平面光滑,M在m的压紧下将向右加速运动.用图5-5分析物理现象,画出物块m的实际位移的方向,由于弹力N恒垂直斜面,因而N与s 夹角θ>90°,所以M对m的弹力对m物块做负功,即W1≠0,而m对M弹力N'对三角劈的水平位移的夹角小于90°,因而m对M的弹力N'对M所做的功W2>0,做正功,即W2≠0,所以选D项是正确的.该题也可由系统的机械能守恒来研究.M与m组成一个系统,系统只有重力和弹力做功,系统的机械能守恒.由于M在m压紧下向右运动,M的动能不断增大,而由机械能守恒可知m 的机械能不断减小,因而M对m的弹力一定对m做负功,m对M的弹力对M一定做正功.所以,正确答案为D项.【例3】以一定的初速度竖直向上抛出一个小球,小球上升的最大高度为h,运动中空气阻力大小恒为f,则小球从抛出点抛出到再回到原抛出点的过程中,空气阻力对小球做的功应为 [ ]A.0 B.-fh C.-2fh D.-4fh正确答案:C.说明有些同学错选A项,其原因是认为整个过程位移为零,由公式W=Fscosθ可得Wf=0.错误的另一原因是,没有准确掌握公式W=Fscosθ直接计算时,F必须是恒力(大小和方向均不变);另外,缺乏对物理过程的分析.小球在上升和下降过程中空气阻力都是做负功,所以全过程空气阻力对小球所做的功应为Wf=Wf上+W f下=-fh+(-fh)=-2fh.【例4】如图5-6所示,某力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这个力F做的总功应为[ ]A.0J B.20πJC.10J D.20J.正确答案:B说明某个力做功,其大小不变而方向改变.在计算这个力所做功时,切莫把初末位置的位移s直接代入WF=F·s·cosθ来计算总功.由于力F的方向始终保持与作用点的速度方向(切线方向)一致.因此,这个力做功不能为零,此时应把圆周划分很多小段Δs研究.如图5-7所示,当各小段弧长Δsi足够小(Δsi→0)时,在这Δsi,F方向几乎与该小段位移方向重合.∴ WF=FΔs1+FΔs2+…+FΔsi=F2πR通过该题,能提高准确理解功这基本量的物理意义的能力.【例5】质量为M的长木板放在光滑的水平面上,如图5-8所示,一质量为m的滑块,以某一速度v沿长木板表面从A点滑至B点在木板上前进了Lm,而长木板前进了sm,若滑块与木板间动摩擦因数为μ,问:a)摩擦力对滑块所做的功多大?b)摩擦力对木板所做的功多大?解 a)滑块受力情况如图5-9(a)所示,滑块在摩擦力的方向上相对地面的位移为(s+L).∴摩擦力对滑块所做的功为Wm=-f(s+L)b)木板受力情况如图5-9(b)所示,木板在摩擦力的方向上相对地面位移为s.∴摩擦力对木板所做的功为WM=fs说明:滑动摩擦力可以做正功,滑动摩擦力也可以做负功.在滑块与长木板组成的系统中,这一对滑动摩擦力所做的总功一定为负值.请同学们思考,这是为什么?若该题改为,m与M叠放在水平地面上,对M施加一水平力F作用,使m和M一起沿水平地面加速运动中,则静摩擦力对m做正功,静摩擦力对M做负功,但这一对静摩擦力在对m和M组成的系统所做的总功一定为零.请同学们思考,这又是为什么?【例6】如图5-10所示,定滑轮至滑块高度为H,已知细绳的拉力为FN(恒定),滑块沿水平地面由A点前进s米至B点.滑块在初、末位置时细绳与水平方向夹角分别为α和β.求滑块由A点运动到B点过程中,拉力F对滑块所做的功.解拉力F做功等于该力乘以细绳经过滑轮的长度(即力的作用点在F方向上的位移大小).【例7】在光滑水平面上有一静止的物体。