6连杆机构
- 格式:ppt
- 大小:2.74 MB
- 文档页数:83
六连杆压力机优化设计和分析1 绪论1.1 国内外压力机的发展概况机械压力机作为工程上广泛应用的一种锻压设备,在工业生产中的地位变的越来越重要[1]。
多连杆压力机的多连杆机构是现代机械压力内、外滑块普遍采用的工作机构。
多连杆驱动的出发点是:降低工作行程速度,加快空程速度,已达到提高生产率的目的。
使用多连杆驱动技术的机械压力机,不用改变压力机的工作行程速度,即可达到提高生产率、延长模具寿命并降低噪声的目的[2]。
目前国内的发展现状:进入21世纪以来,中国锻压机械行业通过技术引进,合作生产及合资等多种方式,已经快速地提高了我国的冲压设备整体水平,近年来设计制造的很多产品,其技术性能指标已经能够接近世界先进水平。
目前我国制造的多连杆压力机刚性好、精度高、具有良好的抗热变形能力和良好的平衡性,配备高速高精度的送料装置,采取良好的隔声降噪减振措施。
不仅能保证良好的性能、质量和可靠性,在设备的成套、生产线和数控化、自动化等方面也有了很大的发展,能开发、设计、制造大型精密高效的压力机。
近年来,随着电子技术、自动控制技术的发展和应用,我国多连杆压力机的自动化程度、安全性、可靠性、生产率、产品质量都得到了明显的改善,压力机的制造能力也不断提高。
但我国压力机的生产总体规模小,技术创新能力薄弱,数控化程度相对较差,管理水平落后,品总和规格不全,特别是大、高、精类还需国外的供应,另外,我国的锻压设备与发达国家相比结构陈旧,性能较差,机械化程度差。
因此,如何继续缩小与国外先进产品的距离仍是我国设备制造企业需要面对的挑战。
国外发展现状:国外的多连杆压力机的设计生产制造的专门化、自动化程度越来越高,朝着高速度、高精度的方向发展。
其产品的品种和规格齐全,结构新颖,性能,质量,机械化程度好,精度,可靠性高,各种设备的材料利用率、生产率都很高。
而且规模大,特别是数控化程度非常好,具有很高的创新水平。
加工时,实现了软接触和平稳成型,加工冲击小,故模具的寿命特别长,压力机的行程可以任意设定,曲轴的摆角可调,使其在某一需要的角度内摆动。
打纬打纬机构的作用:1、以装在筘座上的钢筘把纬纱推向织口形成织物。
2、由走梭板和钢筘控制梭子飞行的方向,打纬时使梭子停留在筘座两端的梭箱中。
3、控制经纱的密度和织物的幅宽。
打纬机构的要求:1、在保证梭子顺利通过梭口的条件下,筘座的摆动幅度要尽量小,以减少对经纱的摩擦和织机的振动。
2、在具有足够的打纬力的条件下,应尽量减轻筘座的重量,以减少动力的消耗和织机的振动。
3、筘座的运动应当是平稳的,其速度变化是匀调的。
在打纬时筘座的速度应当是逐渐减小,到打纬终了时速度为零,平稳地把纬纱推向织口,而不是突然的冲击,以防止打纬时使经纱张力骤然增加。
4、投梭运动和开口运动应当与筘座运动配合协调,前者是为了保证梭子飞行稳定,正常通过梭口:后者则是织物形成时的一个重要条件,对所形成织物的内在质量和外观及织物结构都有很重要的影响。
5、打纬机构的构造应当简单坚固。
打纬机构的种类主要有四连杆打纬机构、六连杆打纬机构、共轭凸轮打纬机构、毛巾打纬机构、旋转式打纬机构等等。
曲柄连杆打纬机构(重点)一、四连杆打纬机构曲柄连杆筘座脚摇轴(机架)(一)四连杆打纬运动的数学解析(1)先画曲柄圆(O为圆心)(2)牵栓起,来两点A、A`(3)曲枥的前止点B。
(4)连接AoA`并延长,延长成交从O点引垂线交于C点,OC=e;(5)作OF//A,C交曲柄圆于F;(6)曲柄圆上任意找一点B,牵中检上对应一点A(以B为圆心,B1A0于A点)(7)自B点作OF垂线与AoC交于D,OF交于E;(8)定出γ、Q、Y以上述公式中可以看出牵中栓的S、V、a受下列影响:1、织机主轴回转角速度W2、r/γ值3、r/γ值不变时 r4、er/γ—偏心率,指筘座运动前后不对称的性质。
(二)偏心率r/γr/γ→0 长牵手r/γ<1/3 中牵手r/γ>1/3 短牵手r/γ越大,筘座的加速度和速度的峰值随之增加,同时运动的偏心性和不均匀性也随之增加。
r的长度决定牵手栓的动程此动程以容许梭子通过为限,一般为梭宽的3-3.5倍,高速织机r ↓P87,表2-1 图2-8P88 分析δ×100%若高,则织机运转不圆滑,将增加织机的振动和磨损。
机械设计常用机构机械设计是一门综合性的学科,涉及到各种各样的机构和装置。
在机械设计中,机构是非常重要的一部分,它负责传递和转换力、运动和能量,从而实现机械装置的各项功能。
在机械设计中,常用的机构有很多种。
这些机构可以根据其功能、结构和运动特性进行分类和归纳。
下面,我将对一些常用的机构进行介绍。
一、连杆机构连杆机构是机械设计中最基本也是最常用的一种机构。
它由杆件和关节组成,通过杆件的连接和关节的运动,实现力和运动的传递。
连杆机构广泛应用于各种机械装置中,如汽车发动机的连杆机构、拉杆机构等。
二、齿轮机构齿轮机构是一种通过齿轮的相互啮合来传递运动和力的机构。
齿轮机构具有传动比恒定、传递力矩大、传递效率高等特点,广泛应用于各种传动装置中,如汽车变速器、机床传动等。
三、减速机构减速机构主要通过齿轮、皮带等传动元件将输入的高速运动转换为输出的低速运动。
减速机构在机械设计中非常常见,用于满足不同场合的运动速度要求。
四、滑块机构滑块机构是一种通过滑块在导轨上做直线运动来实现运动转换和力传递的机构。
滑块机构广泛应用于各种机械装置中,如工具机的进给机构、压力机的传动机构等。
五、摆线机构摆线机构是一种通过连杆和摆线来实现直线运动的机构。
它通过摆线的特殊形状和连杆的运动,将旋转运动转换为直线运动,广泛应用于各种机械装置中,如剪切机的摆线滑块机构、织机上纬缸的摆线机构等。
六、万向节机构万向节机构是一种通过球面和容器来实现输动与变动传动的机构。
它具有结构简单、运动灵活等优点,广泛应用于汽车、船舶和航空等领域。
以上介绍的只是机械设计中的一小部分常用机构,还有很多其他的机构在实际设计中也扮演着重要的角色。
在进行机械设计时,我们需要根据具体的应用要求和设计目标选择合适的机构,合理地组合和运用这些机构,以实现设计的目的。
总结起来,机械设计中常用的机构有连杆机构、齿轮机构、减速机构、滑块机构、摆线机构和万向节机构等。
这些机构在机械装置中起着重要的作用,通过它们的运动和力传递,实现了各种功能和要求。
六连杆压力机优化设计和分析1 绪论1.1 国内外压力机的发展概况机械压力机作为工程上广泛应用的一种锻压设备,在工业生产中的地位变的越来越重要[1]。
多连杆压力机的多连杆机构是现代机械压力内、外滑块普遍采用的工作机构。
多连杆驱动的出发点是:降低工作行程速度,加快空程速度,已达到提高生产率的目的。
使用多连杆驱动技术的机械压力机,不用改变压力机的工作行程速度,即可达到提高生产率、延长模具寿命并降低噪声的目的[2]。
目前国内的发展现状:进入21世纪以来,中国锻压机械行业通过技术引进,合作生产及合资等多种方式,已经快速地提高了我国的冲压设备整体水平,近年来设计制造的很多产品,其技术性能指标已经能够接近世界先进水平。
目前我国制造的多连杆压力机刚性好、精度高、具有良好的抗热变形能力和良好的平衡性,配备高速高精度的送料装置,采取良好的隔声降噪减振措施。
不仅能保证良好的性能、质量和可靠性,在设备的成套、生产线和数控化、自动化等方面也有了很大的发展,能开发、设计、制造大型精密高效的压力机。
近年来,随着电子技术、自动控制技术的发展和应用,我国多连杆压力机的自动化程度、安全性、可靠性、生产率、产品质量都得到了明显的改善,压力机的制造能力也不断提高。
但我国压力机的生产总体规模小,技术创新能力薄弱,数控化程度相对较差,管理水平落后,品总和规格不全,特别是大、高、精类还需国外的供应,另外,我国的锻压设备与发达国家相比结构陈旧,性能较差,机械化程度差。
因此,如何继续缩小与国外先进产品的距离仍是我国设备制造企业需要面对的挑战。
国外发展现状:国外的多连杆压力机的设计生产制造的专门化、自动化程度越来越高,朝着高速度、高精度的方向发展。
其产品的品种和规格齐全,结构新颖,性能,质量,机械化程度好,精度,可靠性高,各种设备的材料利用率、生产率都很高。
而且规模大,特别是数控化程度非常好,具有很高的创新水平。
加工时,实现了软接触和平稳成型,加工冲击小,故模具的寿命特别长,压力机的行程可以任意设定,曲轴的摆角可调,使其在某一需要的角度内摆动。
机械原理6杆机构设计实例机械原理中的六杆机构是一种基本的机械结构,由六个连杆组成,可以实现特定的运动和转换功能。
本文将为您提供一个六杆机构的设计实例,以便更好地理解其工作原理和应用。
1. 设计目标:我们的设计目标是创建一个六杆机构,可以将旋转运动转换为直线运动。
该机构将用于驱动一个线性推进器,以实现物体在直线轴上的移动。
2. 机构设计:为了实现我们的设计目标,我们选择了一种常见的六杆机构类型,即双曲线传动机构。
该机构由两个相交的双曲线连杆和四个普通连杆组成。
其中两个普通连杆连接驱动轴和双曲线连杆,另外两个普通连杆连接双曲线连杆和线性推进器。
3. 工作原理:当驱动轴旋转时,通过连杆的连接,双曲线连杆也开始旋转。
由于双曲线曲面的特性,使得连接在其上的普通连杆产生复杂的运动轨迹。
这种运动轨迹可以被利用,使得线性推进器在直线轴上产生直线运动。
4. 应用:这种六杆机构设计可以广泛应用于需要将旋转运动转换为直线运动的场景中。
例如,在自动化生产线中,可以使用该机构实现工件的装配和定位。
另外,在机床中,该机构也可以用于驱动刀具进行直线切削操作。
5. 设计考虑:在进行六杆机构设计时,需要考虑以下几个因素:- 机构尺寸:根据特定应用的需求,确定机构的尺寸和比例。
- 运动平稳性:为了确保机构运动平稳,需要进行合理的连杆长度和角度的选择。
- 载荷承受能力:根据应用场景中的负载要求,设计机构以承受相应的载荷。
- 动力传递效率:通过减少摩擦和能量损失来提高机构的动力传递效率。
6. 结论:通过设计一个六杆机构,我们成功地实现了将旋转运动转换为直线运动的目标。
该机构可以在自动化生产线和机床等领域中发挥重要作用。
在设计过程中,我们需要考虑机构尺寸、运动平稳性、载荷承受能力和动力传递效率等因素。
这个设计实例展示了六杆机构在实际应用中的重要性和灵活性。
以上就是关于机械原理六杆机构设计的一个实例解释。
通过这个例子,我们可以更好地理解六杆机构的工作原理和应用,以及设计过程中需要考虑的因素。
六连杆机构原理
六连杆机构是由六个杆件连接而成的机构,它由一个固定件、两个连接件和三个活动件组成。
其原理如下:
1. 固定件:六连杆机构的固定件是一个不动的杆件,通常被固定在机构的底座上,提供固定支撑。
2. 连接件:六连杆机构的连接件是两个与固定件连结的杆件,通常被连接在固定件的两个端点,并与其他杆件连接在一起。
它们可以是连接两个杆件的中间杆件,也可以是分别连接在两个杆件的两端。
3. 活动件:六连杆机构的活动件是通过连接件连接在一起的三个杆件,它们可以由固定件和两个连接件提供的支撑点进行运动。
其中一根杆件被称为连接杆,两根杆件被称为主动杆和从动杆。
4. 原理:当主动杆绕连接点进行旋转时,通过连接杆和从动杆的连接,从动杆也会跟随主动杆做相应的旋转运动。
这使得从动杆上的活动点可以沿着一条规定的轨迹进行运动。
5. 目的:六连杆机构通常用于需要进行复杂运动轨迹的机械系统中,例如制造机器人、自动装配机械等。
它可以将旋转运动转化为直线运动,从而实现特定的功能和任务。
需要注意的是,六连杆机构的设计和运动学分析较为复杂,需要综合考虑各种因素,如运动学条件、机构刚度、载荷分布等。
因此,在实际应用中需要仔细评估和优化设计,并考虑使用适当的控制方法来实现所需的运动和功能。