换热器热计算基础讲解学习
- 格式:ppt
- 大小:1.06 MB
- 文档页数:94
换热器热量及面积计算
一、热量计算
1、一般式
Q=W h(H h,1- H h,2)= W c(H c,2- H c,1)
式中:
Q为换热器的热负荷,kj/h或kw;
W为流体的质量流量,kg/h;
H为单位质量流体的焓,kj/kg;
下标c和h分别表示冷流体和热流体,下标1和2分别表示换热器的进口和出口。
2、无相变化
Q=W h c p,h(T1-T2)=W c c p,c(t2-t1)
式中:
c p为流体平均定压比热容,kj/(kg.℃);
T为热流体的温度,℃;
T为冷流体的温度,℃。
二、面积计算
1、总传热系数K
管壳式换热器中的K值如下表:
注:
1w=1J/s=3.6kj/h=0.86kcal/h
1kcal=4.18kj
2、温差
(1)逆流
热流体温度T:T1→T2
冷流体温度t:t2←t1
温差△t:△t1→△t2
△t m=(△t2-△t1)/㏑(△t2/△t1)(2)并流
热流体温度T:T1→T2
冷流体温度t:t1→t2
温差△t:△t2→△t1
△t m=(△t2-△t1)/㏑(△t2/△t1)
3、面积计算
S=Q/(K.△t m)
三、管壳式换热器面积计算
S=3.14ndL
其中,S为传热面积m2、n为管束的管数、d为管径,m;L为管长,m。
四、注意事项
冷凝段:潜热(根据汽化热计算)
冷却段:显热(根据比热容计算)。
【HETA】换热器的传热计算公式空调换热器,不管是蒸发器还是冷凝器,其都扮演着一个传热的角色。
今天我们就来讲一讲换热器传热的计算。
一:总传热速率方程1、总传热速率微分方程式2、局部总传热系数物理意义:单位传热面积、单位传热温差下的传热速率。
反映了传热过程的强度,是衡量换热器工作效率的重要参数。
注意:总传热系数的单位与对流传热系数的单位一样,都为W /(m2×°C),但温度差所代表的区域不同。
同样总传热系数也是必须与温度差和传热面积相对应的。
二:传热量的计算在传热计算中,传热速率和热负荷在数值上一般可视为相等,但其含义不同。
热负荷:由工艺条件决定的,是对换热器换热能力的要求;传热速率:换热器本身在一定的操作条件下的换热能力,是换热器本身的特性。
无相变:有相变:(1)选取经验值(2)实验(现场)测定(3)K 的计算式两流体通过壁面包括以下过程:上述过程的传热量为:以上三式相加得:比较有以下结果:1)当传热面为圆壁时:2)当传热面为平壁时:3.(1)由dQ=K×D t×dS知,总传热系数在数值上等于单位温度差下的热通量。
K的单位与的单位完全一样(W /( m 2 ×°C),或(W /(m2 ×K),但应注意温度差℃(或K)所代表的范围不同。
(2)说明:总传热系数随所取传热面的不同而不同。
今后无特别说明时均指基于外表面积的总传热系数。
(3)对圆管:(4) K 也可以表示为热阻的形式,即:表明:间壁两侧流体间传热的总热阻等于两侧流体的对流传热的热阻与管壁热传导的热阻之和。
(5)对以下几种情况可以简化:由此可看出,K值由热阻大(即h小)的一侧流体的传热所控制,要提高K,应提高h小的一侧。
(6)污垢热阻污垢热阻的存在使K降低,传热速率下降。
如传热面两侧(管壁内、外侧表面上)的污垢热阻分别用R si和表示R so,则前述的K值的计算式变为:备注:换热器要根据实际的操作情况定期清洗。
换热器热量及面积计算一、热量计算1、一般式 Q=Q c=Q hQ=W h(H h,1 - H h,2)= W c(H c,2 - H c,1)式中:Q为换热器的热负荷, kj/h或kw;W为流体的质量流量, kg/h ;H为单位质量流体的焓,kj/kg ;下标 c 和 h 分别表示冷流体和热流体,下标 1 和 2 分别表示换热器的入口和出口。
2、无相变化Q=W h c p,h (T1-T2)=W c c p,c (t2-t1)式中:c p为流体均匀定压比热容,kj/(kg.℃);T为热流体的温度,℃;t为冷流体的温度,℃。
3、有相变化a. 冷凝液在饱和温度下走开换热器,r c(t 2-t 1) Q=W = Wc p,ch式中:W h为饱和蒸汽(即热流体)冷凝速率(即质量流量)(kg/s)r 为饱和蒸汽的冷凝潜热(J/kg )b.冷凝液的温度低于饱和温度,则热流体开释热量为潜热加显热Q=W h[r+ c p,h(T s-T w)] = W c c p,c (t 2-t 1)式中:c p,h为冷凝液的比热容(J/(kg/℃));T s为饱和液体的温度(℃)二、面积计算1、总传热系数K管壳式换热器中的K 值以下表:冷流体热流体总传热系数 K,w/(m2. ℃)水水850-1700水气体17-280水有机溶剂280-850水轻油340-910水重油60-280有机溶剂有机溶剂115-340水水蒸气冷凝1420-4250气体水蒸气冷凝30-300水低沸点烃类冷凝455-1140水沸腾水蒸气冷凝2000-4250轻油沸腾水蒸气冷凝455-1020注:1w = 1J/s =kj/h =kcal/h1kcal =kj2、温差(1)逆流热流体温度 T: T1→T2冷流体温度 t : t2 ←t1温差△ t :△ t1 →△ t2△t m=(△ t2- △t1 )/ ㏑(△ t2/ △t1 )(2)并流热流体温度 T: T1→T2冷流体温度 t : t1 →t2温差△ t :△ t2 →△ t1△t m=(△ t2- △t1 )/ ㏑(△ t2/ △t1 )对数均匀温差,两种流体在热互换器中传热过程温差的积分的均匀值。
换热器的传热计算换热器的传热计算包括两类:一类是设计型计算,即根据工艺提出的条件,确定换热面积;另一类是校核型计算,即对已知换热面积的换热器,核算其传热量、流体的流量或温度。
这两种计算均以热量衡算和总传热速率方程为基础。
换热器热负荷Q 值一般由工艺包提供,也可以由所需工艺要求求得。
Q=W c p Δt ,若流体有相变,Q=c p r 。
热负荷确定后,可由总传热速率方程(Q=K S Δt )求得换热面积,最后根据《化工设备标准系列》确定换热器的选型。
其中总传热系数K=0011h Rs kd bd d d Rs d h d o m i i i i ++++ (1)在实际计算中,总传热系数通常采用推荐值,这些推荐值是从实践中积累或通过实验测定获得的,可以从有关手册中查得。
在选用这些推荐值时,应注意以下几点:1. 设计中管程和壳程的流体应与所选的管程和壳程的流体相一致。
2. 设计中流体的性质(粘度等)和状态(流速等)应与所选的流体性质和状态相一致。
3. 设计中换热器的类型应与所选的换热器的类型相一致。
4. 总传热系数的推荐值一般范围很大,设计时可根据实际情况选取中间的某一数值。
若需降低设备费可选取较大的K 值;若需降低操作费用可取较小的K 值。
5. 为保证较好的换热效果,设计中一般流体采用逆流换热,若采用错流或折流换热时,可通过安德伍德(Underwood )和鲍曼(Bowman )图算法对Δt 进行修正。
虽然这些推荐值给设计带来了很大便利,但是某些情况下,所选K 值与实际值出入很大,为避免盲目烦琐的试差计算,可根据式(1)对K 值估算。
式(1)可分为三部分,对流传热热阻、污垢热阻和管壁导热热阻,其中污垢热阻和管壁导热热阻可查相关手册求得。
由此,K 值估算最关键的部分就是对流传热系数h 的估算。
影响对流传热系数的因素主要有:1.流体的种类和相变化的情况液体、气体和蒸气的对流传热系数都不相同。
牛顿型和非牛顿型流体的也有区别,这里只讨论牛顿型对流传热系数。
换热器是工业过程中常用的设备,用于在两种流体之间传递热量。
换热器的热计算方法通常涉及到确定热量传递速率、传热表面积和温度变化等参数。
以下是换热器的一般热计算方法:
传热速率计算:
热传导:对于热传导,可以使用导热方程来计算热传导的速率,通常表示为q = k * A * ΔT / L,其中q是传热速率,k是材料的导热系数,A是传热表面积,ΔT是温度差,L是传热距离。
对流传热:对于对流传热,通常使用牛顿冷却定律,q = h * A * ΔT,其中q是传热速率,h 是对流传热系数,A是传热表面积,ΔT是温度差。
温差和温度计算:
确定入口和出口流体的温度,以便计算温差(ΔT)。
温差是热交换的驱动力。
温度分布:在一些情况下,需要考虑温度在换热器内的分布,通常需要使用数学模型和计算方法。
传热表面积计算:
传热表面积(A)是一个关键参数,它可以根据传热速率和温差来计算,通常使用q = U * A * ΔT,其中U是总传热系数。
U值取决于换热器的类型和结构,可通过实验测定或计算得出。
流体性质计算:
确定流体的物性参数,如密度、热导率、比热容等,以便计算传热速率和温度变化。
对于多组分混合物,需要使用混合物物性计算方法。
性能和效率计算:
根据热计算结果,可以计算换热器的性能和效率参数,如效率、热传导系数等。
需要注意的是,换热器的热计算通常需要考虑多种因素,包括传热方式、流体性质、流速、换热器类型和结构等。
根据具体的应用和情况,可能需要使用不同的计算方法和模型。
通常,工程师和热力学专家会根据具体问题的需求来选择合适的计算方法,并使用专业的软件工具来辅助热计算和设计。
定义与工作原理定义板式换热器是一种高效、紧凑的换热设备,由一系列金属板片组成,板片之间形成狭窄的流道,冷、热流体在板片两侧流动,通过板片进行热量交换。
工作原理板式换热器利用板片之间的流道,使冷、热流体在流动过程中实现热量交换。
热量通过板片传导,从高温流体传递给低温流体,或从低温流体吸收热量传递给高温流体。
结构组成及特点结构组成板式换热器主要由框架、板片、密封垫片、压紧装置等部分组成。
其中,框架用于支撑和固定板片;板片是换热的主要部件,通常由不锈钢、钛合金等材料制成;密封垫片用于防止流体泄漏;压紧装置用于将板片压紧在框架上,保证换热器的密封性能。
特点板式换热器具有结构紧凑、换热效率高、占地面积小、维护方便等特点。
此外,板式换热器还具有多种板片组合方式,可适应不同流体的换热需求。
应用领域与发展趋势应用领域板式换热器广泛应用于供暖、空调、化工、食品、医药等领域。
在供暖领域,板式换热器可用于集中供暖系统中的热交换;在空调领域,可用于中央空调系统中的冷却和加热;在化工领域,可用于各种化工流程中的热量回收和温度控制。
发展趋势随着科技的不断进步和环保要求的提高,板式换热器将朝着更高效、更环保的方向发展。
一方面,研究者将不断优化板片结构和材料,提高换热效率和耐腐蚀性;另一方面,将加强智能化技术的应用,实现板式换热器的远程监控和智能控制,提高运行效率和安全性。
温度、热量和热能的概念及其关系热力学第一定律和第二定律的表述和意义热力学系统、边界、工质和热源的定义01热传导、热对流和热辐射三种传热方式的特点和区别02传热过程的基本定律和传热系数的概念03影响传热系数的因素和提高传热效率的方法流体的物理性质和流动状态流体静力学和动力学的基本原理流体在管道中的流动阻力和能量损失流体力学基础根据工艺要求确定所需换热量,考虑热损失和传热效率等因素。
换热量根据工艺要求确定进出口温度,考虑热媒性质和传热温差等因素。
进出口温度根据工艺要求确定允许的压力降,考虑流体性质和换热器结构等因素。
传热过程和换热器热计算基础前言:在工业生产和日常生活中,传热是一个非常重要的过程。
无论是热运输、能源利用、工业生产还是家庭暖气系统,我们都需要了解传热过程和换热器的热计算基础。
在本文中,我们将详细介绍传热过程的基本概念和传热计算的方法。
一、传热过程的基本概念1、传热的基本概念传热是指能量由高温区域传递到低温区域的过程。
传热过程可以通过三种方式进行传递,分别是传导、对流和辐射。
传导是指热量通过物质的直接接触传递,对流是指热量通过流体(液体或气体)的运动传递,辐射是指热量通过电磁辐射传递。
在实际应用中,这三种传热方式常常同时存在。
例如,热水锅炉中的传热过程包括水的对流传热、锅炉壁的传导传热和辐射传热。
2、传热的基本定律传热过程基于以下两个基本定律,它们是传热计算的基础。
(1)热传导定律热传导定律描述了热量沿着温度梯度的方向从一个物体传递到另一个物体的过程。
热传导定律可以用以下公式表示:q = -kA(dT/dx)其中,q是单位时间内通过单位面积的热流量,k是材料的热传导系数,A是传热的横截面积,dT/dx是温度梯度。
(2)牛顿冷却定律牛顿冷却定律描述了通过对流传热的过程。
它指出,对流换热速率正比于温差和表面积,反比于流体和固体的热阻。
牛顿冷却定律可以用以下公式表示:q=hA(Ts−T∞)其中,q是单位时间内通过单位面积的热流量,h是对流传热系数,A 是传热表面积,Ts是固体表面温度,T∞是流体的温度。
二、换热器的计算基础换热器是用于传递热量的设备,广泛应用于各个行业中。
换热器的设计需要进行热计算,主要包括换热面积的计算和换热系数的计算。
1、换热面积的计算换热面积的计算取决于需要传递的热量流率和温度差。
换热面积可以使用以下公式计算:A=Q/(UΔT)其中,A是换热面积,Q是需要传递的热量流率,U是换热系数,ΔT 是温度差。
2、换热系数的计算换热系数是衡量换热器性能的重要指标之一、换热系数可以通过经验公式、理论公式或实验方法进行计算。
换热器热计算基础换热器是工程中常见的设备,用于在流体之间传递热量。
换热器热计算是指对换热器进行热力学分析和计算,以确定热负荷、传热面积、传热系数等参数的过程。
传热理论是换热器热计算的基础之一、传热过程主要有传导、对流和辐射三种形式。
对于大部分换热器来说,对流传热是主要形式。
传热理论通过数学模型描述了传热过程中的温度场、热流场等参数,这些参数对于换热器设计和性能评估具有重要意义。
传热方法是换热器热计算的基础之一、传热方法包括传导传热、对流传热和辐射传热。
传导传热是指热量通过物质内部的传导方式进行传递。
对流传热是指热量通过流体的对流方式进行传递。
辐射传热是指热量通过辐射方式进行传递。
不同的换热器根据其工作条件和结构,可能会采用不同的传热方法。
传热模型是换热器热计算的基础之一、传热模型是指用数学和物理方法描述换热器内部传热过程的模型。
常见的传热模型包括热平衡模型、LMTD法、NTU法等。
热平衡模型是最简单的传热模型,假设换热器中的热量平衡。
LMTD法(Logarithmic Mean Temperature Difference法)是一种常用的传热模型,它通过计算换热器的LMTD值来估算换热器的传热能力。
NTU法(Number of Transfer Units法)是另一种常用的传热模型,它通过计算传热器的NTU值估算传热器的传热能力。
传热模型的选择取决于具体的换热器设计要求和计算精度的要求。
换热器的结构和运行参数是换热器热计算的基础之一、换热器的结构参数包括传热面积、传热管管径、管道长度等。
传热面积是换热器设计的重要参数,它决定了换热器的传热能力。
传热管管径和管道长度是影响换热器内部流体流动的重要参数,它们决定了流体之间的传热能力和传热阻力。
换热器的运行参数包括进口温度、出口温度、流体流量等。
进口温度和出口温度决定了换热器内部的温度差,它们是计算传热能力的重要参数。
换热器的热计算是工程设计中非常重要的一环。
换热器热量及面积计算之袁州冬雪创作一、热量计算1、一般式Q=Qc=QhQ=Wh(Hh,1- Hh,2)= Wc(Hc,2- Hc,1)式中:Q为换热器的热负荷,kj/h或kw;W为流体的质量流量,kg/h;H为单位质量流体的焓,kj/kg;下标c和h分别暗示冷流体和热流体,下标1和2分别暗示换热器的出口和出口.2、无相变更Q=Whcp,h(T1-T2)=Wccp,c(t2-t1)式中:cp为流体平均定压比热容,kj/(kg.℃);T为热流体的温度,℃;t为冷流体的温度,℃.3、有相变更a.冷凝液在饱和温度下分开换热器,Q=Whr=Wccp,c(t2-t1)式中:Wh为饱和蒸汽(即热流体)冷凝速率(即质量流量)(kg/s)r为饱和蒸汽的冷凝潜热(J/kg)b.冷凝液的温度低于饱和温度,则热流体释放热量为潜热加显热Q=Wh[r+cp,h(Ts-Tw)]=Wccp,c(t2-t1)式中:cp,h为冷凝液的比热容(J/(kg/℃));Ts为饱和液体的温度(℃)二、面积计算1、总传热系数K管壳式换热器中的K值如下表:注:1w=1J/s=kj/h=kcal/h1kcal=kj2、温差(1)逆流热流体温度T:T1→T2冷流体温度t:t2←t1温差△t:△t1→△t2△tm=(△t2-△t1)/㏑(△t2/△t1)(2)并流热流体温度T:T1→T2冷流体温度t:t1→t2温差△t:△t2→△t1△tm=(△t2-△t1)/㏑(△t2/△t1)对数平均温差,两种流体在热交换器中传热过程温差的积分的平均值.( 恒温传热时△t=T-t,例如:饱和蒸汽和沸腾液体间的传热.)对数平均温差因为在冷凝器板换一系列的换热器中温度是变更的为了我们更好的选型计算所以出来一个相对准确的数值,当△T1/△T2>1.7时用公式:△Tm=(△T1-△T2)/㏑(△T1/△T2).如果△T1/△T2≤1.7时,△Tm=(△T1+△T2)/2二种流体在热交换器中传热过程温差的积分的平均值.逆流时△T1=T1-t2 △T2=T2-t1顺流时△T1=T1-t1 △T2=T2-t2其中:T1 ——热流出口温度℃T2——热流出口温度t1——冷流出口温度t2——冷流出口温度ln——自然对数3、面积计算S=Q/(K.△tm)三、管壳式换热器面积计算其中,S为传热面积m2、n为管束的管数、d为管径,m;L 为管长,m.注:冷凝段为潜热,根据汽化热计算;冷却段为显热,根据比热容计算.。
换热器热量及面积计算公式换热器热量及面积计算一、热量计算1、一般式Q=Q c=QhQ=Wh(H h,1- H h,2)=Wc(H c,2-Hc,1)式中:Q为换热器得热负荷,kj/h或kw;W为流体得质量流量,kg/h;H为单位质量流体得焓,kj/kg;下标c与h分别表示冷流体与热流体,下标1与2分别表示换热器得进口与出口。
2、无相变化Q=Whcp,h(T1-T2)=Wcc p,c(t2-t1)式中:cp为流体平均定压比热容,kj/(kg、℃);T为热流体得温度,℃;t为冷流体得温度,℃。
3、有相变化a、冷凝液在饱与温度下离开换热器,Q=W h r =W c cp,c(t2-t1)式中:Wh为饱与蒸汽(即热流体)冷凝速率(即质量流量)(kg/s)r为饱与蒸汽得冷凝潜热(J/kg)b、冷凝液得温度低于饱与温度,则热流体释放热量为潜热加显热Q=Wh[r+cp,h(T s-T w)] = Wcc p,c(t2-t1)式中:c p,h为冷凝液得比热容(J/(kg/℃));Ts为饱与液体得温度(℃)二、面积计算1、总传热系数K管壳式换热器中得K值如下表:注:1 w=1 J/s=3、6kj/h=0、86 kcal/h1 kcal= 4、18kj(1)逆流热流体温度T:T1→T2冷流体温度t:t2←t1温差△t:△t1→△t2△tm=(△t2-△t1)/㏑(△t2/△t1)(2)并流热流体温度T:T1→T2冷流体温度t:t1→t2温差△t:△t2→△t1△t m=(△t2-△t1)/㏑(△t2/△t1)对数平均温差,两种流体在热交换器中传热过程温差得积分得平均值。
(恒温传热时△t=T-t,例如:饱与蒸汽与沸腾液体间得传热。
)对数平均温差因为在冷凝器板换一系列得换热器中温度就就是变化得为了我们更好得选型计算所以出来一个相对准确得数值,当△T1/△T2>1、7时用公式:△Tm=(△T1-△T2)/㏑(△T1/△T2)、如果△T1/△T2≤1、7时,△Tm=(△T1+△T2)/2二种流体在热交换器中传热过程温差得积分得平均值。
换热器热量及面积计算一、热量计算1、一般式Q=Q c=Q hQ=W h(H h,1- H h,2)= W c(H c,2- H c,1)式中:Q为换热器的热负荷,kj/h或kw;W为流体的质量流量,kg/h;H为单位质量流体的焓,kj/kg;下标c和h分别表示冷流体和热流体,下标1和2分别表示换热器的进口和出口。
2、无相变化Q=W h c p,h(T1-T2)=W c c p,c(t2-t1)式中:c p为流体平均定压比热容,kj/(kg.℃);T为热流体的温度,℃;t为冷流体的温度,℃。
3、有相变化a.冷凝液在饱和温度下离开换热器,Q=W h r = W c c p,c(t2-t1)式中:W h为饱和蒸汽(即热流体)冷凝速率(即质量流量)(kg/s)r为饱和蒸汽的冷凝潜热(J/kg)b.冷凝液的温度低于饱和温度,则热流体释放热量为潜热加显热Q=W h[r+c p,h(T s-T w)] = W c c p,c(t2-t1)式中:c p,h为冷凝液的比热容(J/(kg/℃));T s为饱和液体的温度(℃)二、面积计算1、总传热系数K管壳式换热器中的K值如下表:注:1 w = 1 J/s = 3.6 kj/h = 0.86 kcal/h1 kcal = 4.18 kj2、温差(1)逆流热流体温度T:T1→T2冷流体温度t:t2←t1温差△t:△t1→△t2△t m=(△t2-△t1)/㏑(△t2/△t1)(2)并流热流体温度T:T1→T2冷流体温度t:t1→t2温差△t:△t2→△t1△t m=(△t2-△t1)/㏑(△t2/△t1)对数平均温差,两种流体在热交换器中传热过程温差的积分的平均值。
( 恒温传热时△t=T-t,例如:饱和蒸汽和沸腾液体间的传热。
) 对数平均温差因为在冷凝器板换一系列的换热器中温度是变化的为了我们更好的选型计算所以出来一个相对准确的数值,当△T1/△T2>1.7时用公式:△Tm=(△T1-△T2)/㏑(△T1/△T2).如果△T1/△T2≤1.7时,△Tm=(△T1+△T2)/2二种流体在热交换器中传热过程温差的积分的平均值。