高中数学高考重点难点讲解奇偶性与单调性(一)
- 格式:pdf
- 大小:57.09 KB
- 文档页数:6
高中数学:函数的奇偶性与单调性复习一、函数奇偶性的复习函数的奇偶性是函数的重要性质之一,它反映了函数在输入与输出之间的内在关系。
根据奇偶性的定义,我们可以将函数分为奇函数和偶函数。
奇函数是指对于定义域内的任意x,都有f(-x)=-f(x)的函数;偶函数是指对于定义域内的任意x,都有f(-x)=f(x)的函数。
在复习过程中,我们需要掌握以下几点:1、掌握奇偶性的定义,理解奇函数和偶函数的特性。
2、掌握奇偶性的判断方法,能够根据函数的图像和性质判断其奇偶性。
3、了解奇偶性在函数性质中的应用,如对称性、单调性等。
二、函数单调性的复习函数的单调性是函数变化的另一种重要性质,它描述了函数在输入增加或减少时输出的变化情况。
如果对于定义域内的任意x1<x2,都有f(x1)<f(x2),则称函数在该区间上单调递增;如果对于定义域内的任意x1<x2,都有f(x1)>f(x2),则称函数在该区间上单调递减。
在复习过程中,我们需要掌握以下几点:1、掌握单调性的定义,理解单调递增和单调递减的含义。
2、掌握判断函数单调性的方法,能够根据函数的图像和性质判断其单调性。
3、了解单调性在函数性质中的应用,如最值、不等式等。
4、能够利用导数工具判断函数的单调性,并了解导数与单调性的关系。
三、总结函数的奇偶性和单调性是高中数学中重要的概念和性质,它们在函数的性质和应用中扮演着重要的角色。
通过复习,我们要能够深入理解奇偶性和单调性的定义和性质,掌握判断方法,并了解它们在解决实际问题中的应用。
我们还要能够利用导数工具判断函数的单调性,为后续的学习打下基础。
高中数学《函数的单调性》公开课一、教学背景分析函数的单调性是高中数学中非常重要的一部分,它不仅对于理解函数的概念有着关键性的作用,而且也是解决实际问题中常常需要用到的工具。
因此,通过对函数的单调性的学习,学生可以更好地理解函数的概念和性质,提高解决实际问题的能力。
难点7 奇偶性与单调性(一)函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样.本节主要帮助考生深刻理解奇偶性、单调性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象. ●难点磁场(★★★★)设a>0,f(x)=xx e a a e +是R 上的偶函数,(1)求a 的值;(2)证明: f(x)在(0,+∞)上是增函数.●案例探究[例1]已知函数f(x)在(-1,1)上有定义,f(21)=-1,当且仅当0<x<1时f(x)<0,且对任意x 、y ∈(-1,1)都有f(x)+f(y)=f(xy yx ++1),试证明:(1)f(x)为奇函数;(2)f(x)在(-1,1)上单调递减.命题意图:本题主要考查函数的奇偶性、单调性的判定以及运算能力和逻辑推理能力.属★★★★题目.知识依托:奇偶性及单调性定义及判定、赋值法及转化思想.错解分析:本题对思维能力要求较高,如果“赋值”不够准确,运算技能不过关,结果很难获得.技巧与方法:对于(1),获得f(0)的值进而取x=-y 是解题关键;对于(2),判定21121x x x x --的范围是焦点.证明:(1)由f(x)+f(y)=f(xy y x ++1),令x=y=0,得f(0)=0,令y=-x,得f(x)+f(-x)=f(21x xx --)=f(0)=0.∴f(x)=-f(-x).∴f(x)为奇函数.(2)先证f(x)在(0,1)上单调递减.令0<x1<x2<1,则f(x2)-f(x1)=f(x2)-f(-x1)=f(21121x x x x --)∵0<x1<x2<1,∴x2-x1>0,1-x1x2>0,∴12121x x x x -->0,又(x2-x1)-(1-x2x1)=(x2-1)(x1+1)<0 ∴x2-x1<1-x2x1,∴0<12121x x x x --<1,由题意知f(21121x x x x --)<0即f(x2)<f(x1).∴f(x)在(0,1)上为减函数,又f(x)为奇函数且f(0)=0.∴f(x)在(-1,1)上为减函数.[例2]设函数f(x)是定义在R 上的偶函数,并在区间(-∞,0)内单调递增,f(2a2+a+1)<f(3a2-2a+1).求a 的取值范围,并在该范围内求函数y=(21)132+-a a 的单调递减区间.命题意图:本题主要考查函数奇偶性、单调性的基本应用以及对复合函数单调性的判定方法.本题属于★★★★★级题目.知识依托:逆向认识奇偶性、单调性、指数函数的单调性及函数的值域问题. 错解分析:逆向思维受阻、条件认识不清晰、复合函数判定程序紊乱.技巧与方法:本题属于知识组合题类,关键在于读题过程中对条件的思考与认识,通过本题会解组合题类,掌握审题的一般技巧与方法.解:设0<x1<x2,则-x2<-x1<0,∵f(x)在区间(-∞,0)内单调递增, ∴f(-x2)<f(-x1),∵f(x)为偶函数,∴f(-x2)=f(x2),f(-x1)=f(x1), ∴f(x2)<f(x1).∴f(x)在(0,+∞)内单调递减..032)31(3123,087)41(2122222>+-=+->++=++a a a a a a 又由f(2a2+a+1)<f(3a2-2a+1)得:2a2+a+1>3a2-2a+1.解之,得0<a<3.又a2-3a+1=(a -23)2-45.∴函数y=(21)132+-a a 的单调减区间是[23,+∞]结合0<a<3,得函数y=(23)132+-a a 的单调递减区间为[23,3).●锦囊妙计本难点所涉及的问题及解决方法主要有: (1)判断函数的奇偶性与单调性若为具体函数,严格按照定义判断,注意变换中的等价性.若为抽象函数,在依托定义的基础上,用好赋值法,注意赋值的科学性、合理性.同时,注意判断与证明、讨论三者的区别,针对所列的“磁场”及“训练”认真体会,用好数与形的统一.复合函数的奇偶性、单调性.问题的解决关键在于:既把握复合过程,又掌握基本函数.(2)加强逆向思维、数形统一.正反结合解决基本应用题目,下一节我们将展开研究奇偶性、单调性的应用. ●歼灭难点训练 一、选择题1.(★★★★)下列函数中的奇函数是( )A.f(x)=(x -1)x x -+11B.f(x)=2|2|)1lg(22---x xC.f(x)=⎪⎩⎪⎨⎧>+-<+)0()0(22x x x x x xD.f(x)=x x xx sin cos 1cos sin 1++-+2.(★★★★★)函数f(x)=111122+++-++x x x x 的图象( )A.关于x 轴对称B.关于y 轴对称C.关于原点对称D.关于直线x=1对称 二、填空题3.(★★★★)函数f(x)在R 上为增函数,则y=f(|x+1|)的一个单调递减区间是_________.4.(★★★★★)若函数f(x)=ax3+bx2+cx+d 满足f(0)=f(x1)=f(x2)=0 (0<x1<x2),x2,+∞)上单调递增,则b 的取值范围是_________. 三、解答题5.(★★★★)已知函数f(x)=ax+12+-x x (a>1).(1)证明:函数f(x)在(-1,+∞)上为增函数. (2)用反证法证明方程f(x)=0没有负数根.6.(★★★★★)求证函数f(x)=223)1(-x x 在区间(1,+∞)上是减函数.7.(★★★★)设函数f(x)的定义域关于原点对称且满足:(i)f(x1-x2)=)()(1)()(1221x f x f x f x f -+⋅;(ii)存在正常数a 使f(a)=1.求证: (1)f(x)是奇函数.(2)f(x)是周期函数,且有一个周期是4a.8.(★★★★★)已知函数f(x)的定义域为R ,且对m 、n ∈R,恒有f(m+n)=f(m)+f(n)-1,且f(-21)=0,当x>-21时,f(x)>0.(1)求证:f(x)是单调递增函数;(2)试举出具有这种性质的一个函数,并加以验证.参考答案难点磁场(1)解:依题意,对一切x ∈R,有f(x)=f(-x),即xx x ae e a a e 1=++aex.整理,得(a -a 1) (ex -xe 1)=0.因此,有a -a 1=0,即a2=1,又a>0,∴a=1(2)证法一:设0<x1<x2,则f(x1)-f(x2)=)11)((1121122121--=-+-+x x x x x x x x e e e e e e e21211211)1(xx x x x x x e e ee ++---=由x1>0,x2>0,x2>x1,∴112--x x e>0,1-e 21x x +<0,∴f(x1)-f(x2)<0,即f(x1)<f(x2) ∴f(x)在(0,+∞)上是增函数 证法二:由f(x)=ex+e -x ,得f ′(x)=ex -e -x=e -x ·(e2x -1).当x ∈(0,+∞)时,e -x>0,e2x -1>0. 此时f ′(x)>0,所以f(x)在[0,+∞)上是增函数. 歼灭难点训练一、1.解析:f(-x)=⎪⎩⎪⎨⎧>+--<+-=⎪⎩⎪⎨⎧<-->-)0( )()0()()0( )0( 2222x x x x x x x x x x x x =-f(x),故f(x)为奇函数. 答案:C2.解析:f(-x)=-f(x),f(x)是奇函数,图象关于原点对称. 答案:C二、3.解析:令t=|x+1|,则t 在(-∞,-1]上递减,又y=f(x)在R 上单调递增,∴y=f(|x+1|)在(-∞,-1]上递减. 答案:(-∞,-1]4.解析:∵f(0)=f(x1)=f(x2)=0,∴f(0)=d=0.f(x)=ax(x -x1)(x -x2)=ax3-a(x1+x2)x2+ax1x2x , ∴b=-a(x1+x2),又f(x)在[x2,+∞)单调递增,故a>0.又知0<x1<x,得x1+x2>0, ∴b=-a(x1+x2)<0. 答案:(-∞,0)三、5.证明:(1)设-1<x1<x2<+∞,则x2-x1>0, 12x x a ->1且1x a >0,∴)1(12112-=--x x x x x a a a a >0,又x1+1>0,x2+1>0∴)1)(1()(3)1)(1()1)(2()1)(2(121221122121121122++-=+++--+-=+--+-x x x x x x x x x x x x x x >0,于是f(x2)-f(x1)=12x x a a-+12121122+--+-x x x x >0∴f(x)在(-1,+∞)上为递增函数.(2)证法一:设存在x0<0(x0≠-1)满足f(x0)=0,则12000+--=x x a x 且由0<0x a <1得0<-1200+-x x <1,即21<x0<2与x0<0矛盾,故f(x)=0没有负数根.证法二:设存在x0<0(x0≠-1)使f(x0)=0,若-1<x0<0,则1200+-x x <-2,0x a <1,∴f(x0)<-1与f(x0)=0矛盾,若x0<-1,则1200+-x x >0, 0x a >0,∴f(x0)>0与f(x0)=0矛盾,故方程f(x)=0没有负数根.6.证明:∵x ≠0,∴f(x)=22422322)11(1)1(1)1(1x x x x x x x -=-=-, 设1<x1<x2<+∞,则01111,11121222122>->-<<x x x x .2211222222112222)11(1)11(1.0)11()11(x x x x x x x x -<-∴>->-∴∴f(x1)>f(x2),f(x)在(1,+∞)上是减函数.(本题也可用求导方法解决)7.证明:(1)不妨令x=x1-x2,则f(-x)=f(x2-x1)=)()(1)()()()(1)()(12212112x f x f x f x f x f x f x f x f -+-=-+=-f(x1-x2)=-f(x).∴f(x)是奇函数.(2)要证f(x+4a)=f(x),可先计算f(x+a),f(x+2a).∵f(x+a)=f [x -(-a)]=)1)((1)(1)()()(1)()()()(1)()(=+-=--+-=---+-a f x f x f x f a f x f a f x f a f x f a f .).(111)(1)(11)(1)(1)(1)(])[()2(x f x f x f x f x f a x f a x f a a x f a x f -=++--+-=++-+=++=+∴∴f(x+4a)=f [(x+2a)+2a ]=)2(1a x f +-=f(x),故f(x)是以4a 为周期的周期函数.8.(1)证明:设x1<x2,则x2-x1-21>-21,由题意f(x2-x1-21)>0,∵f(x2)-f(x1)=f [(x2-x1)+x1]-f(x1)=f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-1=f(x2-x1)+f(-21)-1=f [(x2-x1)-21]>0,∴f(x)是单调递增函数.(2)解:f(x)=2x+1.验证过程略.。
高中高一数学教案:函数单调性与奇偶性一、教学目标1.理解函数单调性与奇偶性的概念。
2.能够判断给定函数的单调性与奇偶性。
3.能够运用单调性与奇偶性的性质解决实际问题。
二、教学重点与难点1.教学重点:函数单调性与奇偶性的概念及其判断方法。
2.教学难点:单调性与奇偶性的综合运用。
三、教学过程(一)导入1.通过提问方式引导学生回顾初中阶段学习的函数知识,如一次函数、二次函数的单调性。
2.提问:同学们,你们知道函数的单调性和奇偶性吗?它们有什么实际意义?(二)新课讲解1.讲解函数单调性的概念:(1)定义:函数f(x)在定义域D内,如果对于任意的x1,x2∈D,且x1<x2,都有f(x1)<f(x2),则称f(x)在D内是增函数;如果对于任意的x1,x2∈D,且x1<x2,都有f(x1)>f(x2),则称f(x)在D内是减函数。
(2)举例说明:以一次函数y=x和二次函数y=x^2为例,讲解它们的单调性。
2.讲解函数奇偶性的概念:(1)定义:函数f(x)在定义域D内,如果对于任意的x∈D,都有f(-x)=f(x),则称f(x)是偶函数;如果对于任意的x∈D,都有f(-x)=-f(x),则称f(x)是奇函数。
(2)举例说明:以一次函数y=x和二次函数y=x^2为例,讲解它们的奇偶性。
3.讲解单调性与奇偶性的关系:(1)单调性与奇偶性是函数的两种基本性质,它们之间有一定的联系。
(2)单调性可以判断函数在某一区间内的增减趋势,而奇偶性可以判断函数在y轴两侧的对称性。
(3)单调性与奇偶性的综合运用可以解决一些实际问题。
(三)课堂练习(1)y=2x+1(2)y=x^2(1)y=x^3(2)y=x^2+1(1)f(x+1)(2)f(-x)(四)案例分析1.分析题目:已知函数f(x)=x^3-3x,求f(x)的单调区间和奇偶性。
2.解题步骤:(1)求导数:f'(x)=3x^2-3。
(2)判断单调性:令f'(x)>0,解得x>1或x<-1;令f'(x)<0,解得-1<x<1。
函数的奇偶性与单调性一.知识总结1.函数的奇偶性(首先定义域必须关于原点对称)(1)为奇函数;为偶函数;(2)奇函数在原点有定义(3)任一个定义域关于原点对称的函数一定可以表示成一个奇函数和一个偶函数之和即(奇)(偶).2.函数的单调性(注:①先确定定义域;②单调性证明一定要用定义)(1)定义:区间上任意两个值,若时有,称为上增函数,若时有,称为上减函数.(2)奇函数在关于原点对称的区间上单调性一样;偶函数在关于原点对称的区间上单调性相反.判断函数单调性的方法:①定义法,即比差法;②图象法;③单调性的运算性质(实质上是不等式性质);④复合函数单调性判断法则.3.周期性:周期性主要运用在三角函数与抽象函数中,是化归思想的重要手段.求周期的重要方法:①定义法;②公式法;③图象法;④利用重要结论:若函数f(x)满足f(a-x)=f(a+x),f(b-x)=f(b+x),a≠b,则T=2|a-b|.二.例题精讲[例1]已知定义域为的函数是奇函数.(Ⅰ)求的值; (Ⅱ)若对任意的,不等式恒成立,求的取值围.解析:(Ⅰ)因为是奇函数,所以=0,即又由f(1)= -f(-1)知(Ⅱ)由(Ⅰ)知.又由题设条件得:,即:,整理得上式对一切均成立,从而判别式[例2]设函数在处取得极值-2,试用表示和,并求的单调区间.解:依题意有而故解得从而。
令,得或。
由于在处取得极值,故,即。
(1)若,即,则当时,;(2)当时,;当时,;从而的单调增区间为;单调减区间为若,即,同上可得,的单调增区间为;单调减区间为[例3](理)设函数,若对所有的,都有成立,数的取值围(文)讨论函数的单调性(理)解法一:令g(x)=(x+1)ln(x+1)-ax,对函数g(x)求导数:g′(x)=ln(x+1)+1-a,令g′(x)=0,解得x=e a-1-1,(i)当a≤1时,对所有x>0,g′(x)>0,所以g(x)在[0,+∞)上是增函数,又g(0)=0,所以对x≥0,都有g(x)≥g(0),即当a≤1时,对于所有x≥0,都有f(x)≥ax.(ii)当a>1时,对于0<x<e a-1-1,g′(x)<0,所以g(x)在(0,e a-1-1)是减函数,又g(0)=0,所以对0<x<e a-1-1,都有g(x)<g(0),即当a>1时,不是对所有的x ≥0,都有f(x)≥ax成立.综上,a的取值围是(-∞,1].解法二:令g(x)=(x+1)ln(x+1)-ax,于是不等式f(x)≥ax成立即为g(x)≥g(0)成立.对g(x)求导数g′(x)=ln(x+1)+1-a令g′(x)=0解得x=e a-1-1,当x>e a-1-1时,g′(x)>0,g(x)为增函数,当-1<x<e a-1-1,g′(x)<0,g(x)为减函数,所以要对所有x≥0都有g(x)≥g(0)充要条件为e a-1-1≤0.由此得a≤1,即a的取值围是(-∞,1].(文)解:设,则∵∴,,,当时,,则为增函数当时,,则为减函数当时,为常量,无单调性[例4](理)已知函数,其中为常数.(Ⅰ)若,讨论函数的单调性;(Ⅱ)若,且=4,试证:.(文)已知为定义在上的奇函数,当时,,求的表达式.(理)(文)解:∵为奇函数,∴当时,∵为奇函数∴∴∴三.巩固练习1.已知是上的减函数,那么的取值围是( )A. B. C. D.2.已知是周期为2的奇函数,当时,,设则( )A.B.C.D.3.下列函数中,在其定义域既是奇函数又是减函数的是( )A. B. C. D.4.若不等式对于一切(0,)成立,则的取值围是( )A.0B. –2C.-D.-35.设是上的任意函数,则下列叙述正确的是( )A.是奇函数B.是奇函数C.是偶函数D.是偶函数6.已知定义在上的奇函数满足,则的值为( )A.-1 B.0 C.1 D .27.已知函数的图象与函数(且)的图象关于直线对称,记.若在区间上是增函数,则实数的取值围是( ) A. B. C. D.8.(理)如果函数在区间上是增函数,那么实数的取值围是( )A. B. C. D.9.对于上可导的任意函数,若满足,则必有( )A. B.C. D.10.已知,则( )A. B. C. D.11.已知函数,若为奇函数,则.12.已知函数是定义在上的偶函数. 当时,,则当时, .13.是定义在上的以3为周期的偶函数,且,则方程=0在区间(0,6)解的个数的最小值是( )A.5B.4C.3D.214.下列函数既是奇函数,又在区间上单调递减的是( ) A. B. C. D.15.若函数, 则该函数在上是( )A.单调递减无最小值B.单调递减有最小值C.单调递增无最大值D.单调递增有最大值16.若函数在区间单调递增,则的取值围是( )A. B. C.D.17.设是定义在上的奇函数,且的图象关于直线对称,则______.18.设函数在上满足,,且在闭区间[0,7]上,只有.(Ⅰ)试判断函数的奇偶性;(Ⅱ)试求方程=0在闭区间[-2005,2005]上的根的个数,并证明你的结论.19. (理)已知,函数(1)当为何值时,取得最小值?证明你的结论;(2)设在[ -1,1]上是单调函数,求的取值围. (文)已知为偶函数且定义域为,的图象与的图象关于直线对称,当时,,为实常数,且.(1)求的解析式;(2)求的单调区间;(3)若的最大值为12,求.20.已知函数的图象过点(0,2),且在点处的切线方程为.(1)求函数的解析式;(2)求函数的单调区间.21.已知向量若函数在区间(-1,1)上是增函数求的取值围.22. (理)已知函数,,.若,且存在单调递减区间,求的取值围.(文)已知函数在区间上是减函数,且在区间上是增函数,数的值.巩固练习参考答案1. C2. D3. A4. C5. D6. B7. D8. B9. C 10. A11. a= 12. -x-x4 13. B 14. D 15. A 16. B 17. 018 .解:由f(2-x)=f(2+x),f(7-x)=f(7+x)得函数的对称轴为,从而知函数不是奇函数, 由,从而知函数的周期为又,故函数是非奇非偶函数;(II)由(II) 又故f(x)在[0,10]和[-10,0]上均有有两个解,从而可知函数在[0,2005]上有402个解,在[-2005.0]上有400个解,所以函数在[-2005,2005]上有802个解.19. (理) 解:(I)对函数求导数得令得[+2(1-)-2]=0从而+2(1-)-2=0解得当变化时,、的变化如下表+ 0 - 0 + 递增极大值递减极小值递增∴在=处取得极大值,在=处取得极小值。
函数的单调性与奇偶性知识集结知识元函数的单调性与奇偶性知识讲解1.奇偶性与单调性的综合【知识点的认识】对于奇偶函数综合,其实也并谈不上真正的综合,一般情况下也就是把它们并列在一起,所以说关键还是要掌握奇函数和偶函数各自的性质,在做题时能融会贯通,灵活运用.在重复一下它们的性质①奇函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f (﹣x)=﹣f(x),其图象特点是关于(0,0)对称.②偶函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(﹣x)=f(x),其图象特点是关于y轴对称.【解题方法点拨】参照奇偶函数的性质那一考点,有:①奇函数:如果函数定义域包括原点,那么运用f(0)=0解相关的未知量;②奇函数:若定义域不包括原点,那么运用f(x)=﹣f(﹣x)解相关参数;③偶函数:在定义域内一般是用f(x)=f(﹣x)这个去求解;④对于奇函数,定义域关于原点对称的部分其单调性一致,而偶函数的单调性相反例题:如果f(x)=为奇函数,那么a=.解:由题意可知,f(x)的定义域为R,由奇函数的性质可知,f(x)==﹣f(﹣x)⇒a=1【命题方向】奇偶性与单调性的综合.不管出什么样的题,能理解运用奇偶函数的性质是一个基本前提,另外做题的时候多多总结,一定要重视这一个知识点.例题精讲函数的单调性与奇偶性例1.下列函数为奇函数且值域为R的是()A.y=x+B.y=xD.y=ln(x+)C.y=例2.下列函数,既是偶函数,又在(-∞,0)上单调递增的是()A.f(x)=-(x-1)2B.C.f(x)=3|x|D.f(x)=cos x例3.已知函数f(x)和f(x+2)都是定义在R上的偶函数,当x∈[0,2]时,f(x)=2x,则=()A.2 B.D.C.当堂练习单选题练习1.已知是(-∞,+∞)上的减函数,那么a的取值范围是()A.B.C.(0,1)D.练习2.已知函数f(x)=(x2-2x)sin(x-1)+x+1在[-1,3]上的最大值为M,最小值为m,则M+m=()A.4 B.2 C.1 D.0练习3.已知函数f(x)=,若当方程f(x)=m有四个不等实根x1,x2,x3,x4(x1<x2<x3<x4)时,不等式kx3x4+x12+x22≥k+11恒成立,则实数k的最小值为()A.B.2-C.D.-练习4.若函数f(x)=单调递增,则实数a的取值范围是()A.(,3)B.[,3)C.(1,3)D.(2,3)练习5.设奇函数f(x)在(0,+∞)上为减函数,且f(2)=0,则不等式>0的解集是()A.(-2,0)∪(2,+∝)B.(-∝,-2)∪(0,2)C.(-2,0)∪(0,2)D.(-∝,-2)∪(2,+∝)填空题练习1.已知函数f(x)=那么不等式f(x)≥1的解集为_______________.练习2.函数的单调区间是_________________。
函数的单调性1.增函数一般地,设函数f (x)的定义域为I,区间D ⊆ I;如果∀x1,x2∈D,当x1<x2,都有f (x1)<f (x2),那么就称函数f(x)在区间D上单调递增。
特别的,当函数f (x)在它的定义域上单调递增时,我们就称它是增函数。
2.减函数一般地,设函数f (x)的定义域为I,区间D⊆I;如果∀x1,x2∈D,当x1<x2,都有f (x1)>f (x2),那么就称函数f(x)在区间D上单调递减。
特别的,当函数f (x)在它的定义域上单调递减时,我们就称它是减函数。
3.函数单调性性质增函数+增函数=增函数增函数-减函数=增函数减函数+减函数=减函数减函数-增函数=减函数注:当一个函数有多个单调区间时,不能用∪符号,应该用“和”或“,”连接。
函数的奇偶性判断奇偶性前提:“定义域关于原点对称”偶函数奇函数定义一般地,设函数f (x)的定义域为I,如果∀x∈I,都有x∈I,且f (-x) = f (x),那么函数f (x)就叫做偶函数。
一般地,设函数f (x)的定义域为I,如果∀x∈I,都有x∈I,且f (-x) = -f (x),那么函数f (x)就叫做奇函数。
定义域关于原点对称图象特征关于y轴轴对称函数奇偶性判断方法:1.判断定义域是否关于原点对称2.已知)(xf,计算)(xf-、)(xf-3.判断)(xf与)(xf-是否相等、)(xf与)(xf-是否相等4.若)()(xfxf-=,则)(xf为偶函数若)()(xfxf-=-,则)(xf为奇函数若)()(xfxf-≠,)()(xfxf-≠-,则)(xf为非奇非偶函数若)()(xfxf-=,)()(xfxf-=-,则)(xf为即奇又偶函数函数奇偶性性质奇函数性质:)()(x f x f -=-,)()(x f x f --=,若定义域内包括0,则0)0(=f ,奇函数图像关于原点对称。
奇函数在定义域内单调性相同。
高中数学教案:函数单调性与奇偶性一、教学目标1.理解函数单调性的概念和判定方法;2.掌握奇函数、偶函数的定义和判定方法;3.能够在应用题目中正确运用函数单调性和奇偶性的知识。
二、教学重点和难点1.函数单调性的判定方法;2.奇偶函数的定义和判定方法;3.在应用题目中应用函数单调性和奇偶性进行求解。
三、教学内容1. 函数单调性(1) 定义在函数图像上,如果随着自变量的增大,函数值单调递增或单调递减,那么称该函数为单调函数。
如果函数在定义域内既有单调递增的部分,又有单调递减的部分,则称该函数为非单调函数。
(2) 判定方法判断函数单调性的方法主要有以下两种:•寻找函数的一阶导数(即函数的斜率),当导数大于零时函数单调递增;当导数小于零时函数单调递减;•判断函数的二阶导数(即函数的曲率),当二阶导数大于零时函数凸向上,单调递增;当二阶导数小于零时函数凹向上,单调递减。
2. 奇偶性(1) 定义在函数图像上,如果对于任意x,都有f(−x)=−f(x),则称该函数为奇函数;如果对于任意x,都有f(−x)=f(x),则称该函数为偶函数;如果对于任意x,都有f(−x)eqf(x),则该函数既不是偶函数也不是奇函数。
(2) 判定方法判断函数奇偶性的方法主要有以下三种:•直接判断函数定义式中是否有关于x的奇偶次幂;•验证函数的积分式是否满足函数奇偶性的要求;•验证函数的和差、积、商等运算后是否满足函数奇偶性的要求。
3. 应用题题目:已知函数f(x)=(x+1)e x,判断其单调性和奇偶性。
解法:•单调性:求一阶导数f′(x)=(x+2)e x,当x>−2时f′(x)>0,即f(x)单调递增。
•奇偶性:f(−x)=(−x+1)e−x=−f(x),即f(x)为奇函数。
四、教学方法1.讲授教学法:讲解函数单调性和奇偶性相关的概念和原理,引导学生掌握判定方法;2.案例教学法:通过实例演示,让学生领会函数单调性和奇偶性的应用;3.互动教学法:通过提问、讨论等方式,促进学生积极参与课堂教学。
题目高中数学复习专题讲座处理具有单调性、奇偶性函数问题的方法(2) 高考要求函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样 特别是两性质的应用更加突出 本节主要帮助考生深刻理解奇偶性、单调性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象 帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识 重难点归纳(1)判断函数的奇偶性与单调性若为具体函数,严格按照定义判断,注意变换中的等价性 若为抽象函数,在依托定义的基础上,用好赋值法,注意赋值的科学性、合理性同时,注意判断与证明、讨论三者的区别,针对所列的训练认真体会,用好数与形的统一复合函数的奇偶性、单调性 问题的解决关键在于 既把握复合过程,又掌握基本函数(2)加强逆向思维、数形统一 正反结合解决基本应用题目(3)运用奇偶性和单调性去解决有关函数的综合性题目 此类题目要求考生必须具有驾驭知识的能力,并具有综合分析问题和解决问题的能力(4)应用问题 在利用函数的奇偶性和单调性解决实际问题的过程中,往往还要用到等价转化和数形结合的思想方法,把问题中较复杂、抽象的式子转化为基本的简单的式子去解决 特别是 往往利用函数的单调性求实际应用题中的最值问题 典型题例示范讲解例1已知函数f (x )在(-1,1)上有定义,f (21)=-1,当且仅当0<x <1时f (x )<0,且对任意x 、y ∈(-1,1)都有f (x )+f (y )=f (xyyx ++1),试证明(1)f (x )为奇函数;(2)f (x )在(-1,1)上单调递减命题意图 本题主要考查函数的奇偶性、单调性的判定以及运算能力和逻辑推理能力知识依托 奇偶性及单调性定义及判定、赋值法及转化思想错解分析 本题对思维能力要求较高,如果“赋值”不够准确,运算技能不过关,结果很难获得技巧与方法 对于(1),获得f (0)的值进而取x =-y 是解题关键;对于(2),判定21121x x x x --的范围是焦点证明 (1)由f (x )+f (y )=f (xyyx ++1), 令x =y =0,得f (0)=0,令y =-x ,得f (x )+f (-x )=f (21x xx --)=f (0)=0 ∴f (x )=-f (-x ) ∴f (x )为奇函数 (2)先证f (x )在(0,1)上单调递减令0<x 1<x 2<1,则f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (21121x x x x --)∵0<x 1<x 2<1,∴x 2-x 1>0,1-x 1x 2>0,∴12121x x x x -->0,又(x 2-x 1)-(1-x 2x 1)=(x 2-1)(x 1+1)<0 ∴x 2-x 1<1-x 2x 1, ∴0<12121x x x x --<1,由题意知f (21121x x x x --)<0,即f (x 2)<f (x 1)∴f (x )在(0,1)上为减函数,又f (x )为奇函数且f (0)=0 ∴f (x )在(-1,1)上为减函数例2设函数f (x )是定义在R 上的偶函数,并在区间(-∞,0)内单调递增,f (2a 2+a +1)<f (3a 2-2a +1) 求a 的取值范围,并在该范围内求函数y =(21)132+-a a 的单调递减区间 命题意图 本题主要考查函数奇偶性、单调性的基本应用以及对复合函数单调性的判定方法知识依托 逆向认识奇偶性、单调性、指数函数的单调性及函数的值域问题错解分析 逆向思维受阻、条件认识不清晰、复合函数判定程序紊乱 技巧与方法 本题属于知识组合题类,关键在于读题过程中对条件的思考与认识,通过本题会解组合题类,掌握审题的一般技巧与方法解 设0<x 1<x 2,则-x 2<-x 1<0,∵f (x )在区间(-∞,0)内单调递增, ∴f (-x 2)<f (-x 1),∵f (x )为偶函数,∴f (-x 2)=f (x 2),f (-x 1)=f (x 1), ∴f (x 2)<f (x 1) ∴f (x )在(0,+∞)内单调递减.032)31(3123,087)41(2122222>+-=+->++=++a a a a a a 又由f (2a 2+a +1)<f (3a 2-2a +1)得 2a 2+a +1>3a 2-2a +1 解之,得0<a <3又a 2-3a +1=(a -23)245 ∴函数y =(21)132+-a a 的单调减区间是[23,+∞] 结合0<a <3,得函数y =(12)132+-a a 的单调递减区间为[23,3)例3设a >0,f (x )=xx e a a e +是R 上的偶函数,(1)求a 的值;(2)证明 f (x )在(0,+∞)上是增函数(1)解 依题意,对一切x ∈R ,有f (x )=f (-x ),即x x x ae e a a e 1=++ae x 整理,得(a -a1)(e x -x e 1)=0 因此,有a -a1=0,即a 2=1,又a >0,∴a =1 (2)证法一(定义法) 设0<x 1<x 2,则f (x 1)-f (x 2)=)11)((1121122121--=-+-+x x xx x x x x e e e e e e e21211211)1(x x x x x x x e e ee ++---=由x 1>0,x 2>0,x 2>x 1,∴112--x x e >0,1-e 21x x +<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2) ∴f (x )在(0,+∞)上是增函数证法二(导数法) 由f (x )=e x +e -x ,得f ′(x )=e x -e -x =e -x ·(e 2x -1) 当x ∈(0,+∞)时,e -x >0,e 2x -1>0此时f ′(x )>0,所以f (x )在[0,+∞)上是增函数 学生巩固练习1 下列函数中的奇函数是( )A f (x )=(x -1)xx -+11B f (x )=2|2|)1lg(22---x xC f (x )=⎪⎩⎪⎨⎧>+-<+)0()0(22x x x x x xD f (x )=xx xx sin cos 1cos sin 1++-+2 函数f (x )=111122+++-++x x x x 的图象( )A 关于x 轴对称B 关于y 轴对称C 关于原点对称D 关于直线x =1对称 3 函数f (x )在R 上为增函数,则y =f (|x +1|)的一个单调递减区间是____ 4 若函数f (x )=ax 3+bx 2+cx +d 满足f (0)=f (x 1)=f (x 2)=0 (0<x 1<x 2), 且在[x 2,+∞)上单调递增,则b 的取值范围是_________5 已知函数f (x )=a x +12+-x x (a >1) (1)证明 函数f (x )在(-1,+∞)上为增函数 (2)用反证法证明方程f (x )=0没有负数根6 求证函数f (x )=223)1(-x x 在区间(1,+∞)上是减函数7 设函数f (x )的定义域关于原点对称且满足(i)f (x 1-x 2)=)()(1)()(1221x f x f x f x f -+⋅;(ii)存在正常数a 使f (a )=1 求证 (1)f (x )是奇函数(2)f (x )是周期函数,且有一个周期是4a8 已知函数f (x )的定义域为R ,且对m 、n ∈R ,恒有f (m +n )=f (m )+f (n )-1,且f (-21)=0,当x >-21时,f (x )>0 (1)求证 f (x )是单调递增函数;(2)试举出具有这种性质的一个函数,并加以验证 参考答案:1 解析 f (-x )=2222(0)() (0)(0)() (0)x x x x x x x x x x x x ⎧⎧->-+<⎪⎪=⎨⎨--<--+>⎪⎪⎩⎩ =-f (x ), 故f (x )为奇函数 答案 C2 解析 f (-x )=-f (x ),f (x )是奇函数,图象关于原点对称 答案 C3 解析 令t =|x +1|,则t 在(-∞,-1]上递减,又y =f (x )在R 上单调递增,∴y =f (|x +1|)在(-∞,-1]上递减答案 (-∞,-1]4 解析 ∵f (0)=f (x 1)=f (x 2)=0,∴f (0)=d =0 f (x )=ax (x -x 1)(x -x 2)=ax 3-a (x 1+x 2)x 2+ax 1x 2x , ∴b =-a (x 1+x 2),又f (x )在[x 2,+∞)单调递增,故a >0又知0<x 1<x ,得x 1+x 2>0, ∴b =-a (x 1+x 2)<0 答案 (-∞,0)5 证明 (1)设-1<x 1<x 2<+∞,则x 2-x 1>0, 12x x a ->1且1x a >0,∴)1(12112-=--x x x x x a a a a >0,又x 1+1>0,x 2+1>0 ∴)1)(1()(3)1)(1()1)(2()1)(2(121221122121121122++-=+++--+-=+--+-x x x x x x x x x x x x x x >0, 于是f (x 2)-f (x 1)=12x x a a -+12121122+--+-x x x x >0 ∴f (x )在(-1,+∞)上为递增函数(2)证法一 设存在x 0<0(x 0≠-1)满足f (x 0)=0,则12000+--=x x a x 且由0<0x a <1得0<-1200+-x x <1, 即21<x 0<2与x 0<0矛盾,故f (x )=0没有负数根 证法二 设存在x 0<0(x 0≠-1)使f (x 0)=0,若-1<x 0<0,则1200+-x x <-2,0x a <1,∴f (x 0)<-1与f (x 0)=0矛盾, 若x 0<-1,则1200+-x x >0, 0x a >0, ∴f (x 0)>0与f (x 0)=0矛盾,故方程f (x )=0没有负数根6 证明 ∵x ≠0,∴f (x )=22422322)11(1)1(1)1(1x x x x x x x -=-=-, 设1<x 1<x 2<+∞,则01111,11121222122>->-<<x x x x2211222222112222)11(1)11(1.0)11()11(x x x x x x x x -<-∴>->-∴∴f (x 1)>f (x 2), 故函数f (x )在(1,+∞)上是减函数(本题也可用求导方法解决) 7 证明 (1)不妨令x =x 1-x 2,则f (-x )=f (x 2-x 1)=)()(1)()()()(1)()(12212112x f x f x f x f x f x f x f x f -+-=-+=-f (x 1-x 2)=-f (x )∴f (x )是奇函数(2)要证f (x +4a )=f (x ),可先计算f (x +a ),f (x +2a )∵f (x +a )=f [x -(-a )]=1)((1)(1)()()(1)()()()(1)()(=+-=--+-=---+-a f x f x f x f a f x f a f x f a f x f a f).(111)(1)(11)(1)(1)(1)(])[()2(x f x f x f x f x f a x f a x f a a x f a x f -=++--+-=++-+=++=+∴ ∴f (x +4a )=f [(x +2a )+2a ]=)2(1a x f +-=f (x ),故f (x )是以4a 为周期的周期函数8 (1)证明 设x 1<x 2,则x 2-x 1-21>-21,由题意f (x 2-x 1-21)>0,∵f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1)=f (x 2-x 1)+f (x 1)-1-f (x 1)=f (x 2-x 1)-1=f (x 2-x 1)+f (-21)-1=f [(x 2-x 1)-21]>0,∴f (x )是单调递增函数(2)解 f (x )=2x +1 验证过程略 课前后备注。
难点7 奇偶性与单调性(一)函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样.本节主要帮助考生深刻理解奇偶性、单调性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象.●难点磁场(★★★★)设a>0,f(x)=xxe aa e是R 上的偶函数,(1)求a 的值;(2)证明:f(x)在(0,+∞)上是增函数. ●案例探究[例1]已知函数f(x)在(-1,1)上有定义,f(21)=-1,当且仅当0<x<1时f(x)<0,且对任意x 、y∈(-1,1)都有f(x)+f(y)=f(xy yx1),试证明:(1)f(x)为奇函数;(2)f(x)在(-1,1)上单调递减.命题意图:本题主要考查函数的奇偶性、单调性的判定以及运算能力和逻辑推理能力.属★★★★题目.知识依托:奇偶性及单调性定义及判定、赋值法及转化思想.错解分析:本题对思维能力要求较高,如果“赋值”不够准确,运算技能不过关,结果很难获得.技巧与方法:对于(1),获得f(0)的值进而取x=-y 是解题关键;对于(2),判定21121x x x x 的范围是焦点.证明:(1)由f(x)+f(y)=f(xy yx1),令x=y=0,得f(0)=0,令y=-x,得f(x)+f(-x)=f(21x xx )=f(0)=0.∴f(x)=-f(-x).∴f(x)为奇函数.(2)先证f(x)在(0,1)上单调递减.令0<x1<x2<1,则f(x2)-f(x1)=f(x2)-f(-x1)=f(21121x x x x )∵0<x1<x2<1,∴x2-x1>0,1-x1x2>0,∴12121x x x x >0,又(x2-x1)-(1-x2x1)=(x2-1)(x1+1)<0 ∴x2-x1<1-x2x1,∴0<12121x x x x <1,由题意知f(21121x x x x )<0即f(x2)<f(x1).∴f(x)在(0,1)上为减函数,又f(x)为奇函数且f(0)=0.∴f(x)在(-1,1)上为减函数.[例2]设函数f(x)是定义在R 上的偶函数,并在区间(-∞,0)内单调递增,f(2a2+a+1)<f(3a2-2a+1).求a 的取值范围,并在该范围内求函数y=(21)132a a 的单调递减区间.命题意图:本题主要考查函数奇偶性、单调性的基本应用以及对复合函数单调性的判定方法.本题属于★★★★★级题目.知识依托:逆向认识奇偶性、单调性、指数函数的单调性及函数的值域问题.错解分析:逆向思维受阻、条件认识不清晰、复合函数判定程序紊乱.技巧与方法:本题属于知识组合题类,关键在于读题过程中对条件的思考与认识,通过本题会解组合题类,掌握审题的一般技巧与方法.解:设0<x1<x2,则-x2<-x1<0,∵f(x)在区间(-∞,0)内单调递增,∴f(-x2)<f(-x1),∵f(x)为偶函数,∴f(-x2)=f(x2),f(-x1)=f(x1), ∴f(x2)<f(x1).∴f(x)在(0,+∞)内单调递减..032)31(3123,087)41(2122222aa aaa a又由f(2a2+a+1)<f(3a2-2a+1)得:2a2+a+1>3a2-2a+1.解之,得0<a<3.又a2-3a+1=(a -23)2-45.∴函数y=(21)132a a的单调减区间是[23,+∞]结合0<a<3,得函数y=(23)132a a的单调递减区间为[23,3).●锦囊妙计本难点所涉及的问题及解决方法主要有:(1)判断函数的奇偶性与单调性若为具体函数,严格按照定义判断,注意变换中的等价性.若为抽象函数,在依托定义的基础上,用好赋值法,注意赋值的科学性、合理性.同时,注意判断与证明、讨论三者的区别,针对所列的“磁场”及“训练”认真体会,用好数与形的统一.复合函数的奇偶性、单调性.问题的解决关键在于:既把握复合过程,又掌握基本函数.(2)加强逆向思维、数形统一.正反结合解决基本应用题目,下一节我们将展开研究奇偶性、单调性的应用. ●歼灭难点训练一、选择题1.(★★★★)下列函数中的奇函数是()A.f(x)=(x -1)xx 11B.f(x)=2|2|)1lg(22xxC.f(x)=)0()0(22xx x xx xD.f(x)=xxx xsin cos 1cos sin 12.(★★★★★)函数f(x)=111122xx x x的图象()A.关于x 轴对称B.关于y 轴对称C.关于原点对称D.关于直线x=1对称二、填空题3.(★★★★)函数f(x)在R 上为增函数,则y=f(|x+1|)的一个单调递减区间是_________.4.(★★★★★)若函数f(x)=ax3+bx2+cx+d 满足f(0)=f(x1)=f(x2)=0 (0<x1<x2),x2,+∞)上单调递增,则b 的取值范围是_________. 三、解答题5.(★★★★)已知函数f(x)=ax+12xx(a>1).(1)证明:函数f(x)在(-1,+∞)上为增函数. (2)用反证法证明方程f(x)=0没有负数根.6.(★★★★★)求证函数f(x)=223)1(xx在区间(1,+∞)上是减函数.7.(★★★★)设函数f(x)的定义域关于原点对称且满足:(i)f(x1-x2)=)()(1)()(1221x f x f x f x f ;(ii)存在正常数a 使f(a)=1.求证:(1)f(x)是奇函数.(2)f(x)是周期函数,且有一个周期是4a.8.(★★★★★)已知函数f(x)的定义域为R ,且对m 、n ∈R,恒有f(m+n)=f(m)+f(n)-1,且f(-21)=0,当x>-21时,f(x)>0.(1)求证:f(x)是单调递增函数;(2)试举出具有这种性质的一个函数,并加以验证.参考答案难点磁场(1)解:依题意,对一切x ∈R,有f(x)=f(-x),即xxxae ea ae1+aex.整理,得(a -a 1)(ex -x e 1)=0.因此,有a -a 1=0,即a2=1,又a>0,∴a=1(2)证法一:设0<x1<x2,则f(x1)-f(x2)=)11)((1121122121x x x x x x x x ee eeeee21211211)1(x x x x x x x ee ee 由x1>0,x2>0,x2>x1,∴112x x e>0,1-e 21x x <0,∴f(x1)-f(x2)<0,即f(x1)<f(x2) ∴f(x)在(0,+∞)上是增函数证法二:由f(x)=ex+e -x ,得f ′(x)=ex -e -x=e -x ·(e2x -1).当x ∈(0,+∞)时,e -x>0,e2x -1>0.此时f ′(x)>0,所以f(x)在[0,+∞)上是增函数. 歼灭难点训练一、1.解析:f(-x)=)0()()0()()0()0(2222xx xx x x xxx x xx=-f(x),故f(x)为奇函数.答案:C2.解析:f(-x)=-f(x),f(x)是奇函数,图象关于原点对称.答案:C二、3.解析:令t=|x+1|,则t 在(-∞,-1]上递减,又y=f(x)在R 上单调递增,∴y=f(|x+1|)在(-∞,-1]上递减. 答案:(-∞,-1]4.解析:∵f(0)=f(x1)=f(x2)=0,∴f(0)=d=0.f(x)=ax(x -x1)(x -x2)=ax3-a(x1+x2)x2+ax1x2x ,∴b=-a(x1+x2),又f(x)在[x2,+∞)单调递增,故a>0.又知0<x1<x,得x1+x2>0,∴b=-a(x1+x2)<0. 答案:(-∞,0)三、5.证明:(1)设-1<x1<x2<+∞,则x2-x1>0, 12x x a >1且1x a>0,∴)1(12112x x x x x aa aa>0,又x1+1>0,x2+1>0∴)1)(1()(3)1)(1()1)(2()1)(2(121221122121121122x x x x x x x x x x x x x x >0,于是f(x2)-f(x1)=12x x aa+12121122x x x x >0∴f(x)在(-1,+∞)上为递增函数.(2)证法一:设存在x0<0(x0≠-1)满足f(x0)=0,则1200x x ax 且由0<0x a <1得0<-120x x <1,即21<x0<2与x0<0矛盾,故f(x)=0没有负数根.证法二:设存在x0<0(x0≠-1)使f(x0)=0,若-1<x0<0,则12xx <-2,0x a <1,∴f(x0)<-1与f(x0)=0矛盾,若x0<-1,则120xx >0, 0x a>0,∴f(x0)>0与f(x0)=0矛盾,故方程f(x)=0没有负数根.6.证明:∵x ≠0,∴f(x)=22422322)11(1)1(1)1(1xx xxx x x,设1<x1<x2<+∞,则01111,11121222122x x x x .2211222222112222)11(1)11(1.0)11()11(x x x x x x x x ∴f(x1)>f(x2),f(x)在(1,+∞)上是减函数.(本题也可用求导方法解决)7.证明:(1)不妨令x=x1-x2,则f(-x)=f(x2-x1)=)()(1)()()()(1)()(12212112x f x f x f x f x f x f x f x f =-f(x1-x2)=-f(x).∴f(x)是奇函数.(2)要证f(x+4a)=f(x),可先计算f(x+a),f(x+2a).∵f(x+a)=f [x -(-a)]=)1)((1)(1)()()(1)()()()(1)()(a f x f x f x f a f x f a f x f a f x f a f .).(111)(1)(11)(1)(1)(1)(])[()2(x f x f x f x f x f a xf a x f a a x f a x f∴f(x+4a)=f [(x+2a)+2a ]=)2(1a x f =f(x),故f(x)是以4a 为周期的周期函数.8.(1)证明:设x1<x2,则x2-x1-21>-21,由题意f(x2-x1-21)>0,∵f(x2)-f(x1)=f [(x2-x1)+x1]-f(x1)=f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-1=f(x2-x1)+f(-21)-1=f [(x2-x1)-21]>0,∴f(x)是单调递增函数.(2)解:f(x)=2x+1.验证过程略.。