第一讲算符及其本征值与本征函数
- 格式:ppt
- 大小:306.00 KB
- 文档页数:25
第四章:近似方法Schroedinger 方程ˆ,,i t H t tψψ∂=∂ 。
可以精确求解的物理问题太少,大部分实际问题由于ˆH的构造太复杂,不能严格求解,只能用近似方法。
不同的问题用不同的近似方法。
1.定态微扰论思想当ˆH不含时,应用分离变量法,定态,n i E t n t n e ψ−=,能量n E 与能量本征态n 满足定态Schroedinger 方程ˆnH n E n =。
令()()01ˆˆˆHH H =+, 要求:1)()0ˆH包含了ˆH 的主要部分,即()1ˆH 很小。
由于()0ˆH 与()1ˆH 均为算符,比较大小可从经典对应来理解。
严格来说,是比较这两个算符的矩阵元,见下面讨论。
2)要求()0ˆH的定态方程 ()()()()0000ˆn Hn E n= 可严格求解。
将n E 和n 展开:()()()012n n n n E E E E =+++ ,()()()012n nnn=+++代入待求的定态Schroedinger 方程()()()()()()()()()()()()()()()01201201012ˆˆn n n HH nnnE E E nnn++++=++++++ ,然后,逐级近似求解该方程。
零级近似:()()()()0000ˆn Hn E n= ()0n E →和()0n。
一级近似:()()()()()()()()10100101ˆˆn n Hn Hn E nE n+=+即()()()()()()()()100011ˆˆnnH E n H E n −=−− ()1n E →和()1n。
二级近似:()()()()()()()()()()21000112ˆˆnnn H E n H E n E n−=−−+()2n E →和()2n。
……一般情形,只求到第一个不为零的修正项。
微扰论的基础是()0H 的本征值()0n E 和本征态()0n 。
求高阶修正要考虑()0n E 是否有简并。
第一节力学量算符一. 算符算符: 作用在一个函数上得出另一个函数的运算符号,量子力学中的算符是作用在波函数上的运算符号。
用表示一算符。
二.力学量算符1.坐标的算符就是坐标本身:2.动量算符:, ,3.动能算符4.哈密顿算符:5.角动量算符:如果量子力学中的力学量在经典力学中有相应的力学量,则表示这个力学量的算符由经典表示式中将换成算符得出算符和它所表示的力学量的关系?第二节算符基本知识一线性算符满足运算规则的算符称为线性算符。
二单位算符保持波函数不改变的算符三 算符之和加法交换律加法结合律两个线性算符之和仍为线性算符。
四 算符之积定义: 算符 与 的积 为注意: 一般说算符之积不满足交换律,即: 这是与平常数运算规则不同之处。
五 逆算符设能唯一解出,则定义的逆算符为:注意: 不是所有的逆算符都有逆算符。
,六 算符的复共轭,转置,厄密共轭1. 两个任意波函数与的标积2. 复共轭算符算符的复共轭算符为:把的表示式中所有复量换成其共轭复量3.转置算符定义: 算符的转置算符满足:即:4.厄密共轭算符算符的厄密共轭算符定义为即算符的厄密共轭算符即是的转置复共轭算符5.厄密算符厄密算符是满足下列关系的算符注意:两个厄密算符之和仍为厄密算符,两个厄密算符之积却不一定是厄密算符例:证明是厄密算符证:为厄密算符,为厄密算符第三节 力学量算符的本征值与本征函数一 厄密算符的本征值与与本征函数设体系处于 测量力学量O ,一般说,可能出现不同结果,各有一定的几率,多次测量结果的平均值趋于一确定值,每次具体测量的结果围绕平均值有一个涨落,定义为如为厄密算符,也是厄密算符存在这样一种状态,测量力学量 所得结果完全确定。
即. 这种状态称为力学量的本征态。
在这种状态下称为算符的一个本征值, 为相应的本征函数。
二 力学量算符的性质 1. 力学量算符是厄密算符量子力学的一个基本假定: 测量力学量 时,所有可能出现的值,都是力学量算符的本征值。
论文题目:ˆL算符及其本征函数量子力学中2(理工类)ˆL算符及其本征函数1量子力学中2摘要角动量算符是量子力学中一个很重要的力学量,本论文分别对2ˆL的定义、意义、性质以及作用做了阐述,给出了2ˆL算符在球坐标系中的表示式,并用经典坐标变换以及对易关系进行了推导,2ˆL是描述旋转运动及原子分子状态的一个重要的物理量,因此对2ˆL 的研究将有助于理解量子力学中的诸多问题。
本论文将采取理论分析,并结合数学推导的方法,在掌握大量材料的基础上,作出自己的见解,把理论模型建立在合理的体系上,立足实际情况对它们进行深入的分析和研究。
关键词角动量算符;空间转子;角量子数;自旋The 2ˆL in the Quantum Mechanics and Its EigenfunctionAbstractAngular momentum operator is a very important mechanics in quantum mechanics ,this paper definite the definition, significance, as well as the nature of the2ˆL operator , and gives the expression of 2ˆL operator in spherical coordinates .And according with classic and easy to transform the relationship between the derivation. The 2ˆL operator is a very important mechanics which describe rotary movement and the state of Atomic and Molecular, so it will help to understand lots of questions of quantum mechanics. This paper will take theoretical analysis, and mathematical derivation of the method, the availability of large on the basis of material to make their own opinion, the theoretical model based on a reasonable system, based on the actual situation on their conduct in-depth analysis and research.Keywordsangular momentum operator;Spatial rotor;Azimuthal quantum number;Spinning1作者简介:王慧1986年10月出生,女汉族河南兰考人,郑州大学物理工程学院凝聚态物理专业硕士研究生一年级,主要研究方向为陶瓷功能材料。
算符的本征值与本征态算符是量子力学中非常重要的概念之一,用于描述物理量的性质和测量结果。
在量子力学中,算符的本征值与本征态是非常有用的工具,它们可以帮助我们理解和计算系统的物理性质。
本文将介绍算符的本征值与本征态的概念及其在量子力学中的应用。
一、算符的本征值和本征态的定义在量子力学中,算符用来描述测量物理量的操作。
一个算符作用于一个波函数上,会得到一个新的波函数或者一个数值结果。
当算符作用于一个波函数时,如果结果等于原波函数乘以一个常数,这个常数就是算符的本征值,而原波函数就是算符的本征态。
根据量子力学的原理,每个物理量都有对应的算符。
例如,位置算符描述了粒子在空间中的位置,动量算符描述了粒子的动量,能量算符描述了粒子的能量等。
这些算符都有自己的本征值和本征态。
二、算符的本征值与本征态的性质算符的本征值和本征态具有一些重要的性质。
首先,算符的本征值只能取实数或复数。
其次,算符的本征值可以是离散的或连续的。
对于离散的本征值,我们称其为离散谱;对于连续的本征值,我们称其为连续谱。
算符的本征态具有归一化的性质,即本征态的模长平方等于1。
本征态之间也可以进行线性组合,得到新的波函数,这些新的波函数也是算符的本征态。
因此,本征态构成了一个完备的正交基。
三、算符的本征值与本征态的应用算符的本征值与本征态在量子力学中有广泛的应用。
首先,它们用于描述系统的物理性质。
通过求解薛定谔方程,我们可以得到系统的所有本征值和本征态,从而了解系统的能级以及相应的波函数形式。
其次,算符的本征值与本征态用于描述量子测量的结果。
当我们对一个物理量进行测量时,测量结果就是算符的某个本征值,而物理系统处于相应的本征态。
算符的本征值与本征态还可以用于计算系统的平均值和方差。
平均值描述了物理量的期望值,而方差描述了测量结果的离散程度。
此外,算符的本征值与本征态在量子力学中的对易性质也是非常重要的。
通过研究不同算符的对易关系,我们可以推导出一些重要的定理,如不确定性原理等。
(壹x上) 量子力学基础第五节算符一、算符的定义和运算二、算符的本征方程、本征值、本征函数三、线性算符四、厄米算符小结作业思考题一、算符的定义和运算返回上页下页返回上页下页设符号代表某个运算规则,按此规则,由一个函数f 可唯一地确定另一个函数g ,记作符号称为算符.[算符的定义]Af g ˆ=AˆAˆ返回上页下页通常,算符记号上带有抑扬符“∧”.但是,对于单纯做乘法的算符,“∧”可省略.注可直接写做x ; ˆ()xx ⋅(5⋅)可直接写作5 .5ˆ例如,返回上页下页算符的等价性设和是两个算符,若对任意函数f 都有,则称和相等,记作.AˆB ˆf B f A ˆˆ=B A ˆˆ=[算符的运算]AˆB ˆ返回上页下页算符的加法(减法)AB f Af Bf ˆˆˆˆ()±=±Df x Df x f x ˆˆˆˆ(3)()()3()+=+例如,f x f x ()3()′=+规定:称为与的和(差).A ˆB ˆA Bˆˆ±运算规律:AB B A [交 换律 ]ˆˆˆˆ+=+AB C A B C 结合律] ˆˆˆˆˆˆ()()[++=++返回上页下页一般而言,(算符的乘法不满足交换律).ABBA ˆˆˆˆ≠对易子如果,即,则称和可对易;否则,就是不可对易的.A B ˆˆ[,]0=A BˆˆAB AB BA ˆˆˆˆˆˆ[,]=−规定:称为与的对易子.AB ˆˆ[,]A ˆB ˆAB BA ˆˆˆˆ=但不排除对某些特定的算符有.ABBA ˆˆˆˆ=返回上页下页对易子的恒等式(证明留作练习):]ˆ,ˆ[]ˆ,ˆ[A B B A−=n A A ˆˆ[,]0=二、算符的本征方程、本征值、本征函数返回上页下页返回上页下页则⎯⎯常数a 称为的本征值;非零函数f 称为的属于(对应于)本征值a 的本征函数;ˆAaf f A =ˆ设:是算符,f 是非零函数,a 是常数.如果AˆˆA称为的本征方程.ˆA af f A=ˆ返回上页下页(3)本征函数总是和本征值联系在一起,一个本征函数不能同时属于两个不同的本征值;(4)对应于同一个本征值,可能有不止一个线性无关的本征函数.说明(1) 本征函数f 要求是非零函数(不恒等于零);(2)一般而言,本征值(复数域),相应的,本征函数f 是复函数.a ∈ 假设,则有.本征函数f 是非零函数,于是a =b ,矛盾., 其中ˆˆ()Afaf Af bf a b ==≠()0a b f −=三、线性算符返回上页下页返回上页下页线性算符有如下的对易子恒等式:]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[B A k B k A B Ak ==]ˆ,ˆ[]ˆ,ˆ[]ˆˆ,ˆ[C A B A C B A+=+]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆˆ[C B C A C B A+=+C B A C A B C B Aˆ]ˆ,ˆ[]ˆ,ˆ[ˆ]ˆˆ,ˆ[+=B C A C B A C B Aˆ]ˆ,ˆ[]ˆ,ˆ[ˆ]ˆ,ˆˆ[+=[线性算符的对易子]例6. 由,计算对易子和D xˆˆ[,]1=x i D ˆ[,]− x D 2ˆ[,]]ˆ,[2D x x i Dˆ[,]− i x D ˆ[,]=− i D x ˆ[,]= D ˆ2−=D D ˆˆ−−=D D x D x Dˆ]ˆ,[]ˆ,[ˆ+=i = 解返回上页下页112211221122ˆˆˆ()D c f c f c f c f c Df c Df ′′+=+=+都是线性算符,2ˆˆˆ,,xD D 222112211221122ˆˆˆ()D c f c f c f c f c D f c D f ′′′′+=+=+11221122()x c f c f c xf c xf ⋅+=⋅+⋅因此,返回上页下页[线性算符的性质]若f 1,f 2是线性算符的属于同一个本征值a 的本征函数,则它们的任意非零线性组合c 1f 1+c 2f 2(即c 1,c 2是任意常数但要保证c 1f 1+c 2f 2是非零函数)仍然是属于a 的本征函数.证2211ˆ ,ˆ af f A af f A==∵ 1122ˆ()A c f c f ∴+2211ˆˆf A c f A c +=注此性质对更多本征函数也成立.Aˆ2211af c af c +=)(2211f c f c a +=当c 1f 1+c 2f 2为非零函数时,是对应于a 的本征函数.四、厄米算符返回上页下页返回上页下页如果算符满足:则称算符是厄米算符.d d **ˆˆ()f Ag g Af ττ=∫∫AˆAˆ[厄米算符的定义](f ,g 是任意的品优函数)说明(1)一般来说,算符的本征值是复数域上的数.但是,厄米算符的本征值一定是实数.(2)一般来说,算符的本征函数不一定正交.但是,对于线性厄米算符,①非简并本征值:有且有一个线性无关的本征函数,任选一个;②简并本征值:能够选出一个两两正交的最大线性无关组[线性厄米算符的性质2(2)].所选的的这一系列本征函数必定是两两正交的[线性厄米算符的性质2(1)].返回上页下页四、小结作业思考题返回上页下页小结返回上页下页1算符的概念;算符的加法、乘法、幂及其运算规则.m n m n m n mn A A A A A; ˆˆˆˆˆ()+==[加法交换律] ˆˆˆˆAB B A +=+加法结律 合 ]ˆˆˆˆˆˆ()()[AB C A B C ++=++ [乘法结合律]ˆˆˆˆˆˆ()()ABC AB C =返回上页下页2对易子ˆˆˆˆˆˆ[,]AB AB BA =−如果(即),则称和可对易.ˆA ˆB 重要的恒等式:ˆˆ[,]0AB =ˆˆˆˆAB BA =]ˆ,ˆ[]ˆ,ˆ[A B B A−=n A A ˆˆ[,]0=ˆˆ[,]AB返回上页下页3算符的本征方程、本征值、本征函数.af f A =ˆa 为常数,称为本征值;f 是非零函数,称为属于本征值a 的本征函数.的本征方程:ˆA4线性算符的概念和性质.()A c f c f c Af c Af 11221122ˆˆˆ+=+( f 1和f 2是任意函数;c 1和c 2是任意常数)返回上页下页线性算符的运算规律:线性算符的对易子恒等式:]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[B A k B k A B Ak ==ˆˆˆˆˆˆˆ[,][,][,]AB C A C B C +=+[左分配律] ˆˆˆˆˆˆˆ()AB C AB AC +=+[分 律] 右配ˆˆˆˆˆˆˆ()BC A BA CA +=+ˆˆˆˆˆˆˆ[,][,][,]AB C A B A C +=+C B A C A B C B Aˆ]ˆ,ˆ[]ˆ,ˆ[ˆ]ˆˆ,ˆ[+=B C A C B A C B Aˆ]ˆ,ˆ[]ˆ,ˆ[ˆ]ˆ,ˆˆ[+=返回上页下页(本征值的简并度:属于该本征值的全体本征函数中,最大线性无关组所含的函数个数)线性算符的性质:线性算符的属于同一个本征值的本征函数的任意非零线性组合,仍是属于同一个本征值的本征函数.返回上页下页5厄米算符的概念和性质. d d **ˆˆ()f Ag g Af ττ=∫∫(f ,g 是任意的品优函数)线性厄米算符的性质:1. 厄米算符的本征值必然是实数;2.(1)厄米算符属于不同本征值的本征函数必然是相互正交的;(2)线性算符的属于简并本征值的全体本征函数中,能够选出一个两两正交的最大线性无关组.作业p.145,第26,27,28题返回上页下页返回上页下页思考题下列哪些算符可对易⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅( )(A) ˆˆ,x y (B),x y ∂∂∂∂(C),x x ∂∂ (D),y x∂∂返回上页下页[提示]可对易⇔.将作用于二元函数f (x ,y )可得.[答案] (A)(B)(D)即 ˆˆˆˆˆˆ[,]00A B AB BA =−=ˆˆ,AB ˆˆˆˆABBA −ˆˆ[,]A B附录线性厄米算符性质的证明返回上页下页返回上页下页线性厄米算符的性质2(1)厄米算符的属于不同本征值的本征函数必然是相互正交的;(2)线性算符的属于同一个简并本征值的全体本征函数中,可选出两两正交的最大线性无关组.(1) 设是厄米算符,f , g 是分别属于两个不同特征值a , b 的本征函数,即ˆAd d **ˆˆ()f Ag g Af ττ=∫∫证; ()ˆˆAf af Agbg a b ==≠根据厄米算符的定义,有d d **()f bg g af ττ=∫∫d d ***b f g a gf ττ=∫∫返回上页下页上式中a *≠b (∵厄米算符的本征值是实数,a*=a ,而a ≠b ),从而有是相互正交的d 即*0,,g f g f τ=∫一般而言,{f 1,f 2,…,f n }不是两两正交的.但是,从最大线性无关组{f 1,f 2,…,f n }出发,利用施密特正交化方法,能够构造出一个等价的非零正交函数组{ϕ1,ϕ2,…,ϕn }.方法如下(参见数学复习):(2)设是线性算符,f 1,f 2,…,f n 是属于简并本征值a 一个最大线性无关组.ˆA。