第6讲 DD-t检验与u检验(2004)
- 格式:doc
- 大小:89.50 KB
- 文档页数:8
u检验和t检验第三节 u检验和t检验2005-08-04 00:00 来源:医学教育网u检验和t检验可用于样本均数与总体均数的比较以及两样本均数的比较。
理论上要求样本来自正态分布总体。
但在实用时,只要样本例数n较大,或n小但总体标准差σ已知时,就可应用u检验;n小且总体标准差σ未知时,可应用t检验,但要求样本来自正态分布总体。
两样本均数比较时还要求两总体方差相等。
一、样本均数与总体均数比较比较的目的是推断样本所代表的未知总体均数μ与已知总体均数μ0有无差别。
通常把理论值、标准值或经大量调查所得的稳定值作为μ0.根据样本例数n大小和总体标准差σ是否已知选用u检验或t 检验。
(一)u检验用于σ已知或σ未知但n足够大[用样本标准差s作为σ的估计值,代入式(19.6)]时。
以算得的统计量u,按表19-3所示关系作判断。
表19-3 u值、P值与统计结论α|t|值P值统计结论0.05双侧单侧<1.96<1.645>0.05不拒绝H0,差别无统计学意义0.05双侧单侧≥1.96≥1.645≤0.05拒绝H0,接受H1,差别有统计学意义0.01双侧单侧≥2.58≥2.33≤0.01拒绝H0,接受H1,差别有高度统计学意义例19.3根据大量调查,已知健康成年男子脉搏均数为72次/分,标准差为6.0次/分。
某医生在山区随机抽查25名健康成年男子,求得其脉搏均数为74.2次/分,能否据此认为山区成年男子的脉搏高于一般?据题意,可把大量调查所得的均数72次/分与标准差6.0次/分看作为总体均数μ0和总体标准差σ,样本均数x为74.2次/分,样本例数n为25.H0:μ=μ0H1:μ>μ0α=0.05(单侧检验)算得的统计量u=1.833>1.645,P<0.05,按α=0.05检验水准拒绝H0,可认为该山区健康成年男子的脉搏高于一般。
(二)t检验用于σ未知且n较小时。
以算得的统计量t,按表19-4所示关系作判断。
表19-4 |t|值、P值与统计结论α|t|值P值统计结论0.05<t0.05(v)<0.05不拒绝H0,差别无统计学意义0.05≥t0.05(v)≤0.05拒绝H0,接受H1,差别有统计学意义0.01≥t0.01(v)≤0.01拒绝H0,接受H1,差别有高度统计学意义例19.4 若例19.3中总体标准差σ未知,但样本标准差已求出,s=6.5次/分,余数据同例19.3.据题意,与例19.3不同之处在于σ未知,可用t检验。
u检验、t检验、F检验、X2检验常用显著性检验1.t检验适用于计量资料、正态分布、方差具有齐性的两组间小样本比较。
包括配对资料间、样本与均数间、两样本均数间比较三种,三者的计算公式不能混淆。
2.t'检验应用条件与t检验大致相同,但t′检验用于两组间方差不齐时,t′检验的计算公式实际上是方差不齐时t检验的校正公式。
3.U检验应用条件与t检验基本一致,只是当大样本时用U检验,而小样本时则用t检验,t检验可以代替U检验。
4.方差分析用于正态分布、方差齐性的多组间计量比较。
常见的有单因素分组的多样本均数比较及双因素分组的多个样本均数的比较,方差分析首先是比较各组间总的差异,如总差异有显著性,再进行组间的两两比较,组间比较用q检验或LST检验等。
5.X2检验是计数资料主要的显著性检验方法。
用于两个或多个百分比(率)的比较。
常见以下几种情况:四格表资料、配对资料、多于2行*2列资料及组内分组X2检验。
6.零反应检验用于计数资料。
是当实验组或对照组中出现概率为0或100%时,X2检验的一种特殊形式。
属于直接概率计算法。
7.符号检验、秩和检验和Ridit检验三者均属非参数统计方法,共同特点是简便、快捷、实用。
可用于各种非正态分布的资料、未知分布资料及半定量资料的分析。
其主要缺点是容易丢失数据中包含的信息。
所以凡是正态分布或可通过数据转换成正态分布者尽量不用这些方法。
8.Hotelling检验用于计量资料、正态分布、两组间多项指标的综合差异显著性检验。
计量经济学检验方法讨论计量经济学中的检验方法多种多样,而且在不同的假设前提之下,使用的检验统计量不同,在这里我论述几种比较常见的方法。
在讨论不同的检验之前,我们必须知道为什么要检验,到底检验什么?如果这个问题都不知道,那么我觉得我们很荒谬或者说是很模式化。
检验的含义是要确实因果关系,计量经济学的核心是要说因果关系是怎么样的。
那么如果两个东西之间没有什么因果联系,那么我们寻找的原因就不对。
均数差异的假设检验假设检验的具体方法,通常是以选定的检验统计量来命名的,如t检验要用特定的公式计算检验统计量t值,u检验要用特定的公式计算检验统计量u值。
应用时首先要了解各种检验方法的用途、应用条件和检验统计量的计算方法。
一、单组完全随机化设计资料均数的t检验和u检验从一个总体中完全随机地抽取一部分个体进行研究,这样的设计称为单组完全随机化设计(completely randomized design of single group)。
例题1:根据大量调查,已知健康成年男子脉搏均数为72次/分,某医生在某一山区随机抽查了25名健康成年男子,求得其脉搏均数为74.2次/分,标准差为6.0次/分,能否据此认为该山区成年男子脉搏均数高于一般成年男子脉搏均数?这两个均数不等有两个可能:(1)由于抽样误差所致;(2)由于环境条件的影响。
如何作出判断呢?在统计上是通过假设检验来回答这个问题。
以下介绍建设检验(t检验)的思想方法与步骤。
1、建立检验假设和确定检验水准H0:μ1=μ0(=72次/分):H1:μ1≠μ0(=72次/分):α=0.05本例分析目的是比较山区成年男子脉搏样本均数与一般成年男子脉搏总体均数有无差别?μ是未知的,可以假设μ等于某一定值μ0,μ与μ0的差等于零,这样的假设称为无差异假设或零假设(null hypothesis) 记为H0:μ1=μ0表示该山区的环境条件对脉搏数无影响,他们之间的差异是由于抽样误差所致。
与零假设相对立的假设称为对立假设或备择假设(alternative hypothesis), 符号为H1,它是在拒绝H0的情况下而接受的假设。
假设检验所用的检验统计量一般都是建立在零假设的基础上,因为H0比较单纯明确,而H1却包含着各种情况。
检验水准(size of test )亦称显著性水准(significance level),符号为α,在实际工作中常取0.05 或0.01。
均数差异的假设检验假设检验的具体方法,通常是以选定的检验统计量来命名的,如t检验要用特定的公式计算检验统计量t值,u检验要用特定的公式计算检验统计量u值。
应用时首先要了解各种检验方法的用途、应用条件和检验统计量的计算方法。
一、单组完全随机化设计资料均数的t检验和u检验从一个总体中完全随机地抽取一部分个体进行研究,这样的设计称为单组完全随机化设计(completely randomized design of single group)。
例题1:根据大量调查,已知健康成年男子脉搏均数为72次/分,某医生在某一山区随机抽查了25名健康成年男子,求得其脉搏均数为74.2次/分,标准差为6.0次/分,能否据此认为该山区成年男子脉搏均数高于一般成年男子脉搏均数?这两个均数不等有两个可能:(1)由于抽样误差所致;(2)由于环境条件的影响。
如何作出判断呢?在统计上是通过假设检验来回答这个问题。
以下介绍建设检验(t检验)的思想方法与步骤。
1、建立检验假设和确定检验水准H0:μ1=μ0(=72次/分):H1:μ1≠μ0(=72次/分):α=0.05本例分析目的是比较山区成年男子脉搏样本均数与一般成年男子脉搏总体均数有无差别?μ是未知的,可以假设μ等于某一定值μ0,μ与μ0的差等于零,这样的假设称为无差异假设或零假设(null hypothesis) 记为H0:μ1=μ0表示该山区的环境条件对脉搏数无影响,他们之间的差异是由于抽样误差所致。
与零假设相对立的假设称为对立假设或备择假设(alternative hypothesis), 符号为H1,它是在拒绝H0的情况下而接受的假设。
假设检验所用的检验统计量一般都是建立在零假设的基础上,因为H0比较单纯明确,而H1却包含着各种情况。
检验水准(size of test )亦称显著性水准(significance level),符号为α,在实际工作中常取0.05 或0.01。
2、选定检验方法和计算统计量本例:n=25, -x=74.2次/分,S=6.0次/分。
检验统计量公式为:1-n , 0=-=νμxs x t将以上数据代入公式,得:241-25 , 1.833 25/0.60.722.74===-=νt要根据研究类型和统计推断目的选用不同检验方法,不同检验方法有相应的检验统计量,本例的检验统计量t 服从 ν=n-1 的 t 分布。
建设检验方法通常是以检验统计量来命名的,故,本例检验称为t 检验。
3、确定P 值和作出推断结论查t 界值表, 得出结论为,按α=0.05水准,拒绝H 0 ,接受H 1 认为该山区的成年男子脉搏均数高于一般的成年男子脉搏均数。
关于检验水准是取0.05、0.01或其他数值,要根据不同的实验而定。
α取值较小,有利于提高“阳性”统计检验结果的可靠性;α取值较大,有利于发现研究总体可能存在的差异,但可靠性降低。
较好的做法是精确地计算出P 值, 这会对人们认识你所作的实验有很大的参考价值。
二、 随机化配对设计资料均数的t 检验配对设计资料分三种情况:(1)配成对子的同对受试对象分别给予两种不同的处理;(2)同一受试对象分别接受两种不同处理;(3)同一受试对象处理前后的比较。
同对或同一受试对象分别接受两种不同处理结果的比较,其目的是推断两种处理的效果有无差别;自身处理前后结果的比较,其目的是推断某种处理有无作用。
因此,应该首先计算出各对差值d 的均数。
当两种处理结果无差别或某种处理不起作用时,理论上差值 d 的总体均数μd =0。
故可将配对设计资料的假设检验视为样本均数与总体均数μd =0的比较,配对设计资料以小样本居多,故常用t 检验。
其计算公式为:1-n , /==-=νμnd dddd t s s例题2、将大白鼠配成8对,每对分别饲以正常饲料和缺乏维生素E 饲料,测得两组大白鼠肝中维生素A 的含量如下表,试比较两组大白鼠中维生素A 的含量有无差别。
表 不同饲料组大白鼠肝中维生素A 的含量(U/g )大白鼠 配对号 正常饲料组 维生素E 缺乏组 差数,dd 21 3550 2450 1100 12100002 2000 2400 -400 1600003 3000 1800 1200 14400004 3950 3200 750 5625005 3800 3250 550 3025006 3750 2700 1050 11025007 3450 2500 950 9025008 3050 1750 1300 1690000 合计----650073700001) H 0: μd =0, H 1: μd ≠ 0, α=0.05 2)计算统计量7 4.2070, 193.12980-812.5 /)/(1298.193)18(88/)6500(7370000)1(/)(dS (U/g)812.5 86500222d ===-==-⨯-=--=====∑∑∑νμnS d t g U n n n d n S nd d d dd3)确定P 值下结论查t 界值表(双側),t > t 0.01, 7 =3.499, P<0.01 结论:按 α=0.01 水准,拒绝H 0,接受H 1。
4)题目结论:可以认为两种饲料喂养的大白鼠肝中维生素A的含量有差别,正常饲料组比缺乏维生素E饲料组的含量要高。
例3:胃癌或巨型胃溃疡13人, 在实行全胃切除术前后的体重(kg )如下:试比较手术前后体重有无变化?时间 1 2 3 4 5 6 7 8 9 10 11 12 13术前 42.5 48.0 39.0 46.0 58.5 47.5 39.0 58.0 51.0 43.0 38.0 50.0 57.5 术后 52.0 51.5 45.0 52.5 49.0 55.0 52.0 52.0 50.5 50.0 41.0 51.5 72.2d 9.50 3.50 6.00 6.50 -9.50 7.50 13.0 –6.0 -0.5 7.00 3.00 1.50 14.701、H 0: μd =0, H 1: μd ≠ 0, α=0.052、计算统计量12, 2.27 1.9044.323)(1.904 S (kg)323.4132.56d ========∑νt kg nS nd d d3、确定P 值下结论查t 界值表(双側),t > t 0.05, 12 =2.179, P<0.05 结论:按 α=0.05 水准,拒绝H 0,接受H 1。
4、题目结论:可以认为术前后体重有显著性差别。
三、 两组完全随机化设计资料均数的t 检验与u 检验 1、t 检验将受试对象完全随机地分配到两组中,这两组分别接受不同的处理。
这样的设计称为两组完全随机化设计(completely randomized design of two groups )。
有些研究设计既不能作自身对比,也不便于配对。
如实验中只有把受试动物杀死后才能获得所需数据,则不可能对动物在处理前后各进行一次测定;再如比较两种治疗方法对同一疾病的疗效,每个患者一般只能接受一种方法的治疗,把受试患者配成若干对在实际工作中又非常困难,这时只能进行两组间均数的比较。
在两组比较的资料中,每个观察对象都应按照随机的原则进行分组,两组样本量可以相同,也可以不同,但只有在两组例数相同时检验效率才最高。
统计量计算公式为:2121x 212121S X)()(xxx X S X X t ---=---=μμ221-+=n n ν⎪⎪⎭⎫ ⎝⎛++-+-+-=+=∑∑∑∑-2121222221212121112/)(/)()11(221n n n n n X x n x xn n S S c x x)1()1()1()1(212222112-+--+-=n n S n S n S c例题 某医院研究乳酸脱氢同工酶(LDH )测定对心肌梗死的诊断价值时,曾用随机抽样方法比较了10例心肌梗死患者与10例健康人LDH 测定值的差别,结果如下,试问LDH 测定值在两组间有无差别?患者(X 1) 23.2 45.0 45.0 40.0 35.0 44.1 42.0 52.5 50.0 58.0 健康人(X 2) 20.0 31.0 30.5 23.1 24.2 38.0 35.5 37.8 39.0 131.0(1)、H 0:μ1=μ2 H 1:μ1≠μ2 α=0.05本例:74.6S ,01.31X ,59.10025X ,10.310X ,1064.9S ,48.43X ,30.19742X ,80.434X ,10222222112111==========∑∑∑∑n n(2)、计算统计量:将上述数据代入公式,得:182-1010 ,3506.37217.301.3148.43(%)7217.3)101101(2101010/10.31059.1002510/8.434230.19742221=+==-==+-+-+-=-νt S x x(3)、确定P 界作出结论 本例 t > t 0.05,18 =3.197, P<0.05(4)、结论: 按α=0.05 水准,拒绝H 0,接受H 1。
可以认为乳酸脱氢同工酶测定值在心肌梗死与健康人之间有差别,心肌梗死患者的含量比健康人的要高。
如果例3用随机样本设计的t 检验计算得到如下结果:0875.7S 8615.51X 132585.7S 5385.47X 13222111======、、、、n n242-1313 ,536.18145.2323.48145.2861.51538.47)(8145.2)131131(213130875.71-135857.21-132221=+===-==+-++=-νt kg S x x )()(查t 界值表(双側),t < t 0.05, 24 =2.064, P > 0.05结论:按 α=0.05 水准,接受H 0, 可以认为术前后体重有显著性差别。
2、 U 检验(两大样本均数的假设检验)以两个正态或非正态总体独立地抽取含量分别为n 1 和 n 2 的样本,当n 1 和 n 2均较大时,比如均大于100时,那么样本均数的和与差的分布也服从正态分布,即:)n ( ),(~)(2221212121⎥⎦⎤⎢⎣⎡+-±σσμμn N X X故当两样本均数较多时,即使总体分布呈偏离正态,其样本均数的分布仍近似正态分布,且这时用S 估计σ的误差较小,故可用u 检验,即用正态分布的原理作两个均数间的假设检验。
关于非正态分布资料均数差别的检验医学上有许多资料是服从正态分布的,但有不少资料不是正态分布,例如血清抗体滴度、传染病潜伏期、动物对毒物的耐受量等。