动能 动能定理专题
- 格式:doc
- 大小:104.00 KB
- 文档页数:3
专题:动能定理(1)明确研究对象; (2)确定研究的物理过程; (3)对研究对象进行受力分析;(4)确定各力所做的功,求出这些力的功的代数和。
✧ 谁的功:某个力F 的功,不是物体的功(人对物体的功=人对物体作用力的功) ✧ 做功吗:F 与V 垂直时,F 不做功 ✧ 什么功:若∑W>0,>0,物体的动能增大;若∑W<0,则<0物体动能减小✧多少功: ①cos w FS θ= ②FS 图象 ③222111=22w m v m v -总 ④w Pt =(5)确定始、末态的动能。
(未知量用符号表示) (6)根据动能定理列出方程(左因右果)(7)求解方程; (8)合理性检验。
只考虑初、末状态,没有守恒条件的限制。
所以,凡涉及力及位移,而不涉及力作用的时间的动力学问题都可优先用动能定理解决。
只能求出速度的大小,不能确定速度的方向; 也不能直接计算时间。
【例1谁的功】某人把质量为m 、静止放在地面上的铅球举高h ,并快速将它以速度v 推出,求人对铅球做的功。
解:人在举球、推球的过程中给球的作用力是变力,设在整个过程中人对球做的功为,由动能定理,有21-02w m gh m v =-人 212w m gh m v ∴=+人【例2选过程】一物体以初速度从倾角为α的斜面底端冲上斜面,到达某一高度后又返回,回到斜面底端的速度为,则斜面与物体间的摩擦系数μ=___________。
解:设物体的质量为m,上升的最大高度为h。
物体在沿斜面上滑的过程中,由动能定理,有物体在从最高点沿斜面下滑的过程中,由动能定理,有物体从上到下的整个过程,由动能定理,有以上三个方程联立其中任意两上即可解得:。
【例3变力做功】小球用绳系住在光滑的水平面上做匀速圆周运动。
当拉力由F增大到8F时,圆运动的半径从r 减小到。
在这一过程中拉力所做的功为多少?解:在球的轨道半径减小的过程中,拉力的切向分力对小球做正功,而切向分力是变力,我们可以设拉力所做的功为,由动能定理,有再由牛顿第二定律,物体分别以半径r 和做匀速圆周运动时,有21vF mr=2282vF mr=可解:【例4变力做功】质量为m的滑块与倾角为θ的斜面间的动摩擦因数为μ,μ<tgθ。
1、强调动能定理中的力为合力。
一个25kg的小孩从高度为3.0m的滑梯顶端由静止开始滑下,滑到底端时的速度为2.0m/s。
取g=10m/s2,关于力对小孩做的功,以下结果正确的是()A.合外力做功50J B.阻力做功500JC.重力做功500J D.支持力做功50J2、关于机械能守恒。
(05天津卷)一带电油滴在匀强电场E中的运动轨迹如图中虚线所示,电场方向竖直向下。
若不计空气阻力,则此带电油滴从a运动到b的过程中,能量变化情况为()A.动能减小B.电势能增加C.动能和电势能之和减小D.重力势能和电势能之和增加3、动能定理的应用。
(2009年全国卷Ⅱ)以初速度v0竖直向上抛出一质量为m的小物块。
假定物块所受的空气阻力f大小不变。
已知重力加速度为g,则物体上升的最大高度和返回到原抛出点的速率分别为()A、22(1)vfgmg+和v、22(1)vfgmg+和vC、222(1)vfgmg+和v、222(1)vfgmg+和v4、与电场力结合(2009年四川卷)如图所示,粗糙程度均匀的绝缘斜面下方O点处有一正点电荷,带负电的小物体以初速度v1从M点沿斜面上滑,到达N点时速度为零,然后下滑回到M点,此时速度为v2(v2<v1)。
若小物体电荷量保持不变,OM=ON,则()A.小物体上升的最大高度为22 12 4v vg +B.从N到M的过程中,小物体的电势能逐渐减小C.从M到N的过程中,电场力对小物体先做负功后做正功D.从N到M的过程中,小物体受到的摩擦力和电场力均是先增大后减小5、变力做功问题(2011年湖北黄冈模拟)如图所示,一个质量为m的圆环套在一根固定的水平直杆上,环与杆的动摩擦因数为μ,现给环一个向右的初速度v0,如果在运动过程中还受到一个方向始终竖直向上的力F的作用,已知力F的大小为F=kv(k为常数,v为环的运动速度),则环在整个运动过程中克服摩擦力所做的功(假设杆足够长)可能为( )A、221mvB、0C、22320221kgmmv+D、22320221kgmmv-6、与动能定理相关的运动学问题如图所示为汽车在水平路面上启动过程中的速度图象,oa为过原点的倾斜直线,ab段表示以额定功率行驶时的加速阶段,bc段是与ab段相切的水平直线,则下述说法正确的是( )A、0~t1时间内汽车做匀加速运动且功率恒定B、t1~t2时间内汽车牵引力做功为(mv2-mv21)/2C、t1~t2时间内的平均速度为(v1+v2)/2D、在全过程中t1时刻的牵引力及其功率都是最大值,t2~t3时间内牵引力最小7、由动能定理分析连接体问题如图所示,m A=4kg,m B=1kg,A与桌面间的动摩擦因数μ=0.2,B与地面间的距离s=0.8m,A、B 间绳子足够长,A、B原来静止,求:(1)B落到地面时的速度为多大;(2)B落地后,A在桌面上能继续滑行多远才能静止下来。
专题5.2 动能和动能定理1.掌握动能和动能定理;2.能运用动能定理解答实际问题。
知识点一 动能(1)定义:物体由于运动而具有的能。
(2)公式:E k =12mv 2,v 为瞬时速度,动能是状态量。
(3)单位:焦耳,1 J =1 N·m=1 kg·m 2/s 2。
(4)标矢性:动能是标量,只有正值。
(5)动能的变化量:ΔE k =E k2-E k1=12mv 22-12mv 21。
知识点二 动能定理(1)内容:合外力对物体所做的功等于物体动能的变化。
(2)表达式:W =ΔE k =12mv 22-12mv 21。
(3)物理意义:合外力对物体做的功是物体动能变化的量度。
(4)适用条件①既适用于直线运动,也适用于曲线运动。
②既适用于恒力做功,也适用于变力做功。
③力可以是各种性质的力,既可以同时作用,也可以不同时作用。
考点一 动能定理的理解及应用【典例1】(2018·全国卷Ⅰ·18)如图,abc 是竖直面内的光滑固定轨道,ab 水平,长度为2R ;bc 是半径为R 的四分之一圆弧,与ab 相切于b 点.一质量为m 的小球,始终受到与重力大小相等的水平外力的作用,自a 点处从静止开始向右运动.重力加速度大小为g .小球从a 点开始运动到其轨迹最高点,机械能的增量为( )A .2mgRB .4mgRC .5mgRD .6mgR【答案】C【解析】小球从a 运动到c ,根据动能定理,得F ·3R -mgR =12mv 21,又F =mg ,故v 1=2gR ,小球离开c 点在竖直方向做竖直上抛运动,水平方向做初速度为零的匀加速直线运动.且水平方向与竖直方向的加速度大小相等,都为g ,故小球从c 点到最高点所用的时间t =v 1g =2R g ,水平位移x =12gt 2=2R ,根据功能关系,小球从a 点到轨迹最高点机械能的增量为力F 做的功,即ΔE =F ·(2R +R +x )=5mgR 。
专题:动能动能定理考点一:动能【温故自查】1.概念:一个物体能够对外界做功,我们就说物体具有能量.能量可以有不同的形式,物体由于运动而具有的能叫.2.表达式:。
【考点精析】可以从以下几个方面理解动能的概念(1)动能是标量,动能的取值可以为正值或零,但不会为负值.(2)动能是状态量,描述的是物体在某一时刻的运动状态,一定质量的物体在运动状态(瞬时速度)确定时,Ek有惟一确定的值,速度变化时,动能不一定变化,但动能变化时,速度一定变化.(3)动能具有相对性.由于瞬时速度与参考系有关,所以Ek也与参考系有关,在一般情况下,如无特殊说明,则认为取大地为参考系.(4)物体的动能不会发生突变,它的改变需要一个过程,这个过程就是外力对物体做功的过程或物体对外做功的过程.(5)具有动能的物体克服阻力做功,物体的质量越大,运动速度越大,它的动能也就越大,能克服阻力对外做功越多.【注意】动能具有相对性.由于速度v是一个与参照系的选取有关的物理量,因此根据动能的表达式Ek=mv2可知,动能也是一个与参照系的选取有关的物理量.也就是说,同一个运动物体,对于不同的参照系其动能一般是不相等的.所以说,同一个运动物体,对于不同的参照系其动能一般是不相等的,所以说,动能是相对于参照系的相对量.在通常情况下,都是以地面为参照系来计算运动物体的动能的.那么,相对于地球静止的物体是否一定没有动能呢?如果选取地球为参照系,物体的速度为零,当然也就没有动能;如果选取太阳为参照系,则物体在随地球自转而做圆周运动的同时,还绕太阳公转,其动能不为零.因为速度是对地面的瞬时速度,因此动能是描述物体运动状态的物理量.考点二:动能定理【温故自查】概念:动能定理是表述了合外力做功和动能的变化之间的关系,合外力在一个过程中对物体所做的功,等于物体在这个过程中动能的.(1)对单个物体,动能定理可表述为:合外力做的功等于物体动能的变化(这里的合外力指物体受到的所有外力的合力,包括重力).表达式为:或W=ΔEk.(2)对于多过程、多外力的物体系统,动能定理也可以表述为:所有外力对物体做的等于物体动能的变化.实际应用时,后一种表述更好操作.因为它不必求合力,特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功都按照,就可以得到总功.【考点精析】对动能定理的理解(1)动能定理是把过程量(做功)和状态量(动能)联系在一起的物理规律.所以,无论求合外力做的功还是求物体动能的变化,就都有了两个可供选择的途径.(2)对外力对物体做的总功的理解:有的力促进物体运动,而有的力则阻碍物体运动,因此它们做的功就有正、负之分,总功指的是各外力做功的代数和;对于单一物体的单一物理过程,又因为W合=W1+W2+…=F合l.所以总功也可理解为合外力的功.即:如果物体受到多个共点力作用,则:W合=F合l;如果发生在多个物理过程中,不同过程中作用力的个数不相同,则:W合=W1+W2+…+Wx.(3)对该定理标量性的认识:因动能定理中各项均为标量,因此单纯速度方向的改变不影响动能的大小.如用细绳拉着一物体在光滑桌面上以绳头为圆心做匀速圆周运动的过程中,合外力方向指向圆心,与位移方向始终保持垂直,所以合外力做功为零,动能变化亦为零,其并不因速度方向的改变而改变.(4)对状态与过程关系的理解:功是伴随一个物理过程而产生的,是过程量;而动能是状态量.动能定理表示了过程量等于状态量的改变量的关系.【注意】 1.动能定理中所说的外力,既可以是重力、弹力、摩擦力,也可以是任何其他的力,动能定理中的W是指所有作用在物体上的外力的合力的功.2.动能定理的表达式是在物体受恒力作用且做直线运动的情况下得出的,但对于外力是变力,物体做曲线运动的情况同样适用.也就是说,动能定理适用于任何力作用下,以任何形式运动的物体为研究对象,具有普遍性.考点三:用动能定理求变力的功【温故自查】在某些问题中,由于F的大小或方向变化,不能直接用求解力的功,可运用动能定理求解,求出物体变化和其它的功,即可由ΔEk=W1+W2+…+Wn求得其中变力的功.【考点精析】用动能定理求解变力功的注意要点:(1)分析物体受力情况,确定哪些力是恒力,哪些力是变力.(2)找出其中恒力的功及变力的功.(3)运用动能定理求解.考点四:动能定理在物体系统中的运用【温故自查】物体间的一对相互作用力的功可以是,也可以是,还可以是.因此几个物体组成的物体系统所受的合外力的功不一定等于系统动能的.【考点精析】用动能定理解决问题时,所选取的研究对象可以是单个物体,也可以是多个物体组成的系统,当选取物体系统作为研究对象时,应注意以下几点:(1)当物体系统内的相互作用是杆、绳间的作用力,或是静摩擦力,或是刚性物体间相互挤压而产生的力,这两个作用与反作用力的功等于零,这时列动能定理方程时可只考虑物体系统所受的合外力的功即可.(2)当物体系统内的相互作用是弹簧、橡皮条的作用力,或是滑动摩擦力,两个作用力与反作用力的功不等于零,这时列动能定理方程时不但要考虑物体系统所受的合外力的功,还要考虑物体间的相互作用力的功.(3)物体系统内各个物体的速度不一定相同,列式时要分别表达不同物体的动能.考点五:动能定理分析复杂过程问题【温故自查】物体在某个运动过程中包含有几个运动性质不同的小过程(如加速、减速的过程),此时可以考虑,也可对考虑,对整个过程列式则可使问题简化.【考点精析】多过程求解问题的策略:(1)分析物体运动,确定物体运动过程中不同阶段的受力情况,分析各个力的功.(2)分析物体各个过程中的初末速度,在不同阶段运用动能定理求解,此为分段法,这种方法解题时需分清物体各阶段的运动情况,列式较多.(3)如果能够得到物体全过程初末动能的变化及全过程中各力的功,用全过程列一个方程即可,此方法较简洁.题型一用动能定理判断能量间的转换关系命题规律根据动能定理判断机械能、动能、势能及其他形式的能之间的相互转化情况.[考例1](2009·上海)小球由地面竖直上抛,上升的最大高度为H,设所受阻力大小恒定,地面为零势能面.在上升至离地高度h处,小球的动能是势能的2倍,在下落至离地高度h处,小球的势能是动能的2倍,则h等于()A.H/9B.2H/9C.3H/9 D.4H/9【变式练习】:如图所示,卷扬机的绳索通过定滑轮用力F拉位于粗糙斜面上的木箱,使之沿斜面加速向上运动.在移动过程中,下列说法正确的是()A.F对木箱做的功等于木箱增加的动能与木箱克服摩擦力所做的功之和B.F对木箱做的功等于木箱克服摩擦力和克服重力所做的功之和C.木箱克服重力做的功等于木箱增加的重力势能D.F对木箱做的功等于木箱增加的机械能与木箱克服摩擦力做的功之和题型二动能定理在多阶段过程中的应用命题规律物体运动过程较多时利用动能定理分析计算物体受力、位移、速度或某力做功等[考例2]某兴趣小组对一辆自制小遥控车的性能进行研究.他们让这辆小车在水平的直轨道上由静止开始运动,并将小车运动的全过程记录下来,通过处理转化为v-t图象,如图所示(除2s~10s时间段内的图象为曲线外,其余时间段图象均为直线).已知小车运动的过程中,2s~14s时间段内小车的功率保持不变,在14s末停止遥控而让小车自由滑行.小车的质量为2kg,可认为在整个过程中小车所受到的阻力大小不变.求:(1)小车所受到的阻力大小;(2)小车匀速行驶阶段的功率;(3)小车在加速运动过程中位移的大小.【变式训练】:(2009·安徽)过山车是游乐场中常见的设施.下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B、C、D分别是三个圆形轨道的最低点,B、C间距与C、D间距相等,半径R1=2.0m、R2=1.4m.一个质量为m=1.0kg的小球(视为质点),从轨道的左侧A点以v0=12.0m/s的初速度沿轨道向右运动,A、B间距L1=6.0m.小球与水平轨道间的动摩擦因数μ=0.2,圆形轨道是光滑的.假设水平轨道足够长,圆形轨道间不相互重叠.重力加速度取g=10m/s2,计算结果保留小数点后一位数字.试求:(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小;(2)如果小球恰能通过第二圆形轨道,B、C间距L应是多少;(3)在满足(2)的条件下,如果要使小球不能脱离轨道,在第三个圆形轨道的设计中,半径R3应满足的条件;小球最终停留点与起点A的距离.题型三用动能定理求变力做功命题规律物体在变力的作用下运动,求物体在运动过程中的瞬时速度或力对物体所做的功.[考例3](2009·北京海淀区模拟)如图甲所示,一质量为m=1kg的物块静止在粗糙水平面上的A点,从t=0时刻开始,物块在受按如图乙所示规律变化的水平力F作用下向右运动,第3s末物块运动到B点时速度刚好为0,第5s末物块刚好回到A点,已知物块与粗糙水平面之间的动摩擦因数μ=0.2,(g取10m/s2)求:(1)AB间的距离;(2)水平力F在5s时间内对物块所做的功.【变式训练】:一铅球运动员奋力一推,将8kg的铅球推出10m远.铅球落地后将地面击出一坑,有经验的专家根据坑的深度形状认为铅球落地时的速度大致是12m/s.若铅球出手时的高度是2m,求推球过程中运动员对球做的功大约是多少焦耳?题型四动能定理与图像结合的问题命题规律考查识别图象,从而找出解题的信息及数据,达到解题的目的.[考例4](2009·江苏金坛模拟)如图甲所示,一条轻质弹簧左端固定在竖直墙面上,右端放一个可视为质点的小物块,小物块的质量为m=1.0kg,当弹簧处于原长时,小物块静止于O点,现对小物块施加一个外力F,使它缓慢移动,将弹簧压缩至A点,压缩量为x=0.1m,在这一过程中,所用外力F与压缩量的关系如图乙所示.然后撤去F释放小物块,让小物块沿桌面运动,已知O点至桌边B点的距离为L=2x水平桌面的高为h=5.0m,计算时,可用滑动摩擦力近似等于最大静摩擦力.(g取10m/s2)求:(1)在压缩弹簧过程中,弹簧存贮的最大弹性势能;(2)小物块到达桌边B点时速度的大小;(3)小物块落地点与桌边B的水平距离.【变式训练】如图(1)所示,静置于光滑水平面上坐标原点处的小物块,在水平拉力F作用下,沿x轴方向运动,拉力F随物块所在位置坐标x的变化关系如图(2)所示,图线为半圆.则小物块运动到x0处时的动能为()。
动能定理1.如图1所示,质量为m 的物体静止于倾角为α的斜面体上,现对斜面体施加一水平向左的推力F ,使物体随斜面体一起沿水平面向左匀速移动x ,则在此匀速运动过程中斜面体对物体所做的功为 ( )A .FxB .mgx cos αsin αC .mgx sin αD .02.如图2所示,固定斜面倾角为θ,整个斜面分为AB 、BC 两段,AB =2BC .小物块P (可视为质点)与AB 、BC 两段斜面间的动摩擦因数分别为μ1、μ2.已知P 由静止开始从A 点释放,恰好能滑动到C 点而停下,那么θ、μ1、μ2间应满足的关系是 ( )A .tan θ=μ1+2μ23B .tan θ=2μ1+μ23C .tan θ=2μ1-μ2D .tan θ=2μ2-μ13.人用手托着质量为m 的物体,从静止开始沿水平方向运动,前进距离x 后,速度为v (物体与手始终相对静止),物体与人手掌之间的动摩擦因数为μ,则人对物体做的功为( )A .mgxB .0C .μmgx D.12m v 24.构建和谐型、节约型社会深得民心,节能器材遍布于生活的方方面面.自动充电式电动车就是很好的一例.电动车的前轮装有发电机,发电机与蓄电池连接.当骑车者用力蹬车或电动自行车自动滑行时,自行车就可以连通发电机向蓄电池充电,将其他形式的能转化成电能储存起来.现有某人骑车以500 J 的初动能在粗糙的水平路面上滑行,第一次关闭自动充电装置,让车自由滑行,其动能随位移变化关系如图3中图线①所示;第二次启动自动充电装置,其动能随位移变化关系如图线②所示,则第二次向蓄电池所充的电能是 ( ) A .200 J B .250 J C .300 J D .500 J5.以初速度v 0竖直向上抛出一质量为m 的小物块.假定物块所受的空气阻力F f 大小不变.已知重力加速度为g ,则物块上升的最大高度和返回到原抛出点的速率分别为 ( )A.v 022g (1+F fmg)和v 0mg -F fmg +F f图3B.v 022g (1+F fmg )和v 0mgmg +F fC.v 022g (1+2F fmg )和v 0mg -F fmg +F fD.v 022g (1+2F fmg)和v 0mgmg +F f6.如图4所示,板长为l ,板的B 端静放有质量为m 的小物体P ,物体与板间的动摩擦因数为μ,开始时板水平,若缓慢转过一个小角度α的过程中,物体保持与板相对静止,则这个过程中 ( ) A .摩擦力对P 做功为μmg cos α·l (1-cos α) B .摩擦力对P 做功为mg sin α·l (1-cos α) C .支持力对P 做功为mgl sin α D .板对P 做功为mgl sin α7.如图5所示,质量相等的物体A 和物体B 与地面的动摩擦因数相等,在力F 的作用下,一起沿水平地面向右移动x ,则 ( ) A .摩擦力对A 、B 做功不相等 B .A 、B 动能的增量相同C .F 对A 做的功与F 对B 做的功相等D .合外力对A 做的功与合外力对B 做的功不相等8.两根光滑直杆(粗细可忽略不计)水平平行放置,一质量为m 、半径为r 的均匀细圆环套在两根直杆上,两杆之间的距离为3r ,图6甲所示为立体图,图6乙所示为侧视图.现将两杆沿水平方向缓慢靠近直至两杆接触为止,在此过程中 ( )图6A .每根细杆对圆环的弹力均增加B .每根细杆对圆环的最大弹力均为mgC .每根细杆对圆环的弹力均不做功D .每根细杆对圆环所做的功均为-14mgr9.如图7所示,质量为M 、长度为L 的木板静止在光滑的水平面上,质量为m 的小物体(可视为质点)放在木板上最左端,现用一水平恒力F 作用在小物体上,使物图图体从静止开始做匀加速直线运动.已知物体和木板之间的摩擦力为F f .当物体滑到木板的最右端时,木板运动的距离为x ,则在此过程中 ( ) A .物体到达木板最右端时具有的动能为(F -F f )(L +x ) B .物体到达木板最右端时,木板具有的动能为F f x C .物体克服摩擦力所做的功为F f L D .物体和木板增加的机械能为Fx8.质量为 5×105kg 的机车,以恒定的功率沿平直轨道行驶,在3minl 内行驶了1450m ,其速度从10m/s 增加到最大速度15m/s .若阻力保持不变,求机车的功率和所受阻力的数值.10. (11分)如图8所示,竖直固定放置的斜面DE 与一光滑的圆弧轨道ABC 相连,C 为切点,圆弧轨道的半径为R ,斜面的倾角为θ.现有一质量为m 的滑块从D 点无初速下滑,滑块可在斜面和圆弧轨道之间做往复运动,已知圆弧轨道的圆心O 与A 、D 在同一水平面上,滑块与斜面间的动摩擦因数为μ,求:(1)滑块第一次至左侧AC 弧上时距A 点的最小高度差h . (2)滑块在斜面上能通过的最大路程s .11.(12分)右端连有光滑弧形槽的水平桌面AB 长L =1.5 m ,如图9所示.将一个质量为m =0.5 kg 的木块在F =1.5 N 的水平拉力作用下,从桌面上的图A端由静止开始向右运动,木块到达B端时撤去拉力F,木块与水平桌面间的动摩擦因数μ=0.2,取g=10 m/s2.求:图9(1)木块沿弧形槽上升的最大高度;(2)木块沿弧形槽滑回B端后,在水平桌面上滑动的最大距离.12.(14分)质量m=1 kg的物体,在水平拉力F(拉力方向与物体初速度方向相同) 的作用下,沿粗糙水平面运动,经过位移4 m时,拉力F停止作用,运动到位移是8 m时物体停止,运动过程中E k-x的图线如图10所示.求:(g取10 m/s2)(1)物体的初速度多大?(2)物体和平面间的动摩擦因数为多大?(3)拉力F的大小.【参考答案与详细解析】一、单项选择题1. D2. B3.D4.A5.A 二、多项选择题6. CD7. AB 8. BD 9. AB 三、计算题10. 解析:(1)由动能定理得: mgh -μmg cos θ·R /tan θ=0 得h =μR cos 2θ/sin θ=μR cos θcot θ(2)滑块最终至C 点的速度为0时对应在斜面上的总路程最大,由动能定理得 mgR cos θ-μmg cos θ·s =0 得:s =R μ.答案:(1)μR cos θcot θ (2)Rμ11.解析:(1)由动能定理得: FL -F f L -mgh =0其中F f =μF N =μmg =0.2×0.5×10 N =1.0 N 所以h =FL -F f L mg =1.5×(1.5-1.0)0.5×10 m =0.15 m(2)由动能定理得: mgh -F f x =0所以x =mgh F f =0.5×10×0.151.0 m =0.75 m答案:(1)0.15 m (2)0.75 m12.解析:(1)从图线可知初动能为2 J , E k0=12m v 2=2 J ,v =2 m/s.(2)在位移4 m 处物体的动能为10 J ,在位移8 m 处物体的动能为零,这段过程中物体克服摩擦力做功. 设摩擦力为F f ,则 -F f x 2=0-10 J =-10 J F f =-10-4 N =2.5 N因F f =μmg 故μ=F f mg =2.510=0.25.(3)物体从开始到移动4 m 这段过程中,受拉力F 和摩擦力F f 的作用,合力为F -F f , 根据动能定理有 (F -F f )·x 1=ΔE k故得F =ΔE k x 1+F f =(10-24+2.5) N =4.5 N.答案:(1)2 m/s (2)0.25 (3)4.5 N。
物理动能与动能定理题20套(带答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,两物块A 、B 并排静置于高h=0.80m 的光滑水平桌面上,物块的质量均为M=0.60kg .一颗质量m=0.10kg 的子弹C 以v 0=100m/s 的水平速度从左面射入A ,子弹射穿A 后接着射入B 并留在B 中,此时A 、B 都没有离开桌面.已知物块A 的长度为0.27m ,A 离开桌面后,落地点到桌边的水平距离s=2.0m .设子弹在物块A 、B 中穿行时受到的阻力大小相等,g 取10m/s 2.(平抛过程中物块看成质点)求:(1)物块A 和物块B 离开桌面时速度的大小分别是多少; (2)子弹在物块B 中打入的深度;(3)若使子弹在物块B 中穿行时物块B 未离开桌面,则物块B 到桌边的最小初始距离.【答案】(1)5m/s ;10m/s ;(2)23.510B m L -=⨯(3)22.510m -⨯【解析】 【分析】 【详解】试题分析:(1)子弹射穿物块A 后,A 以速度v A 沿桌面水平向右匀速运动,离开桌面后做平抛运 动: 212h gt =解得:t=0.40s A 离开桌边的速度A sv t=,解得:v A =5.0m/s 设子弹射入物块B 后,子弹与B 的共同速度为v B ,子弹与两物块作用过程系统动量守恒:0()A B mv Mv M m v =++B 离开桌边的速度v B =10m/s(2)设子弹离开A 时的速度为1v ,子弹与物块A 作用过程系统动量守恒:012A mv mv Mv =+v 1=40m/s子弹在物块B 中穿行的过程中,由能量守恒2221111()222B A B fL Mv mv M m v =+-+① 子弹在物块A 中穿行的过程中,由能量守恒22201111()222A A fL mv mv M M v =--+②由①②解得23.510B L -=⨯m(3)子弹在物块A 中穿行过程中,物块A 在水平桌面上的位移为s 1,由动能定理:211()02A fs M M v =+-③子弹在物块B 中穿行过程中,物块B 在水平桌面上的位移为s 2,由动能定理2221122B A fs Mv Mv =-④ 由②③④解得物块B 到桌边的最小距离为:min 12s s s =+,解得:2min 2.510s m -=⨯考点:平抛运动;动量守恒定律;能量守恒定律.2.某小型设备工厂采用如图所示的传送带传送工件。
动能 动能定理专题
1. (多选)下列关于运动的某个物体所受的合外力、合外力做功和动能变化的关系,正确的是 ( )
A. 如果物体所受的合外力为零,那么,合外力对物体做的功一定为零
B. 如果合外力对物体所做的功为零,则合外力一定为零
C. 如果合外力对物体所做的功不为零,则物体动能一定发生变化
D. 如果合外力对物体所做的功为零,则物体动能一定发生变化
2. (多选)一质量为1 kg 的质点静止于光滑水平面上,从t =0时起,第1 s 内受到2 N 的水平外力作用,第2 s 内受到同方向的1 N 的外力作用。
下列判断正确的是
A. 0~2 s 内外力的平均功率为94 W
B. 第2 s 内外力所做的功为54
J C. 第2 s 末外力的瞬时功率最大 D. 第1 s 内与第2 s 内质点动能增加量的比值为45
3. (多选)一质点开始时做匀速直线运动,从某时刻起受到一恒力作用。
此后,该质点的动能可能( )
A. 一直增大
B. 先逐渐减小至零,再逐渐增大
C. 先逐渐增大至某一最大值,再逐渐减小
D. 先逐渐减小至某一非零的最小值,再逐渐增大
4. [2014·济南高一检测]如图所示,木块m 沿固定的光滑斜面从静止开始下滑,当下降h 高度时,重力的瞬时功率是 ( )
A. mg 2gh
B. mg cos θ2gh
C. mg sin θgh
2
D. mg sin θ2gh 5. [2014·唐山高一检测]物体在合外力作用下做直线运动的v -t 图象如图所示。
下列表述正确的是 ( )
A. 在0~1 s 内,合外力做正功
B. 在0~2 s 内,合外力总是做负功
C. 在1 s ~2 s 内,合外力不做功
D. 在0~3 s 内,合外力总是做正功
6. 一人用力踢质量为1 kg 的皮球,使球由静止以10 m/s
的速度飞出,假定人踢球瞬间对球平均作用力是200 N ,球在
水平方向运动了20 m 停止,那么人对球所做的功为( )
A. 50 J
B. 500 J
C. 4000 J
D. 无法确定
7. (多选)[2014·徐州高一检测]甲、乙两个质量相同的物体,用大小相等的力F 分别拉它们在水平面上从静止开始运动相同的距离s 。
如图所示,甲在光滑面上,乙在粗糙面上,则下列关于力F 对甲、乙两物体做的功和甲、乙两物体获得的动能的说法中正确的是
A. 力F 对甲物体做功多
B. 力F 对甲、乙两个物体做的功一样多
C. 甲物体获得的动能比乙大
D. 甲、乙两个物体获得的动能相同
8. [2014·大纲全国卷]一物块沿倾角
为θ的斜坡向上滑动。
当物块的初速度为v 时,上升的最大高度为H ,如图所示;当物块的初速度为v
2
时,上升的最大高度记为h 。
重力加速度大小为g 。
物块与斜坡间的动摩擦因数和h 分别为( )
A .tan θ和H 2
B .(v 22gH -1)tan θ和H 2
C .tan θ和H 4
D .(v 22gH -1)tan θ和H 4 9.小球由地面竖直上抛,上升的最大高度为H ,设所受阻力大小恒定,地面为零势能面。
在上升至离地高度59
H 处,小球的动能和势能相等,则物体所受阻力的大小是( ) A. 12mg B. 13mg C. 14mg D. 15
mg 10.如图所示,质量为m 的物体静放在水平光滑平台上,系在物体上的绳子跨过光滑的定滑轮由地面以速度v 0向右匀速走动的人拉着,设人从地面上且从平台的边缘开始向右行至绳和水平方向成30°角处,在此过程中人所做的功为( )
A.mv 02/2
B.mv 02
C.2mv 02/3
D.3mv 02/8
10. 如图所示,ab 是水平轨道,bc 是位于竖直平面内的半圆形光滑轨道,半径R =0.225 m ,在b 点与水平面相切,滑块从水平轨道上距离b 点1.2 m 的a 点以初速度v 0=6 m/s 向右运动,经过水平轨道和半圆轨道后从最高点c 飞出,最后刚好落回轨道上的a 点,重力加
速度g 取10 m/s 2,求:
(1)滑块从c 点飞出时速度的大小;
(2)水平轨道与滑块间的动摩擦因数。
11.将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。
(取g=10m/s 2)
12. 如图所示,AB 、BC 、CD 三段轨道交接处均由很小的圆弧平滑连接,其中轨道AB 、CD 段是光滑的,水平轨道BC 的长度L =5 m, 轨道CD 足够长且倾角θ=37°, A 点离轨道BC 的高度H =4.3 m 。
质量为m 的小滑块自A 点由静止释放,已知小滑块与轨道BC 间的动摩
擦因数μ=0.5,重力加速度g 取10 m/s 2, sin37°=0.6,cos37°=0.8。
求:
(1)小滑块第1次到达C 点时的速度大小;
(2)小滑块第1次与第2次通过C 点的时间间隔;
(3)小滑块最终停止位置距B 点的距离。
132. 滑板运动已成为青少年所喜爱的一种体育运动,如图所示,某同学正在进行滑板运动。
图中AB 段路面是水平的,BCD 是一段半径R =20 m 的拱起的圆弧路面,圆弧的最高点C 比AB 段路面高出h =1.25 m 。
已知人与滑板的总质量为M =60 kg 。
该同学自A 点由静
止开始运动,在AB路段他单腿用力蹬地,到达B点前停止蹬地,然后冲上圆弧路段,结果到达C点时恰好对地面压力为零,不计滑板与各路段之间的摩擦力及经过B点时的能量损失(g取10 m/s2)。
求:(1)该同学到达C点时的速度;
(2)该同学在AB段所做的功。
14.有一质量为0.2kg的物块,从长为4m,倾角为30°光滑斜面顶端处由静止开始沿斜面滑下,斜面底端和水平面的接触处为很短的圆弧形,如图所示.物块和水平面间的滑动摩擦因数为0.2求:
(1)物块在水平面能滑行的距离;
(2)物块克服摩擦力所做的功.(g取10m/s2)。