第三节频率特性的对数坐标图
- 格式:ppt
- 大小:1.92 MB
- 文档页数:36
第三节 对数坐标图(伯德图)对数幅频特性曲线:前面提到过伯德图中对数幅频特性曲线的纵坐标采用()()20lg dB L w G j =w ,这是因为传递函数总可以分解为因子相乘、除的形式,从而其频率传递函数的模必然由相应各因子的模相乘、除得之,取其对数可将乘、除变为加、减而便于计算,至于前面的系数“20”则是沿用电信技术的增益表达式而来的,这样就使得()L w 的单位成为分贝“”。
dB 横坐标按自变量的常用对数进行刻度。
原因一方面可使变动范围得到扩展,在有限的图面上比起均匀刻度来能表现出更大的变动范围;另一方面,w w ()L w 中往往都含有lg 因子,采用自变量的常用对数刻度,可使自变w w量的对数曲线成为直线,便于绘制。
对数相频特性曲线:纵坐标()(w G j )w φ=∠均匀刻度;横坐标也按自变量的常用对数进行刻度。
w 若在横轴上取两点满足2110w w =,则距离为()2121lg lg lg lg101w w w w −===。
即横坐标每变化一个单位,相当于频率变化10倍,叫做一个“十倍频程”,用“”表示。
dec在标注横轴时,往往只标出w 的值,并不标出值。
lg w 这种计量坐标系称为半对数坐标系。
若212w w =,则距离为:()2121lg lg lg lg 20.301w w w w −=== 这表示横坐标每变化一个单位,相当于频率变化一倍,叫做一个“倍频程”,用“”表示。
oct一、典型环节的对数坐标图1、比例环节(K )()G jw K =(K 为常数) ()()20lg 20lg L w G jw K==() dB ()()()011010Lw K K L w K L w ⎫==⎧⎪⎪>>⎨⎬⎪⎪<<⎩⎭()()0w G jw φ=∠=jw w()()()===−(dB)20lg20lg120lgL w G jw w w()20lg L w w =−()()011020L w w w L w ⎫==⎧⎪⎨⎬==−⎩⎪⎭()()90w G jw φ=∠=− ()L w 曲线为过(1,0)点,斜率为每十倍频程下降的一条直线,记为“20dB 20dB dec −”。
目录第一章自动控制系统的基本原理第一节控制系统的工作原理和基本要求第二节控制系统的基本类型第三节典型控制信号第四节控制理论的内容和方法第二章控制系统的数学模型第一节机械系统的数学模型第二节液压系统的数学模型第三节电气系统的数学模型第四节线性控制系统的卷积关系式第三章拉氏变换第一节傅氏变换第二节拉普拉斯变换第三节拉普拉斯变换的基本定理第四节拉普拉斯逆变换第四章传递函数第一节传递函数的概念与性质第二节线性控制系统的典型环节第三节系统框图及其运算第四节多变量系统的传递函数第五章时间响应分析第一节概述第二节单位脉冲输入的时间响应第三节单位阶跃输入的时间响应第四节高阶系统时间响应第六章频率响应分析第一节谐和输入系统的定态响应第二节频率特性极坐标图第三节频率特性的对数坐标图第四节由频率特性的实验曲线求系统传递函数第七章控制系统的稳定性第一节稳定性概念第二节劳斯判据第三节乃奎斯特判据第四节对数坐标图的稳定性判据第八章控制系统的偏差第一节控制系统的偏差概念第二节输入引起的定态偏差第三节输入引起的动态偏差第九章控制系统的设计和校正第一节综述第二节希望对数幅频特性曲线的绘制第三节校正方法与校正环节第四节控制系统的增益调整第五节控制系统的串联校正第六节控制系统的局部反馈校正第七节控制系统的顺馈校正第一章 自动控制系统的基本原理定义:在没有人的直接参与下,利用控制器使控制对象的某一物理量准确地按照预期的规律运行。
第一节 控制系统的工作原理和基本要求 一、 控制系统举例与结构方框图例1. 一个人工控制的恒温箱,希望的炉水温度为100C °,利用 表示函数功能的方块、信号线,画出结构方块图。
图1人通过眼睛观察温度计来获得炉内实际温度,通过大脑分析、比较,利用手和锹上煤炭助燃。
煤炭给定的温度100 C手和锹眼睛实际的炉水温度比较图2例2. 图示为液面高度控制系统原理图。
试画出控制系统方块图和相应的人工操纵的液面控制系统方块图。