4.5-2系统开环对数幅频特性的简便画法.
- 格式:pdf
- 大小:185.62 KB
- 文档页数:4
开环幅相频率特性曲线和对数相频特性曲线的完整画法一般情况下,以X轴为频率,Y轴为幅度和相位,将开环幅相特性曲
线画成两条曲线,分别为幅度特性曲线和相位特性曲线。
1.幅度特性曲线:以频率(角频率)为X轴,以幅度为Y轴,表示系
统输出信号与输入信号之间的幅度比值或增益。
曲线上沿频率增加时,增
益也会增大,但是增大的幅度会减小,因此,在此曲线上,增益逐渐降低,形成一个弓形曲线。
2.相位特性曲线:以频率(角频率)为X轴,以相位为Y轴,表示系
统输出信号与输入信号之间的相位差。
曲线上沿频率增加时,相位差也会
逐渐增大,相位曲线与幅度曲线的关系是一种折线图,但相位差的增加是
随着频率的函数变化。
对数相频特性曲线:
以对数频率(角对数频率)为X轴,以幅度为Y轴,表示系统输出信
号与输入信号之间的幅度比值或增益。
曲线上沿频率增加时,增益也会增大,但是增大的幅度会减小,因此,在此曲线上,增益也会逐渐减小,形
成一个弓形曲线。
5.3 系统开环频率特性的绘制对自动控制系统进行频域分析时,通常是根据开环系统的频率特性来判断闭环系统的稳定性和 估算闭环系统时域响应的各项性能指标,或者根据开环系统的频率特性绘制闭环系统的频率特性, 然后再分析及估算时域性能指标。
因此,掌握开环系统的频率特性曲线的绘制和特点是十分重要的。
5.3.1 开环幅相曲线的绘制开环系统的幅相频率特性曲线简称为开环幅相曲线。
准确的开环幅相曲线可以根据系统的开环 幅频特性和相频特性的表达式,用解析计算法绘制。
显然,这种方法比较麻烦。
在一般情况下,只 需要绘制概略开环幅相曲线,概略开环幅相曲线的绘制方法比较简单,但是概略曲线应保持准确曲 线的重要特征,并且在要研究的点附近有足够的准确性。
下面首先介绍幅相频率特性曲线的一般规律与特点, 然后举例说明概略绘制开环幅相曲线的方 法。
设系统开环传递函数的一般形式为式中,K 为开环增益;v 为系统中积分环节的个数。
则系统的开环频率特性为mK (j i 1)G(j )H(j ) 七(5-50)(j )v (j T j 1)j 11.开环幅相曲线的起点 在低频段当0时,由式(5-50)可得由式(5-51)可知,当0时,开环幅相曲线的起点取决于开环传递函数中积分环节的个数v 和开环增益K ,参见图5-23 (a )。
0型(v =0)系统,开环幅相曲线起始于实轴上的 (K, j0)点。
1型(v =1)系统,开环幅相曲线起始于相角为90的无穷远处。
当于与虚轴的平行的直线,其横坐标G(s)H(s)K ( i S 1)i 1 n vs v(T j S 1)j 1(n m)(5-49)lim 0G(j )H(j ))vlimeJ( v90)(5-51)0时,曲线渐近图5-23不同类型系统的幅相频率特性即开环幅相曲线以(n m) 90方向终止于坐标原点,如图5-23 (b )所示。
3.开环幅相曲线与实轴的交点 开环幅相曲线与实轴的交点频率X 可由下式求出,即令式(5-50)的虚部为零Im G(j )H(j )(5-54)将求出的交点频率x 代入式(5-50)的实部,即ReG( j x )H (j x )(5-55)由式(5-55)可计算出开环幅相曲线与实轴的交点坐标值。
绘制开环系统对数相频特性曲线的简便方法
王泽南
【期刊名称】《合肥工业大学学报(自然科学版)》
【年(卷),期】2002(025)004
【摘要】文章给出了绘制开环系统对数相频特性曲线的简便方法.构造了各典型环节的近似线,使整个开环系统对数相频特性近似线的绘制可以连续地一次完成,最终的图形非常简洁,有规则的折线取代了弯曲线.这种简便方法使得构成Bo de图的幅频与相频两种曲线的绘制方法完全取得一致,同时大大提高了开环对数相频特性曲线的应用价值.
【总页数】4页(P574-577)
【作者】王泽南
【作者单位】合肥工业大学,生物与食品工程学院,安徽,合肥,230009
【正文语种】中文
【中图分类】O231
【相关文献】
1.绘制系统开环对数频率特性曲线的教学方法与技巧 [J], 谷雷
2.开环幅相频率特性曲线和对数相频特性曲线的完整画法 [J], 胡应占;王兴举;薛丁箫
3.系统开环对数幅频特性曲线之渐近线的快速绘制法 [J], 张翔
4.绘制系统开环对数频率特性曲线的教学方法与技巧 [J], 谷雷;张清鹏
5.系统开环对数幅频特性曲线之渐近线的快速绘制法 [J], 刘爱荣
因版权原因,仅展示原文概要,查看原文内容请购买。
5-2 系统开环频率特性若系统开环传递函数由典型环节串联而成,即)()()()()(21s G s G s G s H s G n =开环频率特性为 )()()()()(21ωωωωωj G j G j G j H j G n =12()()()12()()()n j j j n G j eG j e G j e ϕωϕωϕωωωω=∏=∑==ni jini i ej G 1)(1)(ωϕω可见,系统开环幅频特性为∏==nj i j G j H j G 1)()()(ωωω开环相频特性为∑==∠=ni i j H j G 1)()()()(ωϕωωωϕ而系统开环对数幅频特性为∑∏=====ni i n i i j G j G j H j G L 11)(lg 20)(lg 20)()(lg 20)(ωωωωω由此可见,系统开环对数幅频特性等于各串联环节的对数幅频特性之和;系统开环相频特性等于各环节相频特性之和。
综上所述,应用对数频率特性,可使幅值乘、除的运算转化为幅值加、减的运算,且典型环节的对数幅频又可用渐近线来近似,对数相频特性曲线又具有奇对称性质,再考虑到曲线的平移和互为镜象特点,这样,一个系统的开环对数频率特性曲线是比较容易绘制的。
【例5-1】已知系统开环传递函数为)1)(10(100)(++=s s s s G试绘制该系统的开环对数频率特性曲线。
解(1) 首先将系统开环传递函数写成典型环节串联的形式,即)1)(11.0(100)(++=s s s s G可见,系统开环传递函数由以下三种典型环节串联而成:放大环节:10)(1=s G积分环节:s s G 1)(2=惯性环节:)1(1)(3+=s s G 和)11.0(1)(4+=s s G(2) 分别作出各典型环节的对数幅频、相频特性曲线,如图5-19所示。
为了图形清晰,有时略去直线斜率单位。
(3) 分别将各典型环节的对数幅频、相频特性曲线相加,即得系统开环对数幅频、相频特性曲线,如图5-19中实线所示。