六自由度转动关节工业机器人调查报告
- 格式:docx
- 大小:39.57 KB
- 文档页数:8
一、实习背景随着科技的飞速发展,机器人技术已经广泛应用于工业、医疗、科研等领域。
为了提高我国在机器人领域的竞争力,培养具备机器人仿真实习能力的人才,我选择了六轴机器人仿真实习作为我的实习课题。
二、实习目的通过本次实习,我旨在:1. 了解六轴机器人的基本结构、工作原理及运动学参数;2. 掌握六轴机器人仿真软件的使用方法,如RobotStudio等;3. 熟悉机器人编程语言,如C#等;4. 培养实际操作能力和团队协作精神。
三、实习内容1. 六轴机器人基本结构及工作原理六轴机器人是一种多自由度关节型机器人,由基座、大臂、小臂、腕部、手腕和末端执行器等部分组成。
其工作原理是通过关节转动,使末端执行器在三维空间内实现精确的运动。
2. 六轴机器人仿真软件的使用在本次实习中,我主要使用了RobotStudio软件进行六轴机器人仿真。
RobotStudio是一款由ABB公司开发的机器人仿真软件,具有以下特点:(1)强大的仿真功能:可以模拟机器人的运动轨迹、碰撞检测、运动学分析等;(2)丰富的工具库:提供多种工具,如机器人编程、机器人仿真、机器人离线编程等;(3)用户友好的界面:操作简单,易于上手。
3. 机器人编程语言在本次实习中,我学习了C#语言,用于编写六轴机器人的控制程序。
C#语言是一种面向对象的编程语言,具有易学易用、功能强大等特点。
4. 实际操作能力培养在实习过程中,我通过实际操作,掌握了以下技能:(1)机器人硬件组装与调试;(2)机器人编程与调试;(3)机器人运动轨迹规划与仿真;(4)机器人与外部设备通信。
四、实习成果1. 成功组装了一台六轴机器人模型,并进行了调试;2. 使用C#语言编写了机器人控制程序,实现了机器人的基本运动;3. 利用RobotStudio软件对机器人进行了仿真,验证了控制程序的正确性;4. 参与了团队项目,培养了团队协作精神。
五、实习体会1. 通过本次实习,我对六轴机器人的基本结构、工作原理及运动学参数有了更深入的了解;2. 掌握了RobotStudio软件的使用方法,提高了自己的实际操作能力;3. 学习了C#语言,为今后从事机器人相关领域的工作打下了基础;4. 培养了团队协作精神,提高了自己的沟通能力。
六轴工业机器人模块实验报告六轴工业机器人模块实验报告一、实验背景六自由度工业机器人具有高度得灵活性与通用性,用途十分广泛。
本实验就是在开放得六自由度机器人系统上,采用嵌入式多轴运动控制器作为控制系统平台,实现机器人得运动控制。
通过示教程序完成机器人得系统标定。
学习采用C++编程设计语言编写机器人得基本控制程序,学习实现六自由度机器人得运动控制得基本方法。
了解六自由度机器人在机械制造自动化系统中得应用。
在当今高度竞争得全球市场,工业实体必须快速增长才能满足其市场需求。
这意味着,制造企业所承受得压力日益增大,既要应付低成本国家得对手,还要面临发达国家得劲敌,二后者为增强竞争力,往往不惜重金改良制造技术,扩大生产能力。
机器人就是开源节流得得利助手,能有效降低单位制造成本。
只要给定输入成值,机器人就可确保生产工艺与产品质量得恒定一致,显著提高产量。
自动化将人类从枯燥繁重得重复性劳动中解放出来,让人类得聪明才智与应变能力得以释放,从而生产更大得经济回报。
二、实验过程1、程序点0——开始位置把机器人移动到完全离开周边物体得位置,输入程序点 0。
按下手持操作示教器上得【命令一览】键,这时在右侧弹出指令列表菜单如图:按手持操作示教器【下移】键,使{移动 1}变蓝后,按【右移】键,打开{移动1}子列表,MOVJ 变蓝后,按下【选择】键,指令出现在命令编辑区。
修改指令参数为需要得参数,设置速度,使用默认位置点 ID 为 1。
(P1 必须提前示教好)。
按下手持操作示教器上得【插入】键,这时插入绿色灯亮起。
然后再按下【确认】键,指令插入程序文件记录列表中。
此时列表内容显示为:MOVJ P=1 V=25 BL=0 (工作原点)2、程序点1——抓取位置附近(抓取前)位置点1必须选取机器人接近工件时不与工件发生干涉得方向、位置。
(通常在抓取位置得正上方)按下手持操作示教器上得【命令一览】键按手持操作示教器【下移】键,使{移动 1}变蓝后,按【右移】键,打开{移动 1}子列表,MOVJ 变蓝后,按下【选择】键,指令出现在命令编辑区。
工业机器人实验报告篇一:工业机器人实验报告工业机器人实验报告成绩批阅人实验名称:机器人认知实验实验地点指导教师小组成员实验日期班报告级人一、实验目的:二、实验设备及仪器三、六自由度工业机器人机构简图四、思考题1. 说明工业机器人的基本组成及各部分之间的关系。
第 1 页2. M-6iB机器人机械部分主要包括哪几部分?指出控制姿态与控制手腕动作的轴。
第 2 页工业机器人实验报告成绩批阅人实验名称:机器人编程实验实验地点指导教师小组成员实验日期班报告级人一、实验目的:二、实验设备及仪器三、实验步骤四、程序说明动作任务,记下动作程序,并在程序后面做适当的注解说明。
第 3 页五、思考题1.简述工业机器人在实际生产运用中采用示教控制与其它控制方式相比有什么优点?2.回忆本次实验过程,你从中学到了哪些知识。
第 4 页篇二:工业机器人实验报告本科生实验报告实验课程机器人技术基础学院名称核技术与自动化工程学院专业名称机械工程及自动化学生姓名学生学号指导教师实验地点JB201 实验成绩二〇 15 年 5 月二〇 15 年 5 月填写说明1、适用于本科生所有的实验报告(印制实验报告册除外);2、专业填写为专业全称,有专业方向的用小括号标明;3、格式要求:①用A4纸双面打印(封面双面打印)或在A4大小纸上用蓝黑色水笔书写。
②打印排版:正文用宋体小四号,1.5倍行距,页边距采取默认形式(上下2.54cm,左右2.54cm,页眉1.5cm,页脚1.75cm)。
字符间距为默认值(缩放100%,间距:标准);页码用小五号字底端居中。
③具体要求:题目(二号黑体居中);摘要(“摘要”二字用小二号黑体居中,隔行书写摘要的文字部分,小4号宋体);关键词(隔行顶格书写“关键词”三字,提炼3-5个关键词,用分号隔开,小4号黑体);正文部分采用三级标题;第1章××(小二号黑体居中,段前0.5行)1.1 ×××××小三号黑体×××××(段前、段后0.5行)参考文献(黑体小二号居中,段前0.5行),参考文献用五号宋体,参照《参考文献著录规则(GB/T 7714-XX)》。
六自由度机械手实验报告学院:机械工程学院专业:机械设计制造及其自动化班级:机自114学号:********学生姓名:郭2014年12月30日六自由度机械手实验报告一、机械手介绍六自由度机器手是由六个关节组成,每个关节上安装一个电动机,通过控制每个电动机旋转,就可以实现机械手臂的空间运动。
本实验做的六自由度的机械手臂是能实现物品的抓取和移位的机械自动控制机构。
该六自由度机械手臂的底座能进行大角度转动,实现机械抓取物体的移位;关节的俯仰和摆动能实现机械手臂不同位置的抓取物体;手部关节部分关节的变换,手腕的末端安装一机械手,机械手具有开闭能力,能实现物体的抓取和放下。
每个关节自由度都是用电动机转动来实现机械手臂的转动、俯仰和摆动等运动。
六自由度机械手臂每个关节处都有一个小型电机控制,分别能实现个关节的转动、俯仰等动作。
各个电机用采用AT89S52单片机片控制,通过单片机输出程能实现六个电机按照规定角度运动,从而带动关节的运动。
二、机械手的结构1、机械部分本实验中六自由度机械手的机械系统包括机身、臂部、手腕、手部。
图1机械手臂的实物图图2机械手臂的结构简图系统共有6个自由度,分别是a.基座的回转、b.连杆一转动、c.连杆二转动、d..手腕转动、e.手腕旋转、f..手部开合。
前面三个关节确定手部的空间位置,后面三个关节确定手部的姿态。
图3 自由度2、控制部分1、人机通信模块控制系统是机器人的大脑,它的性能优劣直接影响到机器人的先进程度和功能强弱。
机械人控制涉及自动控制,计算机,传感器、人工智能、电子技术和机械等多学科的内容,是一项跨多个学科的综合性技术。
本实验机器人控制系统的硬件由单片机AT89S52、运动控制模块、驱动模块和通讯模块组成。
其单片机AT89S52模块如下图3.1所示,该模块由一块AT89S52单片机、串行口通信接口、转串口下载线连接接头、电源接口、开关、信号输出口Q等组成。
图4 单片机AT89S52模块图2、舵机驱动模块该舵机驱动模块采用的是parallax公司生产的16路舵机控制模块,其包括16路舵机控制线接口、单片机通信接口、舵机驱动电源接口、开关、复位键、控制芯片等部分组成。
工业机器人拆装实验报告学校:湖南大学学院:机械与运载工程学院专业:机自1201姓名:***201211020121徐文达201211010122纪后继201210010108刘建国201204010110前言六自由度工业机器人是个较新的课题,虽然其在国外已经具有了较完善的研究,但是在国内对于它的研究依旧停留在较低的水平上。
机器人技术几种了机械工程、电子技术、计算机技术、自动化控制理论及人工智能等多学科的最新研究成果,代表机电一体化的最高成就,是当代科学技术发展最活跃的领域之一。
在传统的制造领域,工业机器人经过诞生、成长、成熟期后,已成为不可缺少的核心自动化装备,目前世界上有近百万台工业机器人正在各种生产现场工作。
在非制造领域,上至太空舱、宇宙飞船、月球探索,下至极限环境作业、医疗手术、日常生活服务,机器人技术的应用以拓展到社会经济发展的诸多领域。
一、六自由度机械手臂系统的介绍在本次综合创新型试验中我们用到的是六自由度机械手,其是典型的机电一体化设备,在该试验中我们主要是在对其机械臂进行拆卸,然后认真观察其内部机械结构,而后再进行组装,最后再运行整个机械臂并检测其运动功能。
在实验中我们所用的机械手臂实物图:六自由度机械手臂是一套具有6个自由度的典型串联式小型关节型机械手臂, 带有小型手抓式;主要由机械系统和控制系统两大部分组成,其机械系统的各部分采用模块化结构,每个部分分别由一个伺服电动机来带动,每个电动机在根据控制要求以及程序的要求来运动从而实现运动要求;其机械系统主要包括以下六个组件,如图所示PSC Port0,1,2,3,4,5六个组件也就是底座,臂膀,手腕及夹持手指。
每个组件由一个伺服电机驱动关节运动,组件1也就是由PSC Port0构成的底座,其主要作用就是完成整体的水平面转动,转动范围360度;PSC Port1,2,3这三个组件既是臂部,控制手臂在与底座旋转的垂直平面转动其转动范围为180度也即是控制手臂的俯仰;PSC Port4这个组件也使机械关节,既是手部关节,可完成机械手部的任意转动,确定机械手的夹持方向;PSC Port5机械手钳口,完成对物体的夹持。
《六自由度串联机器人运动优化与轨迹跟踪控制研究》篇一一、引言随着科技的不断发展,六自由度串联机器人在工业自动化、医疗康复、军事航天等领域的应用越来越广泛。
而如何提高机器人的运动性能,使其在复杂的任务环境中实现高精度的轨迹跟踪控制,成为当前研究的热点问题。
本文将针对六自由度串联机器人的运动优化与轨迹跟踪控制进行研究,旨在提高机器人的运动性能和作业精度。
二、六自由度串联机器人概述六自由度串联机器人是一种多关节机器人,具有六个独立的运动轴,能够实现空间三维运动。
其结构紧凑、灵活度高、适应性强,在许多领域得到广泛应用。
然而,由于其复杂的运动学和动力学特性,使得其运动控制和轨迹跟踪成为一大挑战。
三、运动优化研究(一)优化算法研究针对六自由度串联机器人的运动优化问题,本文采用基于遗传算法的优化方法。
遗传算法是一种模拟自然进化过程的优化算法,能够快速寻找到全局最优解。
通过对机器人运动学模型进行建模,将机器人的运动轨迹优化问题转化为一个求解最优解的问题,运用遗传算法进行求解。
(二)运动学模型建立为了实现机器人的运动优化,需要建立精确的运动学模型。
本文采用D-H(Denavit-Hartenberg)法建立机器人的运动学模型,通过求解机器人各关节之间的变换矩阵,得到机器人末端执行器的位置和姿态。
在此基础上,进一步分析机器人的工作空间、奇异形态等问题,为后续的轨迹规划和控制提供依据。
四、轨迹跟踪控制研究(一)控制器设计为了实现六自由度串联机器人的高精度轨迹跟踪控制,本文采用基于PID(比例-积分-微分)控制器的控制策略。
通过对机器人运动过程中的速度、加速度等参数进行实时调整,使机器人能够快速、准确地跟踪设定的轨迹。
同时,针对机器人系统的非线性和不确定性,引入自适应控制算法,提高系统的鲁棒性。
(二)轨迹规划与实现轨迹规划是轨迹跟踪控制的关键环节。
本文采用基于时间最优的轨迹规划方法,根据机器人的运动学模型和任务要求,生成平滑、连续的轨迹。
文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 六轴工业机器人模块实验报告姓名:张兆伟班级:13 班学号:30日期:2016年8月25日六轴工业机器人模块实验报告一、实验背景六自由度工业机器人具有高度的灵活性和通用性,用途十分广泛。
本实验是在开放的六自由度机器人系统上,采用嵌入式多轴运动控制器作为控制系统平台,实现机器人的运动控制。
通过示教程序完成机器人的系统标定。
学习采用C++编程设计语言编写机器人的基本控制程序,学习实现六自由度机器人的运动控制的基本方法。
了解六自由度机器人在机械制造自动化系统中的应用。
在当今高度竞争的全球市场,工业实体必须快速增长才能满足其市场需求。
这意味着,制造企业所承受的压力日益增大,既要应付低成本国家的对手,还要面临发达国家的劲敌,二后者为增强竞争力,往往不惜重金改良制造技术,扩大生产能力。
机器人是开源节流的得利助手,能有效降低单位制造成本。
只要给定输入成值,机器人就可确保生产工艺和产品质量的恒定一致,显著提高产量。
自动化将人类从枯燥繁重的重复性劳动中解放出来,让人类的聪明才智和应变能力得以释放,从而生产更大的经济回报。
二、实验过程1、程序点0——开始位置把机器人移动到完全离开周边物体的位置,输入程序点 0。
按下手持操作示教器上的【命令一览】键,这时在右侧弹出指令列表菜单如图:按手持操作示教器【下移】键,使{移动 1}变蓝后,按【右移】键,打开{移动 1}子列表,MOVJ 变蓝后,按下【选择】键,指令出现在命令编辑区。
修改指令参数为需要的参数,设置速度,使用默认位置点 ID 为 1。
(P1 必须提前示教好)。
按下手持操作示教器上的【插入】键,这时插入绿色灯亮起。
然后再按下【确认】键,指令插入程序文件记录列表中。
此时列表内容显示为:MOVJ P=1 V=25 BL=0 (工作原点)2、程序点1——抓取位置附近(抓取前)位置点1必须选取机器人接近工件时不与工件发生干涉的方向、位置。
一、实习背景随着工业自动化程度的不断提高,工业机器人的应用越来越广泛。
六轴机器人作为工业机器人的一种,具有高度灵活性和强大的运动能力,能够满足各种工业生产的需求。
为了深入了解六轴机器人的应用,提高自己的实践能力,我参加了为期一个月的六轴机器人实习。
二、实习目的1. 熟悉六轴机器人的结构和工作原理;2. 掌握六轴机器人的编程和调试方法;3. 了解六轴机器人在工业生产中的应用;4. 培养自己的动手能力和团队协作精神。
三、实习时间2022年x月x日 - 2022年x月x日四、实习地点某知名工业机器人企业五、实习内容1. 六轴机器人基础知识学习实习初期,我们学习了六轴机器人的基本结构、运动原理和特点。
通过理论学习和实际操作,我们掌握了六轴机器人的六个关节的运动范围、运动速度和运动精度等参数。
2. 六轴机器人编程和调试在掌握了六轴机器人基础知识后,我们开始学习六轴机器人的编程和调试。
实习期间,我们学习了使用机器人编程软件进行编程,包括路径规划、速度控制、碰撞检测等功能。
同时,我们还学会了使用示教器进行机器人调试,包括坐标系的设置、关节限位器的调整等。
3. 六轴机器人在工业生产中的应用实习期间,我们参观了企业的生产线,了解了六轴机器人在工业生产中的应用。
例如,六轴机器人可以用于焊接、喷涂、装配、搬运等环节,提高生产效率和产品质量。
4. 实际操作和项目实践在实习过程中,我们参与了企业的一个实际项目,负责六轴机器人的编程和调试。
通过团队协作,我们成功完成了项目的实施,提高了自己的实际操作能力。
六、实习收获1. 深入了解了六轴机器人的结构和工作原理;2. 掌握了六轴机器人的编程和调试方法;3. 学会了使用机器人编程软件进行编程和调试;4. 了解了六轴机器人在工业生产中的应用;5. 培养了团队协作精神和实际操作能力。
七、实习总结通过这次六轴机器人实习,我对工业机器人的应用有了更深入的了解,提高了自己的实践能力。
在今后的学习和工作中,我将继续努力,不断提高自己的专业技能,为我国工业自动化事业贡献自己的力量。
基于PLC的六自由度机械手复杂运动控制学院:电气工程与自动化学院专业班级:自动化133班学号:07号学生姓名:***指导老师:刘飞飞老师日期:2016/5/20近二十年来,机器人技术发展非常迅速,各种用途的机器人在各个领域广泛获得应用。
我国在机器人的研究和应用方面与工业化国家相比还有一定的差距,因此研究和设计各种用途的机器人特别是工业机器人、推广机器人的应用是有现实意义的。
典型的工业机器人例如焊接机器人、喷漆机器人、装配机器人等大多是固定在生产线或加工设备旁边作业的,本论文作者在参考大量文献资料的基础上,结合任务书的要求,设计了一种小型的实现移动的六自由度串联机器人。
首先,作者针对机器人的设计要求提出了多个方案,对其进行分析比较,选择其中最优的方案进行了结构设计;同时进行了运动学分析,用D- H 方法建立了坐标变换矩阵,推算了运动方程的正、逆解。
机器人广泛应用于工业、农业、医疗及家庭生活中,工业机器人主要应用领域有弧焊、点焊、装配、搬运、喷漆、检测、码垛、研磨抛光和激光加工等复杂作业。
总之,工业机器人的多领域广泛应用,其发展前景广阔。
关键词:机器人关节,运动学分析,工业机器人,自由度第一章绪论 (4)1.1引言 (4)1.2机器人的产生与发展史 (4)1.3国内外机器人的发展状况及发展战略 (6)1.4六自由度机械手复杂运动控制的现实意义 (9)1.5 PLC在设计中的应用 (10)第二章机械手的总体方案设计 (11)2.1 机械手基本形式的选择 (11)2.2 机械手的主要部件及运动 (12)2.3驱动机构的选择 (12)2.4传动机构的选择 (12)第三章六自由度机械手的坐标建立及运动学分析 (13)3.1 系统描述及机械手运动轨迹设计方式 (13)3.1.1 机器人技术参数一览表 (13)3.1.2 机械手运动轨迹设计方式 (14)3.2 平面复杂轨迹设计目的 (18)3.2.1“西”字的轨迹设计和分析 (18)3.2.2“南”字的轨迹设计和分析 (19)3.2.3机械手的起始位姿和末态位姿 (20)3.3机械手轨迹设计中坐标系的建立 (20)3.4 平面轨迹设计的正运动学分析 (29)3.4.1. 平面轨迹设计的正运动学分析原理 (29)3.4.2 正运动学分析步骤及计算 (29)3.5 六自由度机械手轨迹设计中的逆运动学分析 (30)3.5.1.机械手逆运动学分析原理 (30)3.5.2.逆运动学分析步骤及计算 (31)第四章PLC控制机械手运动轨迹设计与分析 (35)4. 1可编程序控制器的选择及工作过程 (35)4.1.1 可编程序控制器的选择 (35)4.1.2 可编程序控制器的工作过程 (35)4.2 控制系统设计 (36)(一)控制系统硬件设计 (36)1. PLC梯形图中的编程元件 (37)2. PLC的I/O分配 (37)3 机械手控制系统的外部接线图 (38)(二)控制系统软件设计 (38)第五章总结 (40)参考文献 (41)第一章绪论1.1引言机器人是当代科学技术的产物,是高新技术的代表。
工业机器人调研报告一、引言工业机器人作为现代制造业中的重要角色,正逐渐改变着生产方式和产业格局。
为了深入了解工业机器人的发展现状、应用领域、技术特点以及未来趋势,我们进行了此次调研。
二、工业机器人的定义与分类工业机器人是面向工业领域的多关节机械手或多自由度的机器装置,能自动执行工作,是靠自身动力和控制能力来实现各种功能的一种机器。
按照结构形式,工业机器人可分为直角坐标型、圆柱坐标型、球坐标型、关节型等;按照应用领域,可分为焊接机器人、搬运机器人、装配机器人、喷涂机器人等。
三、工业机器人的发展历程工业机器人的发展可以追溯到上世纪 50 年代。
早期的工业机器人主要用于简单的重复性工作,功能较为单一。
随着计算机技术、传感器技术和控制技术的不断进步,工业机器人的性能和智能化水平得到了显著提升。
如今,工业机器人已经能够完成复杂的工艺操作,与人协作工作,并具备一定的自主决策能力。
四、工业机器人的应用领域(一)汽车制造业汽车生产线上的焊接、涂装、装配等环节广泛应用了工业机器人。
它们能够提高生产效率,保证产品质量的一致性,降低劳动强度和生产成本。
(二)电子制造业在电子产品的组装、测试、包装等过程中,工业机器人能够实现高精度、高速度的操作,满足电子行业对生产工艺的严格要求。
(三)食品和饮料行业工业机器人可以完成食品的分拣、包装、搬运等工作,提高生产的卫生标准和效率。
(四)物流行业仓储物流中的搬运、分拣、码垛等工作也越来越多地借助工业机器人来完成,提高了物流运作的效率和准确性。
五、工业机器人的技术特点(一)高精度工业机器人能够实现微米级甚至更高精度的操作,满足高端制造业对精度的要求。
(二)高速度快速完成各种动作,大大提高了生产效率。
(三)高可靠性能够在恶劣的工作环境下长时间稳定运行,减少故障停机时间。
(四)智能化通过配备各种传感器和智能算法,工业机器人能够感知环境、自主决策和优化工作路径。
六、工业机器人市场现状近年来,全球工业机器人市场呈现出快速增长的态势。
六自由度转动关节工业机器人调查报告一 ,定义工业机器人是面向工业领域的多关节机械手或多自由度的机器人。
工业机器人是自动执行工作的机器装置,是靠自身动力和控制能力来实现各种功能的一种机器。
它可以接受人类指挥,也可以按照预先编排的程序运行,现代的工业机器人还可以根据人工智能技术制定的原则纲领行动。
戴沃尔提出的工业机器人有以下特点:将数控机床的伺服轴与遥控操纵器的连杆机构联接在一起,预先设定的机械手动作经编程输入后,系统就可以离开人的辅助而独立运行。
这种机器人还可以接受示教而完成各种简单的重复动作,示教过程中,机械手可依次通过工作任务的各个位置,这些位置序列全部记录在存储器内,任务的执行过程中,机器人的各个关节在伺服驱动下依次再现上述位置,故这种机器人的主要技术功能被称为“可编程”和“示教再现”。
1962年美国推出的一些工业机器人的控制方式与数控机床大致相似,但外形主要由类似人的手和臂组成。
后来,出现了具有视觉传感器的、能识别与定位的工业机器人系统。
当今工业机器人技术正逐渐向着具有行走能力、具有多种感知能力、具有较强的对作业环境的自适应能力的方向发展。
目前,对全球机器人技术的发展最有影响的国家是美国和日本。
美国在工业机器人技术的综合研究水平上仍处于领先地位,而日本生产的工业机器人在数量、种类方面则居世界首位。
具体的特点如下:(1)技术先进工业机器人集精密化、柔性化、智能化、软件应用开发等先进制造技术于一体,通过对过程实施检测、控制、优化、调度、管理和决策,实现增加产量、提高质量、降低成本、减少资源消耗和环境污染,是工业自动化水平的最高体现。
(2)技术升级工业机器人与自动化成套装备具备精细制造、精细加工以及柔性生产等技术特点,是继动力机械、计算机之后,出现的全面延伸人的体力和智力的新一代生产工具,是实现生产数字化、自动化、网络化以及智能化的重要手段。
(3)应用领域广泛工业机器人与自动化成套装备是生产过程的关键设备,可用于制造、安装、检测、物流等生产环节,并广泛应用于汽车整车及汽车零部件、工程机械、轨道交通、低压电器、电力、IC装备、军工、烟草、金融、医药、冶金及印刷出版等众多行业,应用领域非常广泛。
《六自由度串联机器人运动优化与轨迹跟踪控制研究》篇一一、引言随着科技的发展和人工智能的兴起,六自由度串联机器人在自动化生产线、空间探测、精密装配等复杂作业环境中扮演着越来越重要的角色。
为了提高其工作性能,六自由度串联机器人的运动优化和轨迹跟踪控制技术已成为研究的重要方向。
本文将对六自由度串联机器人的运动优化和轨迹跟踪控制技术进行深入探讨,为实际应用提供理论依据和技术支持。
二、六自由度串联机器人概述六自由度串联机器人是一种具有六个关节的机械装置,通过这些关节的协同运动,实现复杂空间作业的精确执行。
其结构紧凑、灵活度高、应用范围广,广泛应用于工业生产、医疗康复、航空航天等领域。
三、运动优化研究1. 数学模型建立为优化六自由度串联机器人的运动性能,需建立精确的数学模型。
通过分析机器人各关节的转动范围、力矩、速度等参数,构建动力学模型和运动学模型,为后续优化工作提供理论支持。
2. 优化算法设计针对六自由度串联机器人的运动特性,设计合适的优化算法。
如基于遗传算法、粒子群算法等智能优化算法,对机器人的运动轨迹进行优化,提高工作效率和精度。
同时,考虑能源消耗、关节磨损等因素,实现节能降耗的目标。
四、轨迹跟踪控制研究1. 控制器设计为实现对六自由度串联机器人精确的轨迹跟踪控制,需设计合适的控制器。
如基于PID控制、模糊控制等控制策略,根据机器人的运动状态和目标轨迹,实时调整控制参数,确保机器人准确、稳定地完成作业任务。
2. 误差分析与补偿在轨迹跟踪过程中,由于各种因素的影响,机器人可能会产生误差。
为减小误差,需对误差进行分析和补偿。
通过分析误差来源,如传感器噪声、关节摩擦等,设计相应的补偿策略,提高轨迹跟踪的精度。
五、实验与结果分析为验证六自由度串联机器人运动优化与轨迹跟踪控制技术的有效性,进行了一系列实验。
实验结果表明,经过优化后的机器人运动性能得到显著提升,轨迹跟踪精度得到明显改善。
同时,通过对误差进行分析和补偿,进一步提高了机器人的作业效率。
六自由度模块化机器人实验报告指导老师:团队成员:六自由度模块化机器人实验报告绪论一、实验课程简介六自由度工业机器人具有高度的灵活性和通用性,用途十分广泛。
本实验是在开放的六自由度机器人系统上,采用嵌入式多轴运动控制器作为控制系统平台,实现机器人的运动控制。
通过示教程序完成机器人的系统标定。
学习采用C++编程设计语言编写机器人的基本控制程序,学习实现六自由度机器人的运动控制的基本方法。
了解六自由度机器人在机械制造自动化系统中的应用。
二、实验课性质、目的和任务性质:独立设置的开放实验。
目的:通过六自由度机器人及其在机械自动化中的应用开放实验,使学生能够了解六自由度机器人的基本结构、工作原理、控制系统组成等,掌握机器人传动系统分析和运动学分析的基本方法,学习机器人控制编程,了解六自由度机器人在自动化制造系统中的应用。
任务:(1)熟悉六自由度机器人系统基本组成;(2)实现机器人坐标回零和机器人示教;(3)完成机器人运动学分析和求解;(4)完成机器人本体部分三维建模和运动学仿真;(5)掌握机器人的单轴运动控制编程;(6)学习机器人运动轨迹规划及其控制实现方法。
三、实验课教学基本要求1.通过该实验课的学习,要求学生熟悉六自由度机器人的机械结构组成;2.熟悉机器人传动系统的特点,掌握机器人运动学分析的基本方法;3. 掌握机器人运动学仿真技术;4. 了解机器人控制系统的组成和控制原理;5. 掌握机器人基本的运动控制编程。
实验内容实验一对六自由度机器人机电和本实验的基本了解实验目的:了解本实验的基本要求;了解本实验在本学期的基本安排;通过老师的讲解和频频播放,理解在进行本实验时需要补充的知识。
实验内容:1)老师给我们播放了一些关于机械人在机械工业当中应用的视频;2)老师解释了创新思想在这方面的重要性,并举出好多相关的现实例子,还推荐我们阅读《蓝海风暴》和《第三次工业革命》等有关书籍,以增强我们的创新意识。
附:读《蓝海战略》有感(一)看过《蓝海战略》这本书后,对如今的商场有了全新的认知,以前仅局限于事物的表面,一个企业只要能够正常的运营就能得到相应的利润,不会有多大的风险,看不到它潜在的危机。
工业机器人IRB1400操作实验指导书系别:机械工程学院专业:机械设计制造及其自动化学号:姓名:桂林航天工业学院--机械工程学院一、实验目的1.了解IRB1400的组成及各部分的作用2.了解IRB1400的示教器的使用方法3.了解IRB1400焊接过程4.学会利用示教器操控机器人的运动轨迹二、实验要求1.学会使用示教器实现IRB1400单轴运动操作2.学会使用示教器实现IRB1400多轴联动操作3.学会使用示教器实现IRB1400沿已知平面图形运动的简单编程。
三、系统组成系统由三个部分组成,其一是机械本体部分,本系统可实现六个自由度运动;其二是控制部分,由控制柜及示教器组成;其三是OTC350数字焊机。
四、实验内容1.熟悉工业机器人IRB1400的开关流程2.熟悉控制柜的上开关、及信号灯的作用3.熟悉示教器的界面、操纵杆及示教器上各开关的作用4.学习单轴运动的操作5.学习多轴联动的操作6.利用示教器,实现在已知平面上走圆及长方形五、填写实验报告在填写实验报告中,要写以下内容:1.实验名称,实验者的姓名和班级2.实验目的简述3.IRB1400的组成部分4.关节型机器人的运动原理和结构特点5.其它收获体会。
工业机器人IRB1400操作实验报告一、实验目的1.了解IRB1400六关节机器人的构造、动作原理和手部运动控制原理;2.基本掌握机器人运动控制程序的编程方法。
二、IRB1400组成部分IRB1400工业机器人由六个转动关节构成,其工业机器人的控制系统由PC机、运动控制器及配套的连接电缆和接口端子板、交流伺服电机及驱动器等构成。
三、IRB1400的运动原理和结构特点IRB1400工业机器人的控制系统由PC机、运动控制器及配套的连接电缆和接口端子板、交流伺服电机及驱动器等构成,从控制要求来看,需要实现末端执行器上参考点的连续轨迹控制。
首先进行轨迹规划,在轨迹上选取N个位置,然后用插补算法获得中间点的坐标,直线插补和圆弧插补是系统中的基本插补算法。
六自由度机械臂开题报告1. 引言1.1 研究背景随着工业自动化的不断发展和智能制造的快速崛起,机械臂作为重要的工业机器人装置,正越来越受到关注。
机械臂的自由度是衡量其灵活性和可操作性的重要指标之一。
过去的机械臂通常具有有限的自由度,限制了其工作范围和复杂任务的执行能力。
而六自由度机械臂可以在广泛范围内自由移动和操作,有更广泛的应用潜力。
1.2 研究目的本文的研究目的是设计和控制一种六自由度机械臂,以满足复杂任务的执行需求。
通过对该机械臂的建模和仿真,评估其性能和适用性,并探究控制算法和策略,以提高机械臂的运动精度和稳定性。
1.3 主要内容本文主要包括以下内容:1.分析和研究现有的六自由度机械臂设计和控制方法;2.设计六自由度机械臂的结构和动力学模型;3.建立机械臂的运动学模型,并进行仿真分析;4.研究机械臂的控制算法和策略,优化运动控制系统;5.实验验证机械臂的性能和稳定性。
2. 研究现状2.1 六自由度机械臂的分类六自由度机械臂根据其结构和设计方式可以分为并联式和串联式两种形式。
并联式机械臂具有较高的稳定性和载荷能力,适用于精密加工和装配等领域,但其自由度约束较多,运动灵活度相对较低。
串联式机械臂结构简单,动力学模型复杂度较低,适用于快速运动和自由度要求较高的场合,但其稳定性和负载能力相对较弱。
2.2 六自由度机械臂的控制方法机械臂的运动控制一直是研究的重点。
常见的控制方法有位置控制、力控制和力/位置混合控制等。
位置控制主要用于精准定位和轨迹跟踪,力控制用于实现与环境的交互力,在装配和抓取等任务中应用广泛,力/位置混合控制结合了位置和力的控制策略,能够更灵活地适应不同任务的需求。
3. 设计和建模3.1 机械臂结构设计为了满足六自由度机械臂的运动要求,本文设计了一种串联式机械臂结构。
该结构由六个旋转关节连接而成,能够实现六个自由度的运动。
关节的选择和布局考虑了机械臂的负载能力和稳定性要求。
3.2 机械臂动力学建模为了实现对机械臂的动力学控制,本文建立了机械臂的动力学模型。
《工业机器人》课程实验报告院系:专业:班级:课程号:图 1 工业机器人2.工业机器人组成部分2.1机械结构2.1.1关节的分类机器人有许多不同类型的关节,有线性的、旋转的.滑动的或球型的。
虽然球关节在许多系统中使用很普遍,但是由于拥有多个自由度且难以控制,所以在机器人中除了用于研究外并不常用。
大多数机器人关节是线性或旋转型关节。
(1)滑动关节(Prismatic joint): 与关节相连的两连杆只能沿滑动轴做直线位移运动,移动的距离是滑动关节的主要变量,滑动轴一般和杆的轴线重合或平行。
图 2 滑动关节(2)转动关节(Revolute joint): 与关节相连的两连杆只能绕关节轴做相对旋转运动,其转动角度是关节的主要变量,转动轴的方向通常与轴线重合或垂直。
图 3 转动关节2.1.2传动机构工业机器人的驱动源通过传动部件来驱动关节的移动或转动,从而实现机身、手臂和手腕的运动。
因此,传动部件是构成工业机器人的重要部件。
根据传动类型的不同,传动部件可以分为两大类:直线传动机构和旋转传动机构。
(1)直线传动机构工业机器人常用的直线传动机构可以直接由汽缸或液压缸和活塞产生,也可以采啮轮齿条、滚珠丝杠螺母等传动元件由旋转运动转换得到。
1)移动关节导轨在运动过程中移动关节导轨可以起到保证位置精度和导向的作用。
移动关节导轨有五种:普通滑动导轨、液压动压滑动导轨、液压静压滑动导轨、气浮导轨和滚动导轨。
图 4 移动关节导轨2)齿轮齿条装置齿轮齿条装置中,如果齿条固定不动,当齿轮转动时,齿轮轴连同拖板沿条方向做直线运动。
图 5 齿轮齿条装置3)滚珠丝杠与螺母在工业机器人中经常采用滚珠丝杠,这是因为滚珠丝杠的摩擦力很小且运动响应速度快。
图 6 滚珠丝杠与螺母4)液(气)压缸液(气)压缸是将液压泵 (空压机)输出的压力能转换为机械能、做直线往复运动的执行元件,使用液(气)压缸可以容易地实现直线运动。
图7 液(气)压缸(2)旋转传动机构一般电动机都能够直接产生旋转运动,但其输出力矩比所要求的力矩小,转速比要求的转速高,因此需要采用齿轮、皮带传送装置或其他运动传动机构,把较高的转速转换成较低的转速,并获得较大的力矩。
六自由度工业机器人的建模与仿真研究共3篇六自由度工业机器人的建模与仿真研究1六自由度工业机器人的建模与仿真研究随着工业自动化的不断发展,工业机器人已经成为工厂中不可或缺的重要设备之一。
其中,六自由度工业机器人因其具有灵活性强、运动范围广等优点而得到广泛应用。
因此,对于六自由度工业机器人的建模和仿真研究具有非常重要的意义。
一、六自由度工业机器人的概述六自由度工业机器人是指具有6个自由度的工业机器人,通常由机身、驱动器和控制器组成。
其中,机身由臂、手和手腕组成,可根据任务需求进行操作或载物。
驱动器是机身各部分的驱动器件,常用的驱动器有电机、气缸等。
控制器是控制机器人的核心部分,可完成运动的规划、控制和反馈等。
二、六自由度工业机器人的建模六自由度工业机器人的建模是建立机器人的数学模型,目的是为了分析机器人的运动规律和控制过程,同时也是设计自动控制器的重要基础。
1. 正向运动学模型正向运动学模型是指将机器人的变量作为输入,根据手臂各段的长度和角度、各关节的偏转角度等信息,计算机器人的末端位置、姿态等信息的模型。
这个模型对机器人的分析非常重要,因为它可以方便地解决机器人的直观显示、位置控制等问题。
在建模时,需要对机器人进行分段处理,每一段均要计算其末端的位置和姿态信息,并将其传递到下一段中。
2. 逆向运动学模型逆向运动学模型是指将机器人所需的输出信息作为输入,根据末端位置、姿态等信息,反推出机器人各关节需要转动的角度等信息的模型。
这个模型对机器人的姿态调节、轨迹规划等问题非常重要。
3. 动力学模型动力学模型是指对机器人的力学特性进行建模,为机器人的运动规划和控制提供必要的参考和依据。
在建模时,需要考虑力、转矩、惯性等因素,并通过控制器控制机器人的动作。
三、六自由度工业机器人的仿真研究仿真是对机器人进行数字化模拟的过程。
通过仿真,可以在事先构建好的环境中,对机器人进行各种测试和优化,进而提高其运动精度、速度和稳定性等。
六自由度转动关节工业机器人调查报告
一 ,定义
工业机器人是面向工业领域的多关节机械手或多自由度的机器人。
工业机器人是自动执行工作的机器装置,是靠自身动力和控制能力来实现各种功能的一种机器。
它可以接受人类指挥,也可以按照预先编排的程序运行,现代的工业机器人还可以根据人工智能技术制定的原则纲领行动。
戴沃尔提出的工业机器人有以下特点:将数控机床的伺服轴与遥控操纵器的连杆机构联接在一起,预先设定的机械手动作经编程输入后,系统就可以离开人的辅助而独立运行。
这种机器人还可以接受示教而完成各种简单的重复动作,示教过程中,机械手可依次通过工作任务的各个位置,这些位置序列全部记录在存储器内,任务的执行过程中,机器人的各个关节在伺服驱动下依次再现上述位置,故这种机器人的主要技术功能被称为“可编程”和“示教再现”。
1962年美国推出的一些工业机器人的控制方式与数控机床大致相似,但外形主要由类似人的手和臂组成。
后来,出现了具有视觉传感器的、能识别与定位的工业机器人系统。
当今工业机器人技术正逐渐向着具有行走能力、具有多种感知能力、具有较强的对作业环境的自适应能力的方向发展。
目前,对全球机器人技术的发展最有影响的国家是美国和日本。
美国在工业机器人技术的综合研究水平上仍处于领先地位,而日本生产的工业机器人在数量、种类方面则居世界首位。
具体的特点如下:
(1)技术先进工业机器人集精密化、柔性化、智能化、软件应用开发等先进制造技术于一体,通过对过程实施检测、控制、优化、调度、管理和决策,实现增加产量、提高质量、降低成本、减少资源消耗和环境污染,是工业自动化水平的最高体现。
(2)技术升级工业机器人与自动化成套装备具备精细制造、精细加工以及柔性生产等技术特点,是继动力机械、计算机之后,出现的全面延伸人的体力和智力的新一代生产工具,是实现生产数字化、自动化、网络化以及智能化的重要手段。
(3)应用领域广泛工业机器人与自动化成套装备是生产过程的关键设备,可用于制造、安装、检测、物流等生产环节,并广泛应用于汽车整车及汽车零部件、工程机械、轨道交通、低压电器、电力、IC装备、军工、烟草、金融、医药、冶金及印刷出版
等众多行业,应用领域非常广泛。
(4)技术综合性强工业机器人与自动化成套技术,集中并融合了多项学科,涉及多项技术领域,包括工业机器人控制技术、机器人动力学及仿真、机器人构建有限元分析、激光加工技术、模块化程序设计、智能测量、建模加工一体化、工厂自动化以及精细物流等先进制造技术,技术综合性强。
三,应用
工业机器人在工业生产中能代替人做某些单调、频繁和重复的长时间作业,或是危险、恶劣环境下的作业,例如在冲压、压力铸造、热处理、焊接、涂装、塑料制品成形、机械加工和简单装配等工序上,以及在原子能工业等部门中,完成对人体有害物料的搬运或工艺操作。
20世纪50年代末,美国在机械手和操作机的基础上,采用伺服机构和自动控制等技术,研制出有通用性的独立的工业用自动操作装置,并将其称为工业机器人;60年代初,美国研制成功两种工业机器人,并很快地在工业生产中得到应用;1969年,美国通用汽车公司用21台工业机器人组成了焊接轿车车身的自动生产线。
此后,各工业发达国家都很重视研制和应用工业机器人。
由于工业机器人具有一定的通用性和适应性,能适应多品种中、小批量的生产,70年代起,常与数字控制机床结合在一起,
成为柔性制造单元或柔性制造系统的组成部分。
四,工业机器人分类
(1)移动机器人(AGV)
移动机器人(AGV)是工业机器人的一种类型,它由计算机控制,具有移动、自动导航、多传感器控制、网络交互等功能,它可广泛应用于机械、电子、纺织、卷烟、医疗、食品、造纸等行业的柔性搬运、传输等功能,也用于自动化立体仓库、柔性加工系统、柔性装配系统(以AGV作为活动装配平台);同时可在车站、机场、邮局的物品分捡中作为运输工具。
(2)点焊机器人
焊接机器人具有性能稳定、工作空间大、运动速度快和负荷能力强等特点,焊接质量明显优于人工焊接,大大提高了点焊作业的生产率。
点焊机器人主要用于汽车整车的焊接工作,生产过程由各大汽车主机厂负责完成。
国际工业机器人企业凭借与各大汽车企业的长期合作关系,向各大型汽车生产企业提供各类点焊机器人单元产品并以焊接机器人与整车生产线配套形式进入
中国,在该领域占据市场主导地位。
(3)弧焊机器人
弧焊机器人主要应用于各类汽车零部件的焊接生产。
在该领域,国际大型工业机器人生产企业主要以向成套装备供应商提供单元产品为主。
(4)激光加工机器人
激光加工机器人是将机器人技术应用于激光加工中,通过高精度工业机器人实现更加柔性的激光加工作业。
本系统通过示教盒进行在线操作,也可通过离线方式进行编程。
该系统通过对加工工件的自动检测,产生加工件的模型,继而生成加工曲线,也可以利用CAD数据直接加工。
可用于工件的激光表面处理、打孔、焊接和模具修复等。
(5)真空机器人
真空机器人是一种在真空环境下工作的机器人,主要应用于半导体工业中,实现晶圆在真空腔室内的传输。
真空机械手难进口、受限制、用量大、通用性强,其成为制约了半导体装备整机的研发进度和整机产品竞争力的关键部件。
而且国外对中国买家严加审查,归属于禁运产品目录,真空机械手已成为严重制约我国半导体设备整机装备制造的“卡脖子”问题。
直驱型真空机器人技术属于原始创新技术。
(6)洁净机器人
洁净机器人是一种在洁净环境中使用的工业机器人。
随着生产技术水平不断提高,其对生产环境的要求也日益苛刻,很多现代工业产品生产都要求在洁净环境进行,洁净机器人是洁净环境下生产需要的关键设备。
五,发展前景
在发达国家中,工业机器人自动化生产线成套设备已成为自动
化装备的主流
机器人发展前景
及未来的发展方向。
国外汽车行业、电子电器行业、工程机械等行业已经大量使用工业机器人自动化生产线,以保证产品质量,提高生产效率,同时避免了大量的工伤事故。
全球诸多国家近半个世纪的工业机器人的使用实践表明,工业机器人的普及是实现自动化生产,提高社会生产效率,推动企业和社会生产力发展的有效手段。
机器人技术是具有前瞻性、战略性的高技术领域。
国际电气电子工程师协会IEEE的科学家在对未来科技发展方向进行预测中提出了4个重点发展方向,机器人技术就是其中之一。
1990年10月,国际机器人工业人士在丹麦首都哥本哈根召开了一次工业机器人国际标准大会,并在这次大会上通过了一个文件,把工业机器人分为四类:⑴顺序型。
这类机器人拥有规定的程序动作控制系统;⑵沿轨迹作业型。
这类机器人执行某种移动作业,如焊接。
喷漆等;⑶远距作业型。
比如在月球上自动工作的机器人;⑷智能型。
这类机器人具有感知、适应及思维和人机通信机能。
日本工业机器人产业早在上世纪90年代就已经普及了第一和第二类工业机器人,并达到了其工业机器人发展史的鼎盛时期。
而今已在第发展三、四类工业机器人的路上取得了举世瞩目的成就。
日本下一代机器人发展重点有:低成本技术、高速化技术、小型和轻量化技术、提高可靠性技术、计算机控制技术、网络化技术、高精度化技术、视觉和触觉等传感器技术等。
根据日本政府2007年指定的一份计划,日本2050年工业机器人产业规模将达到1.4兆日元,拥有百万工业机器人。
按照一个工业机器人等价于10个劳动力的标准,百万工业机器人相当于千万劳动力,是目前日本全部劳动人口的15%。
我国工业机器人起步于70年代初,其发展过程大致可分为三个阶段:70年代的萌芽期;80年代的开发期;90年代的实用化期。
而今经过20多年的发展已经初具规模。
目前我国已生产出部分机器人关键元器件,开发出弧焊、点焊、码垛、装配、搬运、注塑、冲压、喷漆等工业机器人。
一批国产工业机器人已服务于国内诸多企业的生产线上;一批机器人技术的研究人才也涌现出来。
一些相关科研机构和企业已掌握了工业机器人操作机的优化设计制造技术;工业机器人控制、驱动系统的硬件设计技术;机器人软件的设计和编程技术;运动学和轨迹规划技术;弧焊、点焊及大型机器人自动生产线与周边配套设备的开发和制备技术等。
某些关键技术已达到或接近世界水平。
一个国家要引入高技术并将其转移为产业技术(产业化),必须具备5个要素即
5M:Machine/Materials/Manpower/Management/Market。
和有着“机器人王国”之称的日本相比,我国有着截然不同的基本国情,那就是人口多,劳动力过剩。
刺激日本发展工业机器人的根本动力就在于要解决劳动力严重短缺的问题。
所以,我国工业机器人起步晚发展缓。
但是正如前所述,广泛使用机器人是实现工业自动化,提高社会生产效率的一种十分重要的途径。
我国正在努力发展工业机器人产业,引进国外技术和设备,培养人才,打开市场。
日本工业机器人产业的辉煌得益于本国政府的鼓励政策,我国在十一五纲要中也体现出了对发展工业机器人的大力支持。