高一数学不等式的解法2(教师版)
- 格式:doc
- 大小:517.38 KB
- 文档页数:6
第2讲一元二次函数方程和不等式专题复习要点一不等关系与不等式不等关系与不等式是高考重点考查的内容之一,在试题中多以选择题或填空题的形式考查,有时也渗透到解答题中,主要考查不等式的性质及运用.【例1】(1)如果a,b,c满足c<b<a且ac<0,那么下列选项中不一定成立的是()A.ab>acB.c(b-a)>0C.cb 2<ab 2D.ac (a -c )<0答案 C解析 因为c <a ,且ac <0,所以c <0,a >0. A 成立,因为c <b ,所以ac <ab ,即ab >ac . B 成立,因为b <a ,b -a <0,所以c (b -a )>0. C 不一定成立,当b =0时,cb 2<ab 2不成立. D 成立,因为c <a ,所以a -c >0,所以ac (a -c )<0. (2)已知2<a <3,-2<b <-1,求ab ,b 2a 的取值范围. 解 因为-2<b <-1,所以1<-b <2. 又因为2<a <3,所以2<-ab <6, 所以-6<ab <-2.因为-2<b <-1,所以1<b 2<4. 因为2<a <3,所以13<1a <12, 所以13<b 2a <2.【训练1】 已知a >0,b >0,且a ≠b ,比较a 2b +b 2a 与a +b 的大小.解 因为⎝ ⎛⎭⎪⎫a 2b +b 2a -(a +b )=a 2b -b +b 2a -a =a 2-b 2b +b 2-a 2a =(a 2-b 2)⎝ ⎛⎭⎪⎫1b -1a =(a 2-b 2)a -b ab=(a -b )2(a +b )ab ,因为a >0,b >0,且a ≠b , 所以(a -b )2>0,a +b >0,ab >0,所以⎝ ⎛⎭⎪⎫a 2b +b 2a -(a +b )>0,即a 2b +b 2a >a +b .要点二 基本不等式的应用基本不等式:ab ≤a +b2(a >0,b >0)是每年高考的热点,主要考查命题判断、不等式证明以及求最值问题,特别是求最值问题往往与实际问题相结合,同时在基本不等式的使用条件上设置一些问题,实际上是考查学生恒等变形的技巧,另外,基本不等式的和与积的转化在高考中也经常出现.【例2】 设a >0,b >0,2a +b =1,则1a +2b 的最小值为________. 答案 8解析 ∵a >0,b >0,且2a +b =1, ∴1a +2b =⎝ ⎛⎭⎪⎫1a +2b (2a +b )=4+b a +4ab ≥4+2b a ·4ab =8,当且仅当⎩⎪⎨⎪⎧2a +b =1,b a =4a b ,即⎩⎪⎨⎪⎧a =14,b =12时等号成立.∴1a +2b 的最小值为8.【训练2】 已知x >0,y >0,且x +3y =1,则x +yxy 的最小值是________. 答案 23+4 解析x +y xy =1y +1x =⎝ ⎛⎭⎪⎫1y +1x (x +3y )=4+3y x +xy ≥4+23, 当且仅当⎩⎪⎨⎪⎧3y x =x y ,x +3y =1,即⎩⎪⎨⎪⎧x =3-12,y =3-36时取“=”号.要点三 恒成立问题对于不等式恒成立求参数范围问题常见类型及解法有以下几种 (1)变更主元法:根据实际情况的需要确定合适的主元,一般知道取值范围的变量要看作主元. (2)分离参数法:将参数分离转化为求解最值问题.(3)数形结合法:利用不等式与函数的关系将恒成立问题通过函数图象直观化.【例3】 已知y =x 2+mx -6,当1≤m ≤3时,y <0恒成立,那么实数x 的取值范围是________. 答案 -3<x <-3+332解析 ∵1≤m ≤3,y <0, ∴当m =3时,x 2+3x -6<0, 由y =x 2+3x -6<0, 得-3-332<x <-3+332;当m =1时,x 2+x -6<0, 由y =x 2+x -6<0,得-3<x <2. ∴实数x 的取值范围为-3<x <-3+332. 【训练3】 求使不等式x 2+(a -6)x +9-3a >0,-1≤a ≤1恒成立的x 的取值范围.解 将原不等式整理为形式上是关于a 的不等式(x -3)a +x 2-6x +9>0.设关于a 的一次函数为y =(x -3)a +x 2-6x +9.因为y >0,当-1≤a ≤1时恒成立,所以 (1)若x =3,则y =0,不符合题意,应舍去. (2)若x ≠3,则由一次函数的图象, 可得⎩⎨⎧x 2-7x +12>0,x 2-5x +6>0,解得x <2或x >4.所以x 的取值范围是{x |x <2或x >4}.破解不等式“恒成立”“能成立”问题解决不等式恒成立、能成立问题,常常使用的方法为:判别式法、数形结合法、分离参数法,主参换位法等,方法灵活多变,需根据具体的条件求解,能提升学生的逻辑推理、数学运算等素养. 类型一 “Δ”法解决恒成立问题【例1】 (1)已知不等式kx 2+2kx -(k +2)<0恒成立,求实数k 的取值范围; (2)若不等式-x 2+2x +3≤a 2-3a 对任意实数x 恒成立,求实数a 的取值范围. 解 (1)当k =0时,原不等式化为-2<0,显然符合题意. 当k ≠0时,令y =kx 2+2kx -(k +2),由y <0恒成立, ∴其图象都在x 轴的下方, 即开口向下,且与x 轴无交点. ∴⎩⎨⎧k <0,4k 2+4k (k +2)<0, 解得-1<k <0.综上,实数k 的取值范围是{k |-1<k ≤0}. (2)原不等式可化为x 2-2x +a 2-3a -3≥0 , ∵该不等式对任意实数x 恒成立,∴Δ≤0, 即4-4(a 2-3a -3)≤0,即a 2-3a -4≥0, 解得a ≤-1或a ≥4,∴实数a 的取值范围是{a |a ≤-1或a ≥4}. 类型二 数形结合法解决恒成立问题【例2】 已知函数f (x )=x 2-mx +2m -4(m ∈R ). (1)当m =1时,求不等式f (x )≥0的解集;(2)当x >2时,不等式f (x )≥-1恒成立,求m 的取值范围. 解 (1)∵m =1,∴f (x )=x 2-x -2. ∴x 2-x -2≥0, 即(x -2)(x +1)≥0, 解得x ≤-1或x ≥2.故f (x )≥0的解集为{x |x ≤-1或x ≥2}.(2)f (x )≥-1,即x 2-mx +2m -3≥0在x >2恒成立,①若m2≤2,即m≤4,则如图.只需f(2)≥0,即4-2m+2m-3≥0,1≥0恒成立,∴m≤4满足题意;②若2m>2,即m>4,则如图.则需Δ=m2-4(2m-3)≤0,即(m-2)(m-6)≤0,∴2≤m≤6.综上所述,m的取值范围为(-∞,6].类型三分离参数法解决恒成立问题【例3】“∀x<0,x2+ax+2≥0”为真命题,则实数a的取值范围为() A.a≤2 2 B.a≤-22C.a≥2 2D.a≥-22答案A解析由∀x<0,x2+ax+2≥0可得a≤-x-2 x,因为-x-2x=(-x)+⎝⎛⎭⎪⎫-2x≥2(-x)×⎝⎛⎭⎪⎫-2x=22,当且仅当-x=-2 x,即x=-2时等号成立,所以a≤2 2.类型四主参换位法解决恒成立问题【例4】已知函数y=mx2-mx-6+m,若对于1≤m≤3,y<0恒成立,求实数x的取值范围.解设关于m的函数y =mx 2-mx -6+m =(x 2-x +1)m -6. 由题意知y <0对1≤m ≤3恒成立. ∵x 2-x +1>0,∴y 是关于m 的一次函数,且在1≤m ≤3上随x 的增大而增大, ∴y <0对1≤m ≤3恒成立等价于y 的最大值小于0, 即(x 2-x +1)·3-6<0⇔x 2-x -1<0⇔1-52<x <1+52.∴x的取值范围为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1-52<x <1+52.类型五 转化为函数的最值解决能成立问题【例5】 若存在x ∈R ,使得4x +mx 2-2x +3≥2成立,求实数m 的取值范围.解 ∵x 2-2x +3=(x -1)2+2>0, ∴4x +m ≥2(x 2-2x +3)能成立, ∴m ≥2x 2-8x +6能成立,令y =2x 2-8x +6=2(x -2)2-2≥-2,∴m ≥-2, ∴m 的取值范围为{m |m ≥-2}.尝试训练1.在R 上定义运算:x ⊗y =x (1-y ),若任意x ∈R 使得(x -a )⊗(x +a )<1成立,则实数a 的取值范围是( )A.⎩⎨⎧⎭⎬⎫a ⎪⎪⎪a <-12或a >32B.⎩⎨⎧⎭⎬⎫a ⎪⎪⎪-12<a <32 C.⎩⎨⎧⎭⎬⎫a ⎪⎪⎪-32<a <12D.⎩⎨⎧⎭⎬⎫a ⎪⎪⎪a <-32或a >12 答案 B解析 由题意知,(x -a )⊗(x +a )=(x -a )[1-(x +a )]=-x 2+x +a 2-a <1, 即-x 2+x +a 2-a -1<0在R 上恒成立, 所以Δ=1+4(a 2-a -1)=(2a -3)(2a +1)<0, 解得-12<a <32.2.已知不等式x 2-mx +4>0对任意的x >4恒成立,则实数m 的取值范围是( ) A.{m |m ≤5}B.{m |m <5}C.{m |m ≤4}D.{m |m <4}答案 A解析 若不等式x 2-mx +4>0对于任意的x >4恒成立, 则m <x +4x 对于任意的x >4恒成立, ∵当x >4时,x +4x ∈(5,+∞),∴m ≤5,即实数m 的取值范围是{m |m ≤5}.3.若关于x 的不等式(2x -1)2<ax 2的解集中的整数恰有2个,则实数a 的取值范围是( ) A.94<a <259 B.94<a ≤259 C.259<a <4916 D. 259<a ≤4916答案 B解析 原不等式等价于(-a +4)x 2-4x +1<0, 由题意,知⎩⎨⎧Δ=(-4)2-4(-a +4)=4a >0,-a +4>0,解得0<a <4, 又原不等式的解集为12+a <x <12-a, 且14<12+a<12,则1,2为原不等式的整数解, 所以2<12-a ≤3,解得94<a ≤259.4.已知不等式xy ≤ax 2+2y 2对于1≤x ≤2,2≤y ≤3恒成立,则a 的取值范围是( ) A.{a |a ≥1} B.{a |-1≤a <4} C.{a |a ≥-1} D.{a |-1≤a ≤6}答案 C解析 不等式xy ≤ax 2+2y 2对于1≤x ≤2,2≤y ≤3恒成立, 等价于a ≥y x -2⎝ ⎛⎭⎪⎫y x 2,对于1≤x ≤2,2≤y ≤3恒成立,令t =yx ,则1≤t ≤3,a ≥t -2t 2在1≤t ≤3时恒成立, y =-2t 2+t =-2⎝ ⎛⎭⎪⎫t -142+18,则当t =1时,y max =-1,a ≥-1, 故a 的取值范围是{a |a ≥-1}.课后巩固测试(时间:120分钟 满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设a ,b ,c ,d ∈R ,且a >b ,c >d ,则下列结论中正确的是( ) A.ac >bd B.a -c >b -d C.a +c >b +d D.a d >b c答案 C解析 ∵a >b ,c >d ,∴a +c >b +d . 2.不等式1x <12的解集是( ) A.{x |x <2} B.{x |x >2} C.{x |0<x <2} D.{x |x <0或x >2} 答案 D解析 由1x <12,得1x -12=2-x2x <0, 即x (2-x )<0,解得x >2或x <0,故选D.3.已知不等式ax 2+bx +2>0的解集是{x |-1<x <2},则a +b 的值为( ) A.1B.-1C.0D.-2答案 C解析 易知⎩⎪⎨⎪⎧a <0,-b a =-1+2=1,2a =-1×2⇒⎩⎨⎧a =-1,b =1,∴a +b =0.4.若a <1,b >1,那么下列命题中正确的是( ) A.1a >1b B.ba >1 C.a 2<b 2 D.ab <a +b答案 D解析 利用特值法,令a =-2,b =2. 则1a <1b ,A 错;ba <0,B 错; a 2=b 2,C 错;ab <a +b ,D 正确.5.已知a >0,b >0,且满足a 3+b4=1,则ab 的最大值是( ) A.2 B.3 C.4 D.6 答案 B解析 因为a >0,b >0,且满足a 3+b4=1, 所以1≥2a 3·b 4,化为ab ≤3,当且仅当a =32,b =2时取等号,则ab 的最大值是3.6.设实数1<a <2,关于x 的一元二次不等式x 2-(a 2+3a +2)x +3a (a 2+2)<0的解集为( ) A.{x |3a <x <a 2+2} B.{x |a 2+2<x <3a } C.{x |3<x <4} D.{x |3<x <6}答案 B解析 由x 2-(a 2+3a +2)x +3a (a 2+2)<0,得(x -3a )·(x -a 2-2)<0,∵1<a <2,∴3a >a 2+2,∴关于x 的一元二次不等式x 2-(a 2+3a +2)x +3a (a 2+2)<0的解集为{x |a 2+2<x <3a }.故选B.7.已知a >0,b >0,且2a +b =1,若不等式2a +1b ≥m 恒成立,则m 的最大值等于( )A.10B.9C.8D.7 答案 B解析 2a +1b =2(2a +b )a +2a +b b =4+2b a +2a b +1=5+2⎝ ⎛⎭⎪⎫b a +a b ≥5+2×2b a ×a b =9,当且仅当a =b =13时取等号.又2a +1b ≥m ,∴m ≤9,即m 的最大值等于9,故选B.8.若关于x 的不等式ax -b >0的解集为{x |x >1},则关于x 的不等式ax +b x -2>0的解集为( )A.{x |x <-2或x >1}B.{x |1<x <2}C.{x |x <-1或x >2}D.{x |-1<x <2} 答案 C解析 ∵不等式ax -b >0的解集为{x |x >1},∴x =1为ax -b =0的根,∴a -b =0,即a =b ,∵ax -b >0的解集为{x |x >1},∴a >0, 故ax +b x -2=a (x +1)x -2>0,等价于(x +1)(x -2)>0. ∴x >2或x <-1.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对得5分,选对但不全的得2分,有选错的不得分)9.已知a >b >c ,下列不等关系不成立的是( )A.ac +b 2>ab +bcB.ab +bc >b 2+acC.ac +bc >c 2+abD.a 2+bc >b 2+ab 答案 ACD解析 对于A ,若ac +b 2>ab +bc ,则ac -bc >ab -b 2,即c (a -b )>b (a -b ),不成立;对于C ,若ac +bc >c 2+ab ,则ac -c 2>ab -bc ,即c (a -c )>b (a -c ),不成立;对于D ,若a 2+bc >b 2+ab ,则a 2-ab >b 2-bc ,即a (a -b )>b (b -c ),若a =4,b =3,c =1,不成立.故选ACD.10.设a >b >1,c <0,给出下列四个结论正确的有( )A.c a >c bB.ac <bcC.a (b -c )>b (a -c )D.a c >b c答案 ABC解析 A.∵a >b >1,c <0,∴c a -c b =c (b -a )ab>0, ∴c a >c b ,故正确;B.∵-c >0,∴a ·(-c )>b ·(-c ),∴-ac >-bc ,∴ac <bc ,故正确;C.∵a >b >1,∴a (b -c )-b (a -c )=ab -ac -ab +bc =-c (a -b )>0,∴a (b -c )>b (a -c ),故正确;D.a c -b c =a -b c ,又a -b >0,c <0,所以a -b c <0,即a c <b c ,故错误.故答案为ABC.11.若a >0,b >0,与不等式-b <1x <a 不等价的是( )A.-1b <x <0或0<x <1aB.-1a <x <1bC.x <-1a 或x >1bD.x <-1b 或x >1a答案 ABC解析 若x >0,则不等式-b <1x <a 等价为1x <a ,即x >1a ,若x <0,则不等式-b <1x <a 等价为-b <1x ,即x <-1b .12.对于a >0,b >0,下列不等式中正确的是( ) A.ab 2<1a +1bB.ab ≤a 2+b 22C.ab ≤⎝ ⎛⎭⎪⎫a +b 22 D.⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22 答案 BCD解析 当a >0,b >0时,因为21a +1b≤ab , 所以2ab ≤1a +1b ,当且仅当a =b 时等号成立,故A 不正确;显然B ,C ,D 均正确.三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上)13.不等式x 2-2x <0的解集为________.答案 {x |0<x <2}解析 不等式x 2-2x <0可化为x (x -2)<0,解得:0<x <2,∴不等式的解集为{x |0<x <2}.14.某汽车运输公司购买一批豪华大客车投入营运,据市场分析每辆车营运的总利润y (单位:10万元)与营运年数x (x ∈N *)为二次函数关系(二次函数的图象如图所示),则每辆客车营运________年时,年平均利润最大.答案 5解析 二次函数顶点为(6,11),设为y =a (x -6)2+11,代入(4,7)得a =-1,∴y =-x 2+12x -25,年平均利润为y x =-x 2+12x -25x=-⎝ ⎛⎭⎪⎫x +25x +12≤-2 x ·25x +12=2,当且仅当x =25x ,即x =5时等号成立.15.一元二次不等式x 2+ax +b >0的解集为{x |x <-3或x >1},则a b =________,一元一次不等式ax +b <0的解集为________(第一空2分,第二空3分). 答案 18 ⎩⎨⎧⎭⎬⎫x |x <32 解析 由题意知,-3和1是方程x 2+ax +b =0的两根,所以⎩⎨⎧-3+1=-a ,-3×1=b ,解得⎩⎨⎧a =2,b =-3,故a b =18. 不等式ax +b <0即为2x -3<0,所以x <32.16.若关于x 的不等式x 2-mx +m +2>0对-2≤x ≤4恒成立,则m 的取值范围是________.答案 {m |2-23<m <2+23}解析 设y =x 2-mx +m +2=⎝ ⎛⎭⎪⎫x -m 22-m 24+m +2, ①当m 2≤-2,即m ≤-4时,当x =-2时,y 的最小值为4+2m +m +2=3m +6>0,m >-2,又m ≤-4,∴无解;②当-2<m 2<4,即-4<m <8时,当x =m 2时,y 的最小值为-m 24+m +2>0, 解得2-23<m <2+23,又-4<m <8,∴2-23<m <2+23; ③当m 2≥4,即m ≥8时,当x =4时,y 的最小值为16-4m +m +2=18-3m >0,∴m <6,又m ≥8,∴无解.综上,m 的取值范围为{m |2-23<m <2+23}.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)当x >3时,求2x 2x -3的最小值. 解 ∵x >3,∴x -3>0.∴2x 2x -3=2(x -3)2+12(x -3)+18x -3=2(x -3)+18x -3+12≥22(x -3)·18x -3+12=24. 当且仅当2(x -3)=18x -3, 即x =6时,上式等号成立,∴2x 2x -3的最小值为24. 18.(本小题满分12分)若不等式(1-a )x 2-4x +6>0的解集是{x |-3<x <1}.(1)解不等式2x 2+(2-a )x -a >0;(2)b 为何值时,ax 2+bx +3≥0的解集为R .解 (1)由题意知1-a <0且-3和1是方程(1-a )x 2-4x +6=0的两根,∴⎩⎪⎨⎪⎧1-a <0,41-a =-2,61-a =-3,解得a =3.∴不等式2x 2+(2-a )x -a >0,即为2x 2-x -3>0,解得x <-1或x >32.∴所求不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-1或x >32. (2)ax 2+bx +3≥0,即为3x 2+bx +3≥0,若此不等式的解集为R ,则b 2-4×3×3≤0,∴-6≤b ≤6.19.(本小题满分12分)某种品牌的汽车在水泥路面上的刹车距离s m 和汽车车速x km/h 有如下关系:s =118x +1180x 2.在一次交通事故中,测得这种车的刹车距离不小于40 m ,那么这辆汽车刹车前的车速至少为多少?解 设这辆汽车刹车前的车速为x km/h.根据题意,有118x +1180x 2≥40,移项整理,得x 2+10x -7 200≥0.即(x -80)(x +90)≥0.故得不等式的解集为{x |x ≤-90或x ≥80}.在这个实际问题中x >0,所以这辆汽车刹车前的车速至少为80 km/h.20.(本小题满分12分)已知a ,b ,c 均为正数,证明:a 2+b 2+c 2+⎝ ⎛⎭⎪⎫1a +1b +1c 2≥63,并确定a ,b ,c 为何值时,等号成立.证明 因为a ,b ,c 均为正数,所以a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac .所以a 2+b 2+c 2≥ab +bc +ac .①同理1a 2+1b 2+1c 2≥1ab +1bc +1ac ,②故a 2+b 2+c 2+⎝ ⎛⎭⎪⎫1a +1b +1c 2 ≥ab +bc +ac +3ab +3bc +3ac ≥6 3.③所以原不等式成立.当且仅当a =b =c 时,①式和②式等号成立,当且仅当a =b =c ,(ab )2=(bc )2=(ac )2=3时,③式等号成立.故当且仅当a =b =c =43时,原不等式等号成立.21.(本小题满分12分)某建筑队在一块长AM =30米,宽AN =20米的矩形地块AMPN 上施工,规划建设占地如图中矩形ABCD 的学生公寓,要求顶点C 在地块的对角线MN 上,B ,D 分别在边AM ,AN 上,假设AB 长度为x 米.(1)要使矩形学生公寓ABCD 的面积不小于144平方米,AB 的长度应在什么范围?(2)长度AB和宽度AD分别为多少米时矩形学生公寓ABCD的面积最大?最大值是多少平方米?解(1)依题意知△NDC∽△NAM,所以DCAM=NDNA,即x30=20-AD20,则AD=20-23x.故矩形ABCD的面积为S=20x-2 3x 2.根据条件0<x<30,要使学生公寓ABCD的面积不小于144平方米,即S=20x-23x2≥144,化简得x2-30x+216≤0,解得12≤x≤18.故AB的长度应在12米~18米内.(2)S=20x-23x2=23x(30-x)≤23⎝⎛⎭⎪⎫30-x+x22=150,当且仅当x=30-x,即x=15时,等号成立.此时AD=20-23x=10.故AB=15米,AD=10米时,学生公寓ABCD的面积最大,最大值是150平方米.22.(本小题满分12分)已知二次函数y=ax2+bx+c(a≠0)的图象过A(x1,y1),B(x2,y2)两点,且满足a2+(y1+y2)a+y1y2=0.(1)求证y1=-a或y2=-a;(2)求证函数的图象必与x轴有两个交点;(3)若y>0的解集为{x|x>m或x<n}(n<m<0),解关于x的不等式cx2-bx+a>0. (1)证明∵a2+(y1+y2)a+y1y2=0,∴(a+y1)(a+y2)=0,得y1=-a或y2=-a.(2)证明当a>0时,二次函数的图象开口向上,图象上的点A或点B的纵坐标为-a,且-a<0,∴图象与x轴有两个交点;当a<0时,二次函数的图象开口向下,图象上的点A或点B的纵坐标为-a,且-a>0,∴图象与x轴有两个交点.∴二次函数的图象必与x 轴有两个交点.(3)解 ∵ax 2+bx +c >0的解集为{x |x >m 或x <n }(n <m <0), ∴a >0且ax 2+bx +c =0的两根为m ,n ,⎩⎪⎨⎪⎧m +n =-b a ,mn =c a ,∴m +n mn =-b c 且c >0,∴cx 2-bx +a >0即x 2-b c x +a c >0,即x 2+⎝ ⎛⎭⎪⎫m +n mn x +1mn>0,∴⎝ ⎛⎭⎪⎫x +1m ⎝ ⎛⎭⎪⎫x +1n >0. ∵n <m <0,∴-1n <-1m ,∴不等式cx 2-bx +a >0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >-1m 或x <-1n .。
绝对值不等式的解法(二)教学目的:(1)巩固c b ax <+与)0(>>+c c b ax 型不等式的解法,并能熟练地应用它解决问题;掌握分类讨论的方法解决含多个绝对值的不等式以及含参数的不等式;(2)培养数形结合的能力,分类讨论的思想,培养通过换元转化的思想方法,培养抽象思维的能力;教学重点:分类讨论的方法解决含多个绝对值的不等式以及含参数的不等式 教学难点:如何正确分类与分段,简单的参数问题 教学过程:一、复习引入: 不等式)0(><a a x 的解集是: 不等式)0(>>a a x 的解集是: 不等式)0(><+c c b ax 的解集为: 不等式)0(>>+c c b ax 的解集为:二、讲解范例:例1 解不等式 1≤ | 2x-1 | < 5.练习:解不等式:7522≤-<x例2 解不等式:|4x-3|>2x+1.练习:解不等式:1>x-x234-例3 解不等式:|x-3|-|x+1|<1.练习:解不等式:| x+2 | + | x | >4.三、小结:对含有绝对值的不等式的解法,通过上面的例子我们可以看到,其关键就在于去掉绝对值,而去掉绝对值,则需要对绝对值中的零点进行讨论,一般来说一个零点分两个范围,两个零点分三个零点,依次类推.五、作业:1 不等式|x-1|+|x-2|≤3的最小整数解为( )A.0B.-1C.1D. 22.不等式|3x+2|>|2x+3|的解集是3.不等式333>--+x x 的解集是 4 已知集合A={x|2<|6-2x|<5,x ∈N },求A.5解不等式(1)143-<-x x (2)7523>--+x x。
3.5 绝对值不等式(二)学习目标:1.会利用绝对值的几何意义来证明不等式.2.掌握|ax +b |≤c ,|ax +b |≥c ,|x -a |+|x -b |≥c 和|x -a |+|x -b |≤c 的求解及证明. 基础知识:1.(1)解绝对值不等式的主要依据解含绝对值的不等式的主要依据为________、________及不等式的性质. (2)绝对值不等式的解法(同解性)①|x |<a ⇔⎩⎪⎨⎪⎧a ,a ②|x |>a ⇔⎩⎪⎨⎪⎧a , a =,a【做一做1】解下列绝对值不等式:(1)|x |<3; (2)|x |>4.2.|ax +b |≤c (c >0),|ax +b |≥c (c >0)型不等式的解法(1)|ax +b |≤c (c >0)型不等式的解法:先化为_______________,再利用不等式的性质求出原不等式的解集,也可以利用绝对值的几何意义求解.(2)|ax +b |≥c (c >0)的解法:先化为________________________,再进一步利用不等式的性质求出原不等式的解集,也可以利用绝对值的几何意义求解.【做一做2-1】不等式|x +4|>9的解集是__________.3.|x -a |+|x -b |≥c 和|x -a |+|x -b |≤c 型不等式的解法 解法一:可以利用绝对值的________.(简称几何法)解法二:利用分类讨论的思想,以绝对值的“____”为分界点,将数轴分成几个区间,然后确定各个绝对值中的多项式的____,进而去掉__________.(简称零点区间法)解法三:可以通过________,利用________,得到不等式的解集.(简称图像法)由上可以看出:解含有绝对值的不等式,关键在于利用绝对值的意义设法去掉__________,把它转化为一个或几个普通______或________(即不含绝对值符号).答案:1.(1)绝对值的定义 几何意义 (2)①-a <x <a 无解 ②x <-a 或x >a x ≠0 x ∈R 【做一做1】解:(1)∵3>0,∴-3<x <3. (2)∵4>0,∴x >4或x <-4.2.(1)-c ≤ax +b ≤c (2)ax +b ≥c ax +b ≤-c【做一做2-1】{x |x <-13或x >5} 由原不等式,得x +4>9或x +4<-9, 解得x >5或x <-13.3.几何意义 零点 符号 绝对值符号 构造函数 函数图像 绝对值符号 不等式 不等式组典型例题题型一|ax +b |≤c (c >0)和|ax +b |≥c (c >0)型不等式的解法 【例1】解不等式2<|2x -5|≤7.解:解法一:原不等式等价于⎩⎪⎨⎪⎧ |2x -5|>2,|2x -5|≤7,∴⎩⎪⎨⎪⎧2x -5>2或2x -5<-2,-7≤2x -5≤7,解得⎩⎪⎨⎪⎧x >72或x <32,-1≤x ≤6.∴原不等式的解集为⎩⎨⎧⎭⎬⎫x |-1≤x <32或72<x ≤6.解法二:原不等式的解集是下面两个不等式组解集的并集.原不等式可化为(1)⎩⎪⎨⎪⎧ 2x -5≥0,2<2x -5≤7,或(2)⎩⎪⎨⎪⎧2x -5<0,2<5-2x ≤7. 解不等式组(1),得72<x ≤6.解不等式组(2),得-1≤x <32.∴原不等式的解集为⎩⎨⎧⎭⎬⎫x |-1≤x <32或72<x ≤6.【做一做2-2】不等式|2x +1|>x +1的解集为__________.答案:⎩⎨⎧⎭⎬⎫x |x <-23或x >0题型二 |x -a |+|x -b |≥c 型不等式的解法 【例2】解不等式|x -1|+|x +2|≥5.解:解法一:(几何法)如图,设数轴上与-2,1对应的点分别是A ,B ,那么A ,B 两点的距离是3,因此区间[-2,1]上的数都不是原不等式的解.为了求出不等式的解,关键要在数轴上找出与点A ,B 的距离之和为5的点.将点A 向左移动1个单位到点A 1,这时有|A 1A |+|A 1B |=5;同理,将点B 向右移动1个单位到点B 1,这时也有|B 1A |+|B 1B |=5.从数轴上可以看到,点A 1与B 1之间的任何点到点A ,B 的距离之和都小于5;点A 1的左边或点B 1的右边的任何点到点A ,B 的距离之和都大于5.所以,原不等式的解集是(-∞,-3]∪[2,+∞). 解法二:(零点分区间法)(1)当x ≤-2时,原不等式可以化为-(x -1)-(x +2)≥5,解得x ≤-3,即不等式组⎩⎪⎨⎪⎧ x ≤-2,|x -1|+|x +2|≥5的解集是(-∞,-3].(2)当-2<x <1时,原不等式可以化为-(x -1)+(x +2)≥5,即3≥5,矛盾.所以不等式组⎩⎪⎨⎪⎧-2<x <1,|x -1|+|x +2|≥5的解集为.(3)当x ≥1时,原不等式可以化为(x -1)+(x +2)≥5,解得x ≥2,即不等式组⎩⎪⎨⎪⎧x ≥1,|x -1|+|x +2|≥5的解集是[2,+∞).综上所述,原不等式的解集是(-∞,-3]∪[2,+∞).解法三:(图像法)将原不等式转化为|x -1|+|x +2|-5≥0.构造函数y =|x -1|+|x +2|-5,即y =⎩⎪⎨⎪⎧-2x -6,x ≤-2,-2,-2<x <1,2x -4,x ≥1.作出函数的图像(如图),它是分段线性函数,函数的零点是-3,2.从图像可知,当x ∈(-∞,-3]∪[2,+∞)时,有y ≥0,即|x -1|+|x +2|-5≥0.所以原不等式的解集是(-∞,-3]∪[2,+∞). 【做一做3】解不等式|2x -5|-|x +1|<2.解:令2x -5=0,得x =52.令x +1=0,得x =-1.(1)当x ≤-1时,原不等式等价于-(2x -5)+(x +1)<2,即-x +6<2,即x >4,无解.(2)当-1<x <52时,原不等式等价于-(2x -5)-(x +1)<2,即-3x +4<2,即x >23.∴23<x <52.(3)当x ≥52时,原不等式等价于(2x -5)-(x +1)<2,即x -6<2,即x <8.∴52≤x <8.综上,得原不等式的解集为⎩⎨⎧⎭⎬⎫x |23<x <8.题型三 |x -a |+|x -b |≤c 型不等式的解法【例3】求关于x 的不等式|x +4|+|x -2|≤6的解集. 答案:原不等式的解集为{x |-4≤x ≤2}.随堂练习:1下列不等式中,解集为R 的是( ). A .|x +2|>1 B .|x +2|+1>1C .(x -78)2>-1D .(x +78)2-1>0 2不等式⎪⎪⎪⎪⎪⎪x 2-x >x 2-x的解集是( ).A .{x |0<x <2}B .{x |x <0或x >2}C .{x |x <0}D .{x |x >2} 3不等式|x +3|<4的解集是( ).A .(-7,1)B .(1,7)C .(-4,1)D .(-3,1) 4不等式|x +3|-|x -2|≥3的解集是__________. 答案:1.C 根据a 2≥0,知(x -78)2>-1在R 内恒成立. 2.B 由已知,得x2-x<0,解得x <0或x >2.故选B .3.A |x +3|<4⇔-4<x +3<4⇔-7<x <1.4.{x |x ≥1} |x +3|-|x -2|≥3⇔⎩⎪⎨⎪⎧x ≤-3,-x -3+x -2≥3,或⎩⎪⎨⎪⎧-3<x <2,x +3+x -2≥3,或⎩⎪⎨⎪⎧x ≥2,x +3-x +2≥3.∴x ∈或1≤x <2或x ≥2.∴不等式的解集为{x |x ≥1}.3.5 绝对值不等式(二)课后作业 姓名1.不等式|x +1|>3的解集是( ) A .{x |x <-4或x >2} B .{x |-4<x <2} C .{x |x <-4或x ≥2}D .{x |-4≤x <2}解析:|x +1|>3,则x +1>3或x +1<-3,因此x <-4或x >2. 答案:A2.不等式|2x -1|-2|x +3|>0的解集为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x >32或x <-12 B.⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <32 C.⎩⎨⎧⎭⎬⎫x ⎪⎪x >32或x <-12且x ≠-3 D.⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <32 解析:原不等式⇒⎩⎪⎨⎪⎧|2x -1|>2x +3≠0⇒⎩⎪⎨⎪⎧2x -1<-2或2x -1>2x ≠-3⇒⎩⎪⎨⎪⎧x <-12或x >32,x ≠-3.答案:C3.不等式|x +1|+|x +2|<5的所有实数解的集合是( ) A .(-3,2) B .(-1,3) C .(-4,1)D.⎝⎛⎭⎫-32,72 解析:|x +1|+|x +2|表示数轴上一点到-2,-1两点的距离和,根据-2,-1之间的距离为1,可得到-2,-1距离和为5的点是-4,1.因此|x +1|+|x +2|<5解集是(-4,1).答案:C4.不等式1≤|2x -1|<2的解集为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <0或1≤x ≤32 B.⎩⎨⎧⎭⎬⎫x ⎪⎪ -12<x ≤0或1≤x ≤32 C.⎩⎨⎧⎭⎬⎫x ⎪⎪ -12<x ≤0且1≤x ≤32 D.⎩⎨⎧⎭⎬⎫x ⎪⎪ -12<x ≤0或1≤x <32 解析:1≤|2x -1|<2则1≤2x -1<2或-2<2x -1≤-1,因此-12<x ≤0或1≤x <32.答案:D5.不等式|x +2|≥|x |的解集是________.解析:因不等式两边是非负实数,所以不等式两边可以平方,两边平方得(x +2)2≥x 2,∴x 2+4x +4≥x 2.即x ≥-1.∴原不等式的解集为{x |x ≥-1}. 答案:{x |x ≥-1}6.不等式|2x -1|-x <1的解集是__________. 解析:原不等式等价于|2x -1|<x +1⇔ -x -1<2x -1<x +1⇔⎩⎪⎨⎪⎧3x >0,x <2⇔0<x <2.答案:{x |0<x <2}7.若关于x 的不等式|x +2|+|x -1|<a 的解集为∅,则a 的取值范围为________.解析:法一:由|x +2|+|x -1|=|x +2|+|1-x |≥|x +2+1-x |=3,知a ≤3时,原不等式无解. 法二:数轴上任一点到-2与1的距离之和最小值为3.所以当a ≤3时,原不等式的解集为∅. 答案:(-∞,3]8.解不等式|3x -2|+|x -1|>3.解:(1)当x ≤23时,|3x -2|+|x -1|=1-x +2-3x =3-4x ,由3-4x >3得x <0.(2)当23<x <1时,|3x -2|+|x -1|=3x -2+1-x =2x -1,由2x -1>3得x >2,∴x ∈∅.(3)当x ≥1时,|3x -2|+|x -1|=3x -2+x -1=4x -3,由4x -3>3得x >32,∴x >32.故原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <0或x >32. 9.已知不等式|x +2|-|x +3|>m .(1)若不等式有解;(2)若不等式解集为R ;(3)若不等式解集为∅,分别求出m 的范围. [解] 法一:因|x +2|-|x +3|的几何意义为数轴上任意一点P (x )与两定点A (-2),B (-3)距离的差.即|x +2|-|x +3|=|P A |-|PB |. 由图像知(|P A |-|PB |)max =1, (|P A |-|PB |)min =-1. 即-1≤|x +2|-|x +3|≤1.(1)若不等式有解,m 只要比|x +2|-|x +3|的最大值小即可,即m <1,m 的范围为(-∞,1). (2)若不等式的解集为R ,即不等式恒成立,m 只要比|x +2|-|x +3|的最小值还小,即m <-1,m 的范围为(-∞,-1).(3)若不等式的解集为∅,m 只要不小于|x +2|-|x +3|的最大值即可,即m ≥1,m 的范围为[1,+∞).法二:由|x +2|-|x +3|≤|(x +2)-(x +3)|=1,|x +3|-|x +2|≤|(x +3)-(x +2)|=1, 可得-1≤|x +2|-|x +3|≤1.(1)若不等式有解,则m ∈(-∞,1). (2)若不等式解集为R ,则m ∈(-∞,-1). (3)若不等式解集为∅,则m ∈[1,+∞).10.已知f (x )=|ax -2|+|ax -a |(a >0). (1)当a =1时,求f (x )≥x 的解集;(2)若不存在实数x ,使f (x )<3成立,求a 的取值范围. 解:(1)当a =1时, f (x )=|x -2|+|x -1|≥x ,当x ≥2时,原不等式可转化为x -2+x -1≥x ,解得x ≥3;当1<x<2时,原不等式可转化为2-x+x-1≥x,解得x≤1,∴x∈∅;当x≤1时,原不等式可转化为2-x+1-x≥x,解得x≤1.综上可得,解集为{x|x≤1或x≥3}.(2)依题意,对∀x∈R,都有f(x)≥3,则f(x)=|ax-2|+|ax-a|≥|(ax-2)-(ax-a)|=|a-2|≥3,∴a-2≥3或a-2≤-3,∴a≥5或a≤-1(舍),∴a的取值范围是[5,+∞).。
分式不等式解法(一)教学内容分析:分式不等式解法是一元二次不等式解法学习的沿用,主要依据是不等式的性质,将它们转化为解一元二次不等式,然后再求它们的解集,它是一元二次不等式解法的下沿。
(二)教学目标:1. 知识与技能:1)掌握分式不等式转化整式不等式;2)理解不等式的等价性。
2. 过程与方法:1)经历从特殊到一般的解题过程;2)体会数学转化思想,学会分式不等式向整式不等式(或整式不等式组)转化。
3. 情感、态度、价值观:1)通过学生自己探索,增强学生数学学习的成功心理,培养勇于探索的精神,激发学习数学的兴趣;2)在运用类比思想解决问题中克服知识的负迁移。
(三)教学重难点:1. 重点:简单的分式不等式解法2. 难点:分式不等式向整式不等式的转化(四)课堂教学设计:1. 课堂教学方式:教师指导下的学生自主学习。
学生自主学习是指教师启发学生利用不等式性质进行分式不等式解法的学习。
2. 亮点:在求解分式不等式解集时,编口诀:“右化零;左化正;商化积;想分母”有助于学生记忆,提高学习效率。
3. 反思:涉及分式不等式的实际问题相对比较少。
(五)教学过程:1. 新课引入:某船从甲地沿河逆行到乙地。
已知甲乙两地相距84公里,假设水流速度为4千米/小时。
要在2小时内完成整个航线任务,则船速至少需要多少千米/小时?分析:设船速至少需要x 千米/小时(x > 4),整个航程要控制在2小时内,则可列出不等式:8424x <- 这个不等式叫做什么不等式?又如何去求它的解集?这类称为分式不等式。
问题一:解不等式 (1)0312>+-x x (2)0312≤-+x x (1)解:⎩⎨⎧>+>-03012x x 或⎩⎨⎧<+<-03012x x 21>∴x 或3-<x 另解: ()()0312>+-x x 21>∴x 或3-<x (2)解:⎩⎨⎧≠-≤-+030)3)(12(x x x 321<≤-∴x 小结:(1)0)()(>x g x f ⇔0)()(>x g x f ; (2)0)()(<x g x f ⇔0)()(<x g x f ;(3)0)()(≥x g x f ⇔⎩⎨⎧≠≥0)(0)()(x g x g x f ; (4)0)()(≤x g x f ⇔⎩⎨⎧≠≤0)(0)()(x g x g x f注意:(1)分式不等式在转化为一次或二次不等式组时,每一步变形,都应是不等式的等价变形。
不等关系性质及解不等式学习目标:① 不等式的性质② 解一元二次不等式、分式不等式绝对值不等式一、基础知识1.实数大小比较的基本事实:(1) a>b ⇔_______; (2) a=b ⇔_______ ; (3) a<b ⇔_______. 要确定任意两个实数a,b 的大小关系,只需确定它们的________与_____的大小关系即可。
2.不等式的基本性质:(1)对称性a>b ⇔b___a; (2)传递性:a>b,b>c ⇒a____c;(3)a>b, ⇒a+c____b+c; (4)a>b,c>0⇒ac___bc;(5)a>b,c<0⇒ac___bc; (6)a>b>0⇒n n b ___a (2n ,N n ≥∈);(7)a>b>0⇒n n b ___a (2n ,N n ≥∈)(8)a>b,c>d ⇒a+c____b+d;(9) a>b>0,c>d>0⇒ac____bd;(10)a>b,ab>0⇒a 1___b1.3.一元二次不等式的解法:(a>o 且0>∆时,简记为:小在中间,大在两边)设二次函数c bx ax )x (f 2++=(a>0),判别式4ac b 2-=∆,则△>0△=0△<0f(x)>0f(x)<0判别式函数y=f(x)的简图不等式的解集方程f(x)=0的解4.高次不等式和分式不等式的解法----穿根法穿根法的要领是:从右往左,从上到下,奇次根穿而过,偶次根穿而不过。
5.含有绝对值的不等式的解法:a x a )0a (a x <<-⇔><, 图示:___________ax a x )0a (a x >-<⇔>>或. 图示:___________ 6.几种常见类型的不等式的解法---图解法:(1)|ax+b|≤c ;(2)|ax+b|≥c;注意:(1)x 系数必须化为1;(2)差的绝对值才可以看作是两点的距离简记为:小在中间,大在两边二、题型归类(一)不等式的基本性质a 、比较大小(作差、作商比较法)1、 已知x y R ∈,,且x y >,比较33x y -与22xy x y -的大小。
学科教师辅导讲义
年 级: 高一 辅导科目: 数学 课时数: 课 题
不等式的解法(二)
教学目的 1、复习回顾一元二次不等式、分式不等式、绝对值不等式的解法
教学内容
【知识梳理】
问题思考:
1、 一元二次不等式的解法步骤是什么?
2、 解分式不等式的时候应该注意哪些问题?
3、 解绝对值不等式的时候,我们常用的有几种去绝对值的符号?
1、一元二次不等式的解法:求200)bx c a ++>>ax (
的解集,还可以用配方法以及考察2
00)bx c a ++>>ax (函数图形的方法来解不等式
0>∆
0=∆ 0<∆
二次函数
c
bx ax y ++=2(0>a )的
图象 c bx ax y ++=2
c bx ax y ++=2
c bx ax y ++=2
一元二次方程
20ax bx c ++= ()0a >的根
有两相异实根)(,2121x x x x <
有两相等实根
a
b x x 221-
== 无实根
的解集
)0(02>>++a c bx ax {}2
1
x x x x x ><或
⎭⎬⎫⎩
⎨⎧-≠a b x x 2
R 的解集
)0(02><++a c bx ax {}21
x x x
x <<
∅
∅
2、解分式不等式时,切忌随意去分母。
正确的解法是通过讨论决定分母的正负号后,利用不等式的基本性质,将原
不等式化为几个不等式组,或先通过移项将不等式的一边变为零后,再通分找到原不等式的等价不等式(组)。
3、绝对值不等式,关键在于去掉绝对值符号,一般有三种方法:①分段讨论;②两边平方法;③转化方法。
【典型例题分析】。