第十一章 统计学 一元线性回归分析
- 格式:ppt
- 大小:1.32 MB
- 文档页数:88
第十一章 回 归 分 析本章以一元线性回归模型为重点介绍回归分析方法,对于一元线性回归模型所建立的理论与方法作适当的修改便可推广到多元线性回归模型。
§1 回归的概念一、变量之间的关系现实中,各种变量相互依赖、相互影响,存在着某种关系。
如:价格与需求量、利率与投资、收入与消费,等等。
大致可以归纳为两类关系:确定性关系(函数关系),非确定性关系(统计关系)。
1. 确定性关系:变量之间存在着某种完全确定的关系。
如:总收益Y 与产量X 之间的关系:X P Y ⋅=当价格一定时,Y 由X 完全确定。
表现在图形上,()Y X ,的所有点位于一条直线上。
一般地:()n X X X f Y ,,21= (多元函数)2. 非确定性关系:变量之间由于受到某些随机因素的影响而呈现出一种不确定的关系。
如:农业产量主要受到降雨量、施肥量、温度等的影响,但决定产量的并非完全是这些因素,还要受到许多其它因素的影响,如冰雹、蝗灾等自然灾害。
非确定性关系可以分为两大类:1) 相关关系:两个变量处于完全对等的位置,且两个变量皆为随机变量,常用相关系数来度量。
如:计量经济学成绩与统计学成绩,物价水平和股票价格,等等。
2) 回归关系:一个变量的变化是另一个变量变化的原因,而不是相反。
如:消费量Y 与可支配收入X 之间便是一种回归关系。
一般来讲,随着可支配收入的增加,消费增加,可支配收入是影响消费的主要因素,但并非唯一的因XYPX Y =素,影响消费的因素还有消费习惯、地区差异、年龄构成、宗教信仰等等。
同样收入的家庭,有的支出多,有的支出少,即使是同一家庭,其每个月的收入相同的话,各个月的支出也不会完全一样。
这样,对应于一个X 的值,Y 有多个不同的值相对应,X 与Y 呈现出不确定性的关系。
此时:()u X f Y += (u 为随机影响)表现在图形上,()Y X ,的点不是完全处于一条直线(或曲线)上,而是围绕在一条理论线的两旁变化。
十一章1. 解:回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。
回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;在线性回归中,按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且自变量之间存在线性相关,则称为多元线性回归分析。
相关分析,相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变量之间的相关关系的一种统计方法。
相关分析和回归分析是研究客观现象之间数量联系的重要统计方法。
既可以从描述统计的角度,也可以从推断统计的角度来说明。
所谓相关分析,就是用一个指标来表明现象间相互依存关系的密切程度。
所谓回归分析,就是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。
它们具有共同的研究对象,在具体应用时,相关分析需要依靠回归分析来表明现象数量相关的具体形式,而回归分析则需要依靠相关分析来表明现象数量变化的相关程度。
只有当变量之间存在着高度相关时,进行回归分析寻求其相关的具体形式才有意义。
由于相关分析不能指出变量间相互关系的具体形式,所以回归分析要对具有相关关系的变量之间的数量联系进行测定,从而为估算和预测提供了一个重要的方法。
在有关管理问题的定量分析中,推断统计加具有更加广泛的应用价值。
需要指出的是,相关分析和回归分析只是定量分析的手段。
通过相关与回归分析,虽然可以从数量上反映现象之间的联系形式及其密切程度,但是现象内在联系的判断和因果关系的确定,必须以有关学科的理论为指导,结合专业知识和实际经验进行分析研究,才能正确解决。
因此,在应用时要把定性分析和定量分析结合起来,在定性分析的基础上开展定量分析。
统计学中的线性回归分析在统计学中,线性回归分析是一种最常见的应用之一。
线性回归分析是一种用于建立两个或多个变数之间关系的方法。
在这种分析中,一个或多个独立变量被用来预测一个因变量。
线性回归分析被广泛应用于医学、社会科学、自然科学等领域。
什么是线性回归分析?线性回归分析被定义为建立两个或多个变数之间线性关系的方法。
更准确地说,线性回归分析是用来预测连续型变量(因变量)之间关系的方法。
例如,通过线性回归分析可以建立收入和家庭支出之间的关系。
在线性回归中,因变量作为输出变量,而独立变量作为输入变量。
只有一个独立变量和一个因变量的线性回归称为简单线性回归,而有多个独立变量和一个因变量的线性回归称为多元线性回归。
线性回归分析基本原理线性回归分析的基本原理是建立一个数学模型,用以解释因变量的变化。
这个模型被描述为回归方程,它可以被用来求解因变量和独立变量之间的关系。
回归方程显示了一条线性(直线)的趋势,因此被称为线性回归分析。
回归分析有两个关键的部分:截距和回归系数。
回归系数代表着因变量与独立变量之间的关系,截距则是当独立变量取零时因变量的预测值。
线性回归分析的步骤线性回归分析的过程包括以下步骤:1. 定义研究问题:确定要解决的研究问题。
2. 收集数据:收集与研究问题相关的数据。
3. 数据预处理:处理数据,并进行数据清理和预处理以准备数据进行分析。
4. 建立模型:建立具有高度预测能力的回归模型。
5. 模型评估:使用适当的指标,评估模型的性能和准确性。
6. 发现结论:根据模型和数据,得出结论。
线性回归分析的应用线性回归分析可以应用于许多领域中的问题,如社会科学、医学、自然科学和工程学等。
下面将以医学为例来讲解线性回归分析的应用。
在医学研究中,线性回归分析可以用来探索一些生理变量的关系,如心率和血压之间的关系。
研究人员可以收集参与者的心率和血压数据,并使用线性回归分析来确定这些变量之间的相关性。
这些研究可以有助于确定心脏病患者的风险因素,以及对他们进行预防和治疗所需的干预措施。
第11章一元线性回归(相关与回归)学习指导一、本章基本知识梳理基本知识点含义或公式相关关系 客观现象之间确实存在的、但在数量表现上不是严格对应的依存关系。
函数关系 客观现象之间确实存在的、而且数量表现上是严格对应的依存关系。
因果关系有相关关系的现象中能够明确其中一种现象(变量)是引起另一种现象(变量)变化的原因,另一种现象是这种现象变化的结果。
起影响作用的现象(变量)称为“自变量”;而受自变量影响发生变动的现象(变量)称为“因变量”。
因果关系∊相关关系,但相关关系中还包括互为因果关系的情况。
相关关系的种类 按涉及变量多少分为单相关、复相关;按相关方向分为正相关、负相关;按相关形态分为线性相关、非线性相关等。
线性(直线) 相关系数 简称相关系数,反映具有直线相关关系的两个变量关系的密切程度。
()()∑∑∑∑∑∑∑---==2222y yn x xn yx xy n SS S r yx xy相关系数的 显著性检验 ——t 检验 ()().2;,212:0:,0:020221Hn t t Hn t t rn r t HH,拒绝不能拒绝检验统计量-〉-〈--=≠=ααρρ回归方程中的 参数β0和β1为回归直线的截距、起始值,表示在没有自变量x 的影响(即x =0)时,其他各种因素对因变量y 的平均影响;β1为回归系数、斜率,表示自变量x 每变动一个单位,因变量y 的平均变动量。
β1的最小平方估计:∑∑∑∑∑⎪⎭⎫ ⎝⎛--=221x x n yx xy nβ估计标准误差反映因变量实际值与其估计值之间的平均差异程度,表明其估计值对实际值的代表性强弱。
其值越大,实际值与估计值之间的平均差异程度越大,估计值的代表性越差。
()代替。
用大样本条件下,分母可;n n yyS e 2ˆ2--=∑总离差平方和S S T反映因变量的n 个观察值与其均值的总离差。
回归离差平方和S S R 反映自变量x 的变化对因变量y 取值变化的影响;或者说,是由于x 与y 之间的线性关系引起的y 取值的变化,也称为可解释的平方和。
第十一章(理) 第四节 正态分布、线性回归1.111222则有 ( )A .μ1<μ2,σ1<σ2B .μ1<μ2,σ1>σ2C .μ1>μ2,σ1<σ2D .μ1>μ2,σ1>σ2解析:μ反映正态分布的平均水平,x =μ是正态曲线的对称轴,由图知μ1<μ2,σ 反映正态分布的离散程度,σ越大,曲线越“矮胖”,表明越分散,σ越小,曲线越 “高瘦”,表明越集中,由图知σ1<σ2. 答案:A2.已知随机变量ξ服从正态分布N (3,σ2),则P (ξ<3)= ( ) A.15 B.14C.13D.12解析:根据正态分布的知识可知此正态分布图象的对称轴为x =3,而P (ξ<3)表示对 称轴左边图象的面积,对称轴左右两边图象面积相等,整个图象的面积为1. 答案:D3.设随机变量ξ服从正态分布N (2,9),若P (ξ>c +1)=P (ξ<c -1),则c = ( ) A .1 B .2 C .3 D .4解析:由题意得随机变量ξ相应的正态密度曲线关于直线x =2对称,又P (ξ>c +1) =P (ξ<c -1),因此(c +1)+(c -1)2=2,c =2.答案:B4.设随机变量ξ服从标准正态分布N (0,1),已知Φ(-1.96)=0.025,则P (|ξ|<1.96)=( ) A .0.025 B .0.050 C .0.950 D .0.975 解析:P (|ξ|<1.96)=Φ(1.96)-Φ(-1.96) =1-2Φ(-1.96)=0.950. 答案:C5.已知随机变量ξ服从正态分布N (2,σ2),P (ξ≤4)=0.84,则P (ξ≤0)= ( ) A .0.16 B .0.32C .0.68D .0.84解析:根据正态分布曲线的对称性,得P (ξ≤0)=1-P (ξ≤4)=1-0.84=0.16. 答案:A6.对有线性相关关系的两个变量建立的回归直线方程y =a +bx 中,回归系数b ( ) A .可以小于0 B .大于0 C .能等于0 D .只能小于0解析:因为b =0时,r =0,这时不具有线性相关关系,但b 能大于0也能小于0. 答案:A7.以下是两个变量x 和y 的一组数据:则这两个变量间的回归直线方程为 ( ) A.y ^=x 2 B.y ^=x C.y ^=9x -15 D.y ^=15x -9 解析:根据数据可得x =4.5,y =25.5, ∑i =1n x 2i =204,∑i =1nx i y i =1 296.b =1221niii nii x ynx y xnx ==--∑∑=1 296-8×4.5×25.5204-8×4.52=9,a =y -b x =25.5-9×4.5=-15. ∴y ^=9x -15. 答案:C8.已知回归直线方程y ^=4.4x +838.19,则可估计x 与y 的增长速度之比约为________. 解析:x 与y 的增长速度之比即为回归直线方程的斜率的倒数14.4=1044=522.答案:5229.某肉食鸡养殖小区某种病的发病鸡只数呈上升趋势,统计近4个月这种病的新发病鸡只数的线性回归分析如下表所示:该养殖小区这种病的新发病鸡总只数约为________.解析:由上表可得:y ^=94.7x +1 924.7,当x 分别取9,10,11,12时,得估计值分别 为:2 777,2 871.7,2 966.4,3 061.1,则总只数约为2 777+2 871.7+2 966.4+3 061.1≈11 676. 答案:11 67610.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的 生产能耗y (吨标准煤)的几组对照数据:(1)请根据上表提供的数据,求出y 关于x 的回归直线方程y ^=bx +a ;(2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的回归 直线方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3×2.5+4×3+5×4+6×4.5=66.5) 解:(1)∑i =14x i y i =3×2.5+4×3+5×4+6×4.5=66.5,x —=3+4+5+64=4.5, y —=2.5+3+4+4.54=3.5,∑i =14x 2i =32+42+52+62=86,b =66.5-4×4.5×3.586-4×4.52=66.5-6386-81=0.7,a =y —-b x —=3.5-0.7×4.5=0.35. 故回归直线方程为y ^=0.7x +0.35.(2)根据回归方程的预测,现在生产100吨产品消耗的标准煤的数量为0.7×100+0.35=70.35,故耗能减少了90-70.35=19.65(吨).。
一元线性回归分析摘要:一元线性回归分析是一种常用的预测和建模技术,广泛应用于各个领域,如经济学、统计学、金融学等。
本文将详细介绍一元线性回归分析的基本概念、模型建立、参数估计和模型检验等方面内容,并通过一个具体的案例来说明如何应用一元线性回归分析进行数据分析和预测。
1. 引言1.1 背景一元线性回归分析是通过建立一个线性模型,来描述自变量和因变量之间的关系。
通过分析模型的拟合程度和参数估计值,我们可以了解自变量对因变量的影响,并进行预测和决策。
1.2 目的本文的目的是介绍一元线性回归分析的基本原理、建模过程和应用方法,帮助读者了解和应用这一常用的数据分析技术。
2. 一元线性回归模型2.1 模型表达式一元线性回归模型的基本形式为:Y = β0 + β1X + ε其中,Y是因变量,X是自变量,β0和β1是回归系数,ε是误差项。
2.2 模型假设一元线性回归模型的基本假设包括:- 线性关系假设:自变量X与因变量Y之间存在线性关系。
- 独立性假设:每个观测值之间相互独立。
- 正态性假设:误差项ε服从正态分布。
- 同方差性假设:每个自变量取值下的误差项具有相同的方差。
3. 一元线性回归分析步骤3.1 数据收集和整理在进行一元线性回归分析之前,需要收集相关的自变量和因变量数据,并对数据进行整理和清洗,以保证数据的准确性和可用性。
3.2 模型建立通过将数据代入一元线性回归模型的表达式,可以得到回归方程的具体形式。
根据实际需求和数据特点,选择适当的变量和函数形式,建立最优的回归模型。
3.3 参数估计利用最小二乘法或最大似然法等统计方法,估计回归模型中的参数。
通过最小化观测值与回归模型预测值之间的差异,找到最优的参数估计值。
3.4 模型检验通过对回归模型的拟合程度进行检验,评估模型的准确性和可靠性。
常用的检验方法包括:残差分析、显著性检验、回归系数的显著性检验等。
4. 一元线性回归分析实例为了更好地理解一元线性回归分析的应用,我们以房价和房屋面积之间的关系为例进行分析。
第十一章一元线性回归练习题答案二.填空题 1. 不能;因为该相关系数为样本计算出的相关系数,它的大小受样本数据波动的影响,它是否显著尚需检验;t 检验;2.图1;不能;因为图1反映的是线性相关关系,图2反映的是非线性性相关关系,相关系数只能反映线性相关变量间的相关性的强弱,不能反映非线性相关性的强弱。
三.计算题1.(1) SSR 的自由度是1,SSE 的自由度是18。
(2)2418/6080220/1/==-=SSE SSR F(3)判定系数%14.57140802===SST SSR R 在y 的总变差中,由57.14%的变差是由于x 的变动说引起的。
(4)7559.05714.02-=-=-=R r相关系数为-0.7559。
(5)线性关系显著和:线性关系不显著和y x y x H 10H :因为414.424=>=αF F,所以拒绝原假设,x 与y 之间的线性关系显著。
2.(1)方差分析表df SS MS F Significance F回归分析 1 425 425 85 0.017 残差 15 75 5 - - 总计16500---(2)判定系数%8585.05004252====SST SSR R表明在维护费用的变差中,有85%的变差可由使用年限来解释。
(3)9220.085.02===R r二者相关系数为0.9220,属于高度相关(4)x y248.1388.6ˆ+= 分布;显著。
的自由度为t n r n r t 2);12||2---=回归系数为1.248,表示每增加一个单位的产量,该行业的生产费用将平均增长1.248个单位。
(5)线性关系显著性检验:线性关系显著:生产费用和产量之间性关系不显著生产费用和产量之间线10:H H因为Significance F=0.017<05.0=α,所以线性关系显著。
(6)348.3120248.1388.6248.1388.6ˆ==⨯++=x y当产量为10时,生产费用为31.348万元。
一章1. 解:回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。
回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;在线性回归中,按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且自变量之间存在线性相关,则称为多元线性回归分析。
相关分析,相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变量之间的相关关系的一种统计方法。
相关分析和回归分析是研究客观现象之间数量联系的重要统计方法。
既可以从描述统计的角度,也可以从推断统计的角度来说明。
所谓相关分析,就是用一个指标来表明现象间相互依存关系的密切程度。
所谓回归分析,就是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。
它们具有共同的研究对象,在具体应用时,相关分析需要依靠回归分析来表明现象数量相关的具体形式,而回归分析则需要依靠相关分析来表明现象数量变化的相关程度。
只有当变量之间存在着高度相关时,进行回归分析寻求其相关的具体形式才有意义。
由于相关分析不能指出变量间相互关系的具体形式,所以回归分析要对具有相关关系的变量之间的数量联系进行测定,从而为估算和预测提供了一个重要的方法。
在有关管理问题的定量分析中,推断统计加具有更加广泛的应用价值。
需要指出的是,相关分析和回归分析只是定量分析的手段。
通过相关与回归分析,虽然可以从数量上反映现象之间的联系形式及其密切程度,但是现象内在联系的判断和因果关系的确定,必须以有关学科的理论为指导,结合专业知识和实际经验进行分析研究,才能正确解决。
因此,在应用时要把定性分析和定量分析结合起来,在定性分析的基础上开展定量分析。