计量多元回归作业
- 格式:docx
- 大小:87.81 KB
- 文档页数:4
第三章 多元线性回归模型一、单项选择题1、决定系数2R 是指【 】A 剩余平方和占总离差平方和的比重B 总离差平方和占回归平方和的比重C 回归平方和占总离差平方和的比重D 回归平方和占剩余平方和的比重2、在由n=30的一组样本估计的、包含3个解释变量的线性回归模型中,计算的多重决定系数为0.8500,则调整后的决定系数为【 】A 0.8603B 0.8389C 0.8 655D 0.83273、设k 为模型中的参数个数,则回归平方和是指【 】 A 21)(Y Yn i i -∑= B 21)ˆ(in i i Y Y -∑= C 21)ˆ(Y Y n i i-∑= D )1/()(21--∑=k Y Y n i i4、下列样本模型中,哪一个模型通常是无效的【 】A i C (消费)=500+0.8i I (收入)B d i Q (商品需求)=10+0.8i I (收入)+0.9i P (价格)C s i Q (商品供给)=20+0.75i P (价格)D i Y (产出量)=0.656.0i L (劳动)4.0iK (资本) 5、对于iki k i i i e X X X Y +++++=ββββˆˆˆˆ22110 ,统计量∑∑----)1/()ˆ(/)ˆ(22k n Y Y k Y Y i i i 服从【 】 A t(n-k) B t(n-k-1) C F(k-1,n-k) D F(k,n-k-1)6、对于iki k i i i e X X X Y +++++=ββββˆˆˆˆ22110 ,检验H 0:0=i β),,1,0(k i =时,所用的统计量)ˆvar(ˆi it ββ=服从【 】A t(n-k-1)B t(n-k-2)C t(n-k+1)D t(n-k+2)7、调整的判定系数 与多重判定系数 之间有如下关系【 】A 1122---=k n n R RB 11122----=k n n R R C 11)1(122---+-=k n n R R D 11)1(122-----=k n n R R 8、用一组有30 个观测值的样本估计模型i i i i u X X Y +++=22110βββ后,在0.05的显著性水平下对的显著性作t 检验,则1β显著地不等于零的条件是其统计量t 大于【 】 A 05.0t (30) B 025.0t (28) C (27) D 025.0F (1,28)9、如果两个经济变量X 与Y 间的关系近似地表现为当X 发生一个绝对量变动(∆X )时,Y 有一个固定地相对量(∆Y/Y )变动,则适宜配合的回归模型是【 】A i i i u X Y ++=10ββB ln i i i u X Y ++=10ββC i ii u X Y ++=110ββ D ln i i i u X Y ++=ln 10ββ 10、对于iki k i i i e X X X Y +++++=ββββˆˆˆˆ22110 ,如果原模型满足线性模型的基本假设,则在零假设j β=0下,统计量)ˆ(/ˆjj s ββ(其中s(j β)是j β的标准误差)服从【 】 A t (n-k ) B t (n-k-1) C F (k-1,n-k ) D F (k ,n-k-1)11、下列哪个模型为常数弹性模型【 】A ln i i i u X Y ++=ln ln 10ββB ln i i i u X Y ++=10ln ββC i i i u X Y ++=ln 10ββD i ii u X Y ++=110ββ 12、模型i i i u X Y ++=ln 10ββ中,Y 关于X 的弹性为【 】1β025.0tA iX 1β B i X 1β C i Y 1β D i Y 1β 13、模型ln i i i u X Y ++=ln ln 10ββ中,的实际含义是【 】A X 关于Y 的弹性B Y 关于X 的弹性C X 关于Y 的边际倾向D Y 关于X 的边际倾向14、关于经济计量模型进行预测出现误差的原因,正确的说法是【 】A.只有随机因素B.只有系统因素C.既有随机因素,又有系统因素D.A 、B 、C 都不对15、在多元线性回归模型中对样本容量的基本要求是(k 为解释变量个数):【 】A n ≥k+1B n<k+1C n ≥30或n ≥3(k+1)D n ≥3016、用一组有30个观测值的样本估计模型i i i i u X X Y +++=22110βββi ,并在0.05的显著性水平下对总体显著性作F 检验,则检验拒绝零假设的条件是统计量F 大于【 】A F 0.05(3,30)B F 0.025(3,30)C F 0.05(2,27)D F 0.025(2,27)17、对小样本回归系数进行检验时,所用统计量是( )A 正态统计量B t 统计量C χ2统计量D F 统计量18、在多元回归中,调整后的判定系数2R 与判定系数2R 的关系有【 】A 2R <2RB 2R >2RC 2R =2RD 2R 与2R 的关系不能确定 19、根据判定系数2R 与F 统计量的关系可知,当2R =1时有【 】A F =-1B F =0C F =1D F =∞20、回归分析中,用来说明拟合优度的统计量为【 】A 相关系数B 判定系数C 回归系数D 标准差21、对于二元线性回归模型的总体显著性检验的F 统计量,正确的是【 】。
多元线性回归分析摘要:本文查找2011年《中国统计年鉴》,取我国31个省市自治区直辖市2010年的数据,利用SPSS软件对影响居民消费的因素进行讨论构造线性回归模型。
并对模型的回归显著性、拟合度、正态分布等分别进行检验,最终得到最优线性回归模型,寻找影响居民消费的各个因素。
关键字:回归分析;线性;相关系数;正态分布1. 引言变量与变量之间的关系分为确定性关系和非确定性关系,函数表达确定性关系。
研究变量间的非确定性关系,构造变量间经验公式的数理统计方法称为回归分析。
回归分析是指通过提供变量之间的数学表达式来定量描述变量间相关关系的数学过程,这一数学表达式通常称为经验公式。
一方面,研究者可以利用概率统计知识,对这个经验公式的有效性进行判定;另一方面,研究者可以利用经验公式,根据自变量的取值预测因变量的取值。
如果是多个因素作为自变量的时候,还可以通过因素分析,找出哪些自变量对因变量的影响是显著的,哪些是不显著的。
回归分析目前在生物统计、医学统计、经济分析、数据挖掘中得到了广泛的应用。
通过对训练数据进行回归分析得出经验公式,利用经验公式就可以在已知自变量的情况下预测因变量的取值。
实际问题的控制中往往是根据预测结果来进行的,如在商品流通领域,通常用回归分析商品价和与商品需求之间的关系,以便对商品的价格和需求量进行控制。
本文查找2011年《中国统计年鉴》,取我国31个省市自治区直辖市2010年的数据,利用SPSS软件对影响居民消费的因素进行讨论构造多元线性线性回归模型。
以探求影响居民消费水平的各个因素,得到最优线性回归模型。
随后,我们对模型的回归显著性、拟合度、正态分布等分别进行检验,以考察线性回归模型的可信度。
本文将分为5章进行论述。
在第2章,我们介绍多元线性回归模型的概念。
第3章,我们进行模型的建立与数据的收集和整理。
我们在第4章对数据进行处理,得出多元线性回归模型,并对其进行检验。
在第5章,我们进行总结。
税收与三大产业的关系模型目录目录 (1)1.研究背景 (2)2.数据的搜集 (2)3.建立多元线性回归模型 (3)3.1模型估计 (3)3.2模型检验 (6)3.2.1经济意义检验 (6)3.2.2拟合优度检验 (7)3.2.3.F检验 (7)3.2.4 t检验 (7)3.2.5多重共线性检验 (7)3.2.6自相关性检验 (12)3.2.7自相关的修正 (13)3.2.8 异方差性检验 (14)3.2.9异方差的修正 (17)4结论 (22)5参考文献 (22)1.研究背景税收是调控经济运行的重要手段。
经济决定税收,税收反作用于经济。
税收作为经济杠杆,通过增税与减免税等手段来影响社会成员的经济利益,引导企业、个人的经济行为,对资源配置和社会经济发展产生影响,从而达到调控宏观经济运行的目的。
政府运用税收手段,既可以调节宏观经济总量,也可以调节经济结构。
我国税收收入增长率在“下降”,而“质量”却在“提高”。
财政部税政司发布的“2013年一季度税收收入情况分析”显示,2013年一季度全国税收总收入完成27399.20亿元,比去年同期增加2418.96亿元,增长10.3%.从中可以看出,一季度的税收收入增长速度改变了以往税收收入超GDP较多的增长形势,呈现低速增长的态势。
近年来,我国大力发展的高新技术产业、金融业、物流业三大支柱产业,成为纳税大户排行榜上最引人注目的三大集团军。
这三大产业名家荟萃,在本届的三大排行表上纷纷崭露头角。
因此,税收与三大产业的发展有着密不可分的联系,本文将用计量经济学的有关方法来建立具体模型探究它们之间的具体关系。
2.数据的搜集1993-2012年中国税收收入与三大产业数据统计:单位:亿元3.建立多元线性回归模型3.1模型估计新建一个excel文档,将数据编辑入excel文档,进入Eviews软件包,键入file/open/foreign data as Workfile,将excel文档导入Eviews,再进行回归分析的结果:(命令:LS Y C X1 X2 X3)输入命令(scat X1 Y)、(scat X2 Y)、(scat X3 Y)得到如下的散点图:估计结果为ýi=1755.421-0.79X1i+0.215X2i+0.355X3i(1.7731)(-4.6973)(2.4552)(4.6580)R2=9985 F=3588.752 DW=1.5649括号内为t统计量值。
第1篇一、实验目的本次实验旨在通过多元线性回归模型,分析多个自变量与因变量之间的关系,掌握多元线性回归模型的基本原理、建模方法、参数估计以及模型检验等技能,提高运用计量经济学方法解决实际问题的能力。
二、实验背景随着经济的发展和社会的进步,影响一个变量的因素越来越多。
在经济学、管理学等领域,多元线性回归模型被广泛应用于分析多个变量之间的关系。
本实验以某地区居民消费支出为例,探讨影响居民消费支出的因素。
三、实验数据本实验数据来源于某地区统计局,包括以下变量:1. 消费支出(Y):表示居民年消费支出,单位为元;2. 家庭收入(X1):表示居民家庭年收入,单位为元;3. 房产价值(X2):表示居民家庭房产价值,单位为万元;4. 教育水平(X3):表示居民受教育程度,分为小学、初中、高中、大专及以上四个等级;5. 通货膨胀率(X4):表示居民消费价格指数,单位为百分比。
四、实验步骤1. 数据预处理:对数据进行清洗、缺失值处理和异常值处理,确保数据质量。
2. 模型设定:根据理论知识和实际情况,建立多元线性回归模型:Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε其中,Y为因变量,X1、X2、X3、X4为自变量,β0为截距项,β1、β2、β3、β4为回归系数,ε为误差项。
3. 模型估计:利用统计软件(如SPSS、R等)对模型进行参数估计,得到回归系数的估计值。
4. 模型检验:对估计得到的模型进行检验,包括以下内容:(1)拟合优度检验:通过计算R²、F统计量等指标,判断模型的整体拟合效果;(2)t检验:对回归系数进行显著性检验,判断各变量对因变量的影响是否显著;(3)方差膨胀因子(VIF)检验:检验模型是否存在多重共线性问题。
5. 结果分析:根据模型检验结果,分析各变量对因变量的影响程度和显著性,得出结论。
五、实验结果与分析1. 拟合优度检验:根据计算结果,R²为0.812,F统计量为30.456,P值为0.000,说明模型整体拟合效果较好。
计量经济学复习资料——概论⼀元和多元线性回归习题概论、⼀元线性回归、多元线性回归习题⼀、单项选择题1. 总体回归线是指( ) A )样本观测值拟合的最好的曲线 B )使残差平⽅和最⼩的曲线C )解释变量X 取给定值时,被解释变量Y 的样本均值的轨迹D )解释变量X 取给定值时,被解释变量Y 的条件均值或期望值的轨迹2. 指出下列哪⼀变量关系是确定函数关系⽽不是相关关系? () A. 商品销售额与销售价格 B. 学习成绩总分与各门课程成绩分数 C. 物价⽔平与商品需求量 D. ⼩麦亩产量与施肥量3. 经济计量分析⼯作的基本⼯作步骤是-() A .设定理论模型→收集样本资料→估计模型参数→检验模型B .设定模型→估计参数→检验模型→应⽤模型C .理论分析→数据收集→计算模拟→修正模型D .确定模型导向→确定变量及⽅程式→应⽤模型4. 若⼀元线性回归模型Y=β1+β2X +u 满⾜经典假定,那么参数β1、β2的普通最⼩⼆乘估计量β^1、β^2是所有线性估计量中( )A )⽆偏且⽅差最⼤的B )⽆偏且⽅差最⼩的C )有偏且⽅差最⼤的D )有偏且⽅差最⼩的5. 在⼀元线性回归模型Y=β1+β2X +u 中,若回归系数β2通过了t 检验,则表⽰( ) A )β^2≠0 B )β2≠0 C )β2=0 D )β^=06. 在多元线性回归模型Y=β1+β2X 2+β3X 3 +β4X 4+u 中,对回归系数βj (j=2,3,4)进⾏显著性检验时,t 统计量为( )A )()jjSe ββ?? B )()j j Se ββ C )()j j Var ββ D )()j j Var ββ??7. 在⼆元线性回归模型中,回归系数的显著性t 检验的⾃由度为( )。
A. n B. n-1 C. n-2 D. n-38. 普通最⼩⼆乘法要求模型误差项u i 满⾜某些基本假定,下列结论中错误的是( )。
A. E(u i )=0 B. E(2i u )=2i σC. E(u i u j )=0D. u i ~N(0.σ2)9. 对模型Yi=β0+β1X1i+β2X2i+µi 进⾏总体显著性F 检验,检验的零假设是( ) A. β1=β2=0 B. β1=0 C. β2=0 D. β0=0或β1=010. 在多元线性回归中,判定系数R 2随着解释变量数⽬的增加⽽() A.减少 B .增加 C .不变 D .变化不定11. 已知三元线性回归模型估计的残差平⽅和为8002=∑te,估计⽤样本容量为24=n ,则随机误差项t u 的⽅差估计量2S 为( )。
第二章经典单方程计量经济学模型:一元线性回归模型一、内容提要本章介绍了回归分析的基本思想与基本方法。
首先,本章从总体回归模型与总体回归函数、样本回归模型与样本回归函数这两组概念开始,建立了回归分析的基本思想。
总体回归函数是对总体变量间关系的定量表述,由总体回归模型在若干基本假设下得到,但它只是建立在理论之上,在现实中只能先从总体中抽取一个样本,获得样本回归函数,并用它对总体回归函数做出统计推断。
本章的一个重点是如何获取线性的样本回归函数,主要涉及到普通最小二乘法(OLS)的学习与掌握。
同时,也介绍了极大似然估计法(ML)以及矩估计法(MM)。
本章的另一个重点是对样本回归函数能否代表总体回归函数进行统计推断,即进行所谓的统计检验。
统计检验包括两个方面,一是先检验样本回归函数与样本点的“拟合优度”,第二是检验样本回归函数与总体回归函数的“接近”程度。
后者又包括两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的t检验完成;第二,检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。
本章还有三方面的内容不容忽视。
其一,若干基本假设。
样本回归函数参数的估计以及对参数估计量的统计性质的分析以及所进行的统计推断都是建立在这些基本假设之上的。
其二,参数估计量统计性质的分析,包括小样本性质与大样本性质,尤其是无偏性、有效性与一致性构成了对样本估计量优劣的最主要的衡量准则。
Goss-markov定理表明OLS估计量是最佳线性无偏估计量。
其三,运用样本回归函数进行预测,包括被解释变量条件均值与个值的预测,以及预测置信区间的计算及其变化特征。
二、典型例题分析例1、令kids表示一名妇女生育孩子的数目,educ表示该妇女接受过教育的年数。
生育率对教育年数的简单回归模型为β+μβkids=educ+1(1)随机扰动项μ包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。
多元线性回归计量经济学实验报告-V1多元线性回归是一种常用的计量经济学方法,它通过建立多个自变量和因变量之间的关系式,来解释和预测经济现象。
在本次实验中,我们利用多元线性回归方法,对GDP、人口、教育程度和失业率这四个变量之间的关系进行了分析和探讨。
一、数据收集和处理本实验采用的数据来源于世界银行官方网站,数据时间跨度为1990年至2018年。
我们通过Excel软件进行了数据处理和分析,包括数据清洗、变量筛选和数据转换等,以保证数据可靠性和分析准确性。
二、变量解释和关系建立我们选取了GDP、人口、教育程度和失业率这四个变量,其中GDP作为因变量,人口、教育程度和失业率作为自变量。
我们分别解释了这四个变量:1. GDP:即国内生产总值,反映了一个国家或地区的经济规模和发展水平。
2. 人口:反映了一个国家或地区的人口规模和结构。
3. 教育程度:反映了一个国家或地区的人力资本水平和教育资源状况。
4. 失业率:反映了一个国家或地区的劳动力市场状况和社会稳定性。
根据以上变量的解释和现实经济联系,我们建立了以下关系式:GDP = β0 + β1人口+ β2教育程度+ β3失业率+ ε其中,β0表示常数项,β1、β2、β3分别表示人口、教育程度和失业率对GDP的影响,ε为误差项。
三、实验结果分析我们利用Stata软件进行了多元线性回归分析,得到以下结果:1. 回归方程的拟合程度通过F检验可以得出,本回归方程的拟合程度显著,F统计量为XXX,P值为XXX<0.05,说明该模型拟合程度良好。
同时,R-squared值为XXX,表示被解释变量(GDP)有XXX%的方差可以由解释变量(人口、教育程度、失业率)来解释,这也表明该模型的解释能力较强。
2. 变量系数和显著性检验根据模型回归结果,我们可以看出,人口、教育程度、失业率三个变量对GDP有不同的影响程度,并且它们的影响在统计意义上也是显著的。
具体地,我们可以看出教育程度的系数估计值为XXX,p<0.05,说明教育程度与GDP呈现正相关关系,即教育程度越高,GDP水平越高。
多元线性回归模型一、单项选择题1.在由30n =的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重决定系数为0.8500,则调整后的多重决定系数为( ) A. 0.8603 B. 0.8389 C. 0.8655 D.0.83272.下列样本模型中,哪一个模型通常是无效的() A. i C (消费)=500+0.8i I (收入) B. d i Q (商品需求)=10+0.8i I (收入)+0.9i P (价格)C. s i Q (商品供给)=20+0.75i P (价格)D. i Y (产出量)=0.650.6i L (劳动)0.4i K (资本)3.用一组有30个观测值的样本估计模型01122t t t t y b b x b x u =+++后,在0.05的显著性水平上对1b 的显著性作t 检验,则1b 显著地不等于零的条件是其统计量t 大于等于( ) A. )30(05.0t B. )28(025.0t C. )27(025.0t D. )28,1(025.0F4.模型t t t u x b b y ++=ln ln ln 10中,1b 的实际含义是( )A.x 关于y 的弹性B. y 关于x 的弹性C. x 关于y 的边际倾向D. y 关于x 的边际倾向 5、在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明模型中存在( )A.异方差性B.序列相关C.多重共线性D.高拟合优度6.线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...)t H b i k ==时,所用的统计量 服从( )A.t(n-k+1)B.t(n-k-2)C.t(n-k-1)D.t(n-k+2)7. 调整的判定系数与多重判定系数 之间有如下关系( ) A.2211n R R n k −=−− B. 22111n R R n k −=−−− C. 2211(1)1n R R n k −=−+−− D. 2211(1)1n R R n k −=−−−− 8.关于经济计量模型进行预测出现误差的原因,正确的说法是( )。
《计量经济学》多媒体课件-多元线性回归模型习题参考解答自己整理的《计量经济学》多媒体课件-多元线性回归模型习题参考解答相关文档,希望能对大家有所帮助,谢谢阅读!为了研究我国各地区入境旅游情况,建立了旅游外汇收入(Y,百万美元)、旅行社从业人数(X1,人)、国际游客人数(X2,万人)模型。
利用某年31个省市的横断面数据对结果进行了估计,具体如下:t=(-3.066806)(6.652983)(3.378064)R2=0.934331华氏度=191.1894牛顿=31 (1)从经济意义上考察估计模型的合理性。
(2)在5%显著性水平上,分别检验参数的显著性。
(3)在5%显著性水平下,模型的总体显著性得到检验。
3.2试根据以下数据估算偏回归系数、标准误差、可确定系数和修正可确定系数:经研究发现,家庭书刊的消费受几位户主受教育年限的影响。
该表显示了从某一地区一些家庭的抽样调查中获得的样本数据:家庭书刊年消费支出(元)y家庭月平均收入(元)x户主受教育年限(年)t家庭书刊年消费支出(元)y家庭月平均收入(元)x户主受教育年限(年)t450 1027.2 8 793.2 1998.6 14 507.7 1045.2 9 660.8 2196 10 613。
12 792.7 2105.4 12 563.4 1312.2 9 580.8 2147.4 8 501.5 1316.4 7 612.7 2154 10 781.5 1442.4 15 890.8 2231.4 14 541.8 1641 9 1121 2611.8 18 611.1 1768.8 10 1099(2)利用样本数据估计模型参数;(3)检查户主受教育年限对家庭书刊消费是否有显著影响;(4)分析估算模型的经济意义和作用。
3.4考虑以下“预期-扩大菲利普斯曲线”模型:其中:=实际通货膨胀率(%);=失业率(%);=预期通货膨胀率(%)下表是某国的相关数据。
计量经济学多元回归分析案例引言计量经济学是运用数理统计和经济学方法研究经济现象的一门学科。
在实际研究中,多元回归分析是一种常用的方法。
本文将通过一个实际案例来介绍计量经济学中的多元回归分析方法和应用。
研究背景单因素回归分析在计量经济学中,单因素回归分析是最基本的方法之一。
它通过确定一个因变量和一个自变量之间的关系,来解释因变量的变化。
然而,在现实世界中,经济现象往往受到多个因素的影响,因此需要使用多元回归分析来更全面地解释经济现象的变化。
问题陈述本研究的问题是探究某个城市的房价与多个因素之间的关系。
具体来说,我们感兴趣的因变量是房价,自变量包括房屋面积、地理位置、周边设施等。
我们希望通过建立一个多元回归模型来解释房价的变化,并分析不同因素对房价的影响程度。
数据收集为了进行多元回归分析,我们需要收集相关的数据。
在本案例中,我们采集了以下数据:1.房价:通过不同的房地产网站获取该城市的房屋销售数据,包括每个房屋的售价信息。
2.房屋面积:通过购房广告或房产中介提供的信息收集每个房屋的面积数据。
3.地理位置:通过经纬度或邮政编码信息获取每个房屋的地理位置信息。
4.周边设施:通过地图应用或开放的公共数据接口获取每个房屋周边设施(如学校、医院、商场等)的数量和距离信息。
数据预处理在进行多元回归分析前,我们需要对收集到的数据进行预处理。
缺失值处理在数据收集过程中,可能会出现数据缺失的情况。
对于缺失的数据,我们可以选择删除相应的样本,或者通过插补方法进行填充。
在本案例中,我们选择使用均值填充的方法。
数据转换由于多元回归模型要求变量之间具有线性关系,因此我们需要对非数值型数据进行转换。
在本案例中,地理位置可以通过编码转换为数值型变量。
模型建立在进行多元回归分析时,我们需要选择适当的模型来描述因变量和自变量之间的关系。
在本案例中,我们选择使用普通最小二乘法(OLS)来估计回归模型的参数。
模型表达式我们将房价作为因变量(Y),房屋面积、地理位置和周边设施作为自变量(X)。
计量多元回归作业
模型:选取不同行业工业总产值Y为被解释变量,选取各行业资产合计K、职工人数L为解释变量。
1.参数估计
窗口操作:Quick——Empty Group——粘贴数据
Proc——Make Equation
编程操作:
workfilejlzy
data k l y
equation v
v.ls y k l
2.统计检验
根据回归结果,回归方程为Y=0.199258K+11.12021L+588.6173。
即资本合计每增长一个单位,工业总产值增加0.199258,职工人数每增加1,工业总产值增加11.12021。
R^2=0.671478,代表Y的变化中约有67.15%可以由回归方程解释。
在置信度为95%的水平下,K、L的p指均小于0.05,t值也大于对应自由度的临界值,可见资本总量和职工人数对工业总产值的影响都是显著的。
3.点预测
在range右边的横线处点击,将样本数增加1;在Group窗口的编辑状态下输入K、L的新数值5000和100.
窗口操作:重新make equation, 在equation 窗口点击Forecast,将预测变量名选为Yf,输出序列。
可得对应K=5000,L=100的预测y值是2696.926。
编程:
K(32)=5000
L(32)=100
V.FIT YF YSE
4.区间预测&结果输出
SERIES OUT
OUT(1)=@COEFS(1)
OUT(2)=@COEFS(2)
OUT(3)=@SE^2
OUT(4)=@F
OUT(5)=@RBAR2
OUT(6)=@TSTATS(1)
OUT(7)=@TSTATS(2)
OUT(8)=@COEFS(1)-@STDERRS(1)*@QTDIST(1-0.05/2,@REGOBS-@NCOEF) OUT(9)=@COEFS(1)+@STDERRS(1)*@QTDIST(1-0.05/2,@REGOBS-@NCOEF) OUT(10)=@COEFS(2)-@STDERRS(2)*@QTDIST(1-0.05/2,@REGOBS-@NCOEF) OUT(10)=@COEFS(2)+@STDERRS(2)*@QTDIST(1-0.05/2,@REGOBS-@NCOEF) OUT(11)=YF(32)
OUT(12)=YF(32)-YSE(32)*@QTDIST(1-0.05/2,@REGOBS-@NCOEF)
OUT(13)=YF(32)+YSE(32)*@QTDIST(1-0.05/2,@REGOBS-@NCOEF)
OUT(14)=YF(32)-(YSE(32)^2-@SE^2)^0.5*@QTDIST(1-0.05/2,@REGOBS-@NCOEF) OUT(15)=YF(32)+(YSE(32)^2-@SE^2)^0.5*@QTDIST(1-0.05/2,@REGOBS-@NCOEF) SHOW Y YF OUT。